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ABSTRACT 

 

As networks grow rapidly denser with the introduction of wireless-enabled cars, 

wearables and appliances, signal interference coupled with limited radio spectrum 

availability emerges as a significant hindrance to network performance. In order to retain 

high network throughput, channels must be strategically assigned to nodes in a way that 

minimizes signal overlap between neighboring nodes. Current static techniques for 

channel assignment are intolerant of network variations and growth, but flexible dynamic 

assignment techniques are becoming more feasible with the introduction of software 

defined networks and network function virtualization. Virtualized networks abstract 

hardware functions to software, making tasks such as channel assignment much more 

reactive and suitable for automation. As network maintenance tasks are increasingly 

handled by software, however, network stability becomes susceptible to malicious 

behavior. In this thesis, we expose and study the effect of stealthy attacks that aim to 

trigger unnecessary channel switching in a network and increase signal interference. We 

develop a Markov Decision Problem (MDP) framework and investigate suboptimal 

attack policies applied to a number of real-world topologies. We derive attack policies as 

an approximate MDP solution due to the exponentially large state space. Determining 

vulnerabilities to stealthy attacks is necessary in order to improve the security and 

stability of software defined networks. 
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I. INTRODUCTION 

Motivation 

Wireless networks are experiencing explosive growth worldwide with the 

increasing use and diversity of wireless-enabled devices such as the Apple Watch, 

improvements in network capability such as Google Fiber, the growing popularity of 

web-based communication through applications like Skype and a shift to streaming 

entertainment through applications like Netflix. Wireless connectivity has become an 

integral part of not only personal computers, smart phones and tablets, but also vehicles, 

wearables, home appliances, and even energy meters as we transition to smart cities and 

homes. A push towards creating an Internet of Everything (IoE) to connect people, data 

and things, will add an estimated 155 million wireless devices in wearables alone as 

people begin to use smart glasses, health monitors, fitness trackers and even pet collars. 

  

In addition to how we connect, why we connect has also changed dramatically. 

Data traffic has shifted to more bandwidth-heavy content such as video streaming and 

cloud services, increasing the demand for faster, higher capacity networks. Mobile traffic 

grew 81 percent in 2013 and is expected to grow an additional 11-fold by 2018 [9]. As 

more devices and heavier traffic push the boundaries of network capabilities it becomes 

more important than ever to develop automated methods to monitor and improve 

performance in large scale networks. Due to the direct control such methods would have 

over wireless networks and the immediate effect any changes would have on network 

stability, we must first examine how susceptible they are to malicious behavior. 
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Wireless Network Limitations 

One of the main limitations of wireless network capacity and performance is 

signal interference caused by the reuse of overlapping channels in the radio spectrum. 

The portion of the spectrum reserved for use by wireless devices is limited, and when 

divided into channels each channel overlaps with adjacent channels. Signal interference 

occurs when a node in the wireless network uses a channel that is the same as or adjacent 

to a channel used by another node within radio range. If too many nodes in a network 

interfere, the network will experience message retransmission and redundancies, 

congestion, degraded signal quality and poor quality of service for the network’s users. 

  

The problem of signal interference can be at least partially alleviated through 

channel assignment techniques, which aim to carefully allocate channels to nodes in such 

a way that adjacent nodes use non-overlapping channels and the signal to interference 

and noise ratio (SINR) is minimized. When the channel assignment scheme is determined 

and implemented prior to network deployment, this is called static channel assignment 

(SCA) and when the assignment is able to change over time it is called dynamic channel 

assignment (DCA). Both methods have limitations since SCA is inefficient for networks 

with frequent variations, but the more flexible DCA requires the network nodes to be 

interference-aware and able to switch channels quickly. Rather than relying on a human 

administrator to manually monitor and switch channels, it is beneficial to carry out 

channel switching behavior in software. Software Defined Networks (SDNs) allow tasks 

like channel switching to be performed in software, and thus are a good platform for 

interference-aware dynamic channel assignment solutions that could potentially lead to 
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more stable, high performing networks. 

  

Security 

Despite the potential for performance improvements due to network function 

virtualization, it is important to examine possible shortcomings. Abstracting many of the 

time-consuming tasks to software does make the network more reactive, but this self-

resolving nature also makes the network susceptible to attacks aimed at manipulating and 

controlling network behavior. In a network employing DCA, for example, each node’s 

normal channel switching behavior attempts to reduce channel conflicts with neighboring 

nodes by switching to a non-overlapping channel. An attacker can easily trigger abnormal 

switching behavior, however, by tricking a node into believing there is a channel conflict 

where one does not exist. In currently used switching procedures, an access point must 

perform a channel availability check for some amount of time prior to switching, then 

broadcast an 802.11h channel switch announcement, and finally switch channels. This 

channel switch process takes 224 microseconds in hardware, but at Layer 2 or 3 it can 

take from 3-20ms [13, 17]. The access point’s clients lose connection during the switch 

and must reconnect, so unnecessary switching can severely impair service. Excessive 

channel switching based on nonexistent conflicts adds to network latency and could 

potentially prevent the network from ever resolving. In addition to causing frequent 

switching, an attacker could further impair the network by intelligently tailoring an attack 

to trick nodes into switching behavior that actually increases the number of channel 

conflicts and worsens signal interference in the network. Understanding the effect of 

attacks that exploit software-based network activity is crucial to improving the security of 
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software defined networks in the future. 

 

Thesis Statement 

Abstracting network functions such as channel switching from hardware to software 

can facilitate interference reduction in software defined networks, but the security of 

network virtualization must be considered because malicious behavior by an attacker may 

jeopardize network integrity. In this thesis we (1) explore a dynamic channel assignment 

technique that reduces channel conflicts between adjacent nodes in an interference-aware 

network of access points, (2) present a decoy attack that aims to increase network 

instability by projecting false channel information, (3) develop a Markov decision 

problem framework that can be approximately solved to obtain suboptimal attack policies 

and (4) compare the performance of suboptimal decoy attack policies to less intelligent 

attack policies. 
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II. RELATED WORK 

Background 

A wireless network is a collection of nodes that communicate by sending and 

receiving wireless signals. Nodes in the network communicate using a specific radio 

frequency spectrum, which is divided into one or more specific channels to allow 

efficient use of the spectrum. A node can switch between channels as needed and the 

number of channels a node can simultaneously use depends on how many radio interfaces 

are present on the node. According to IEEE 802.11 standards, wireless-b, wireless-g and 

wireless-n networks currently operate between the 2.4 and 2.5 GHz radio frequency 

range, which is divided into 14 channels. 

  

Wireless network performance can be measured in terms of data rate, bandwidth 

utilization and packet delivery reliability and is influenced by a number of factors such as 

received signal strength, congestion, number of hops, and radio range of the nodes [6, 

10]. Compared to wired networks, wireless networks have higher bit-error rates, limited 

bandwidth, high latency, and greater potential for disconnection. Since signal quality 

relies heavily on environmental factors and can easily be degraded by noise, wireless 

networks are subject to channel fading and non-Wi-Fi interference from microwaves, 

satellite television, and other devices in the 2.4 GHz spectrum using Bluetooth or ZigBee. 

  

Network performance metrics include throughput, goodput, and delay. 

Throughput measures data transferred in bits per second and takes into account 

transmission overhead, system limitations and unsuccessful transmissions. Goodput 
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measures useable data transferred, which excludes duplicates and packet overhead such 

as protocol headers and information used solely for routing. Delays can be incurred from 

processing, congestion, or characteristics of the transfer medium. Performance can be 

improved using techniques such as noise filtering, frequency modulation, handoffs, 

medium access control (MAC), and optimized routing. 

  

Signal Interference 

Signal interference is one of the main network factors that adversely affects 

performance, and is difficult to overcome due to the limited availability of channels. In 

the United States, channels 1-11 are legal to use. These channels are spaced 5 MHz apart 

in the 2.4 GHz radio spectrum, and since each channel has a width of 20 MHz there is 

significant overlap with adjacent channels. Network nodes within radio range attempting 

to communicate simultaneously on the same or overlapping channels will experience 

signal interference, resulting in difficulties extracting the intended signal. Interference in 

a network of single-radio nodes can be classified into two types: 

1. Co-channel interference (CCI), also called crosstalk, occurs when nodes within 

each other’s interference radius are using the same channel. CCI increases 

network delay due to medium contention overhead, as nodes must wait until the 

channel is clear before transmitting data. 

2. Adjacent channel interference (ACI) occurs when nodes within each other’s 

interference radius are using adjacent overlapping channels. ACI causes 

destructive interference, since any signals sent by one node will be viewed as 

noise by nearby nodes on adjacent overlapping channels. 
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A successful transmission by a node requires the receiving device to be within a 

transmission range and the signal to interference and noise ratio to be below a specific 

threshold. If interference and noise overwhelm the signal, nodes will experience 

unsuccessful transmissions, prompting them to resend frames to improve chances of a 

successful communication. Multiple copies of the same transmission reduce network 

throughput, causing even more congestion and increasing energy utilization. This can be 

especially detrimental for remotely deployed nodes such as small cells, as physical access 

to such nodes to replace batteries is limited and power consumption must be kept to a 

minimum. 

  

Overall, interference decreases network throughput and goodput, and increases 

signal latency and bandwidth congestion. As networks are increasingly used for 

streaming services such as video and VoIP, network latencies and delays are 

unacceptable as they render a network unusable for certain users and applications. 

Solutions for improving network performance focus on reducing contention, either 

through communication protocols or changes in the network topology.  Throughput can 

be improved by implementing multi-hop transmission where messages are buffered at 

intermediate nodes along a routing pathway. Nodes themselves can be equipped with 

multiple radios that communicate simultaneously. The radio spectrum can be divided and 

allocated according to frequency, code or time slots to improve transmission scheduling. 

  

Since throughput decreases as the number of users in a network grows, it may be 

necessary to limit the number of users and avoid bandwidth overload by implementing 
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smaller wireless networks or “small cells” [15]. The upcoming 802.11ac standard will 

broaden the frequency spectrum from 2.4 to 5 GHz, reducing congestion by allowing 

higher data rates and a greater number of non-overlapped channels [20]. Until a solution 

for overcrowding of the 2.4GHz band becomes available, channel assignment and reuse 

remains the best way reduce overall interference and improve network performance and 

user experience. Channel assignment algorithms target the cause of interference directly 

and apply a mathematical approach to allocate channels based on various factors such as 

physical location, signal to noise ratios and radio ranges. This thesis focuses on channel 

assignment and reducing signal interference by minimizing channel frequency overlap. 

  

Channel Assignment Approaches 

An optimal channel assignment strategy would assign every node within an 

interference radius a different non-overlapping channel, but due to the limited radio 

spectrum the largest set of orthogonal, or mutually non-overlapped, channels in a 

wireless-n network still only contains three channels: 1, 6, and 11. An assignment scheme 

that uses only these three channels eliminates all adjacent channel interference, but 

almost certainly causes a lot of co-channel interference. Channel reuse takes into account 

the fact that nodes outside of each other’s interference radius can freely use the same or 

adjacent channels without damaging network performance. The interference radius is 

determined by how far out a signal propagates from a node, since the signal power decays 

with distance traveled. An efficient assignment strategy may attempt to first eliminate 

ACI by assigning non-overlapped channels to neighboring nodes and then reduce CCI by 

allowing channel reuse among non-neighboring nodes. 
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For a simple implementation of channel assignment in a network, each node 

experiencing poor performance can randomly switch channels until it finds one with 

better performance. This random assignment does not require any computation or 

knowledge of the network, but is inefficient and potentially time consuming. An 

alternative implementation is static channel assignment (SCA) whereby the topology of 

the network is analyzed and used to develop a channel assignment scheme that is 

implemented prior to network deployment. Graph coloring solutions are a popular 

method used to determine the channel assignment strategy depending on the network 

topology and degree of interference. Nodes are represented as vertices in a graph where 

edges represent adjacency and channels are determined using an adaptation of vertex (or 

edge) coloring where no two adjacent nodes (or edges) may have the same color or 

channel. SCA can provide a better assignment than random switching, but channels are 

allocated based on pre-determined estimations of interference radius and expected traffic 

and thus may be inefficient if location or traffic variations occur. Once deployed it is 

difficult to modify the system to adapt to changes in traffic since switching one channel 

may require resolving and reallocation of the entire network. 

  

Recent research has focused on dynamic channel assignment (DCA), which is an 

adaptive assignment method that overcomes the limitations of SCA by assigning 

channels “on-the-fly” in reaction to changes in interference or traffic. In a centralized 

DCA scheme, channel allocation requests are handled by a central controller with 

complete system-wide visibility. The controller grants or denies channel requests based 
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on the calculated effect on signal quality. This centralized approach has the advantage of 

visibility but the disadvantage of lower responsiveness since the controller must 

communicate with each node, possibly through a series of repeaters for remote nodes. 

This centralized approach fails as the network grows in size and the controller 

experiences an overload of requests. 

 

In a distributed DCA scheme, channel switches are decided on by individual 

nodes based on their local perception of signal quality and awareness of channels used by 

surrounding nodes or cells. To initiate a channel switch, a node computes signal quality 

based on signal strength and signal to noise interference ratio. If quality is perceived to be 

poor based on a pre-decided threshold, the node will then attempt to switch to a higher 

quality channel. A distributed channel assignment scheme is more robust and scalable 

than a centralized scheme, but may also be suboptimal in terms of efficiency since it does 

not consider the state of the entire system. Distributed DCA may also be unable to adapt 

to rapid fluctuations in channel demand, necessitating development of dynamic allocation 

schemes that can respond to spatial and temporal changes. 

  

Channel assignment is a popular research area and there are a number of existing 

methods to assign channels statically or dynamically. [8] proposes a modified SCA 

algorithm that uses node placement information and the signal-to-interference ratio of the 

network to create a channel assignment design. [1] proposes an edge coloring, distributed 

DCA algorithm for an 802.11b/g network that aims to eliminate both primary 

interference caused by using one channel to receive signals from two different nodes and 
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secondary interference caused by unintentionally receiving a broadcast signal from a 

nearby node. The algorithm computes an overlapping channel interference factor and was 

able to successfully minimize signal interference in a limited number of iteration cycles. 

[16] proposes a vertex coloring distributed DCA algorithm for an 802.11a/b/g network, 

that assigns vertex weights in order to address interference chiefly in areas of greatest 

need. The switching behavior includes a Least Congested Channel Search heuristic. The 

authors contend that although this heuristic allows a single AP to select a least congested 

channel, it does not consider channel overlap or re-use. Combining LCCS with a graph 

coloring scheme resulted in decreased or eliminated interference as well as the use of 

channels beyond the 3 orthogonal ones. 

  

Since channel assignment is an optimization problem, taking a mathematical 

approach is common. The authors in [3] and [4] use Integer Programming (IP) to obtain a 

channel reuse pattern based on co-channel interference constraints. Integer programming 

is mathematical program model in which some problem is optimized by minimizing or 

maximizing a cost function. In [3] the authors propose an IP model that takes both 

channel overlap and traffic demand into account. In addition, the authors acknowledge 

the computational complexity of IP and apply some properties of the solver to develop a 

heuristic with performance comparable to the IP solver. Both techniques were able to 

successfully decrease overall interference, but the strategies are for a centralized channel 

assignment system. [4] also formulates an IP problem and proposes two heuristic 

algorithms based on minimum spanning trees. The first heuristic only assigns the 3 

orthogonal channels, while the second attempts to use the full spectrum of 11 channels. 
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The algorithms use an extended form of Prim’s algorithm to assign frequencies with the 

objective of minimizing interference and maximizing throughput and produced an 

assignment close to optimal for networks of varying density. As an alternative to 

centralize assignment methods, [14] considers channel assignment as a constraint 

satisfaction problem (CSP) and proposes a distributed DCA model. Uses a channel state 

table and applying channel overlap constraints, the authors were able to solve the CSP 

extremely fast with low computation time. Other suggested mathematical approaches use 

genetic algorithms, neural networks and simulated annealing [18, 23]. 

  

In addition to channel overlap, many other factors that affect network 

performance can be included in the assignment problem. [7] includes channel acquisition 

time as a factor in distributed DCA decision-making and proposes a model that takes 

search and channel acquisition times into account. [22] addresses routing and packet 

delivery issues caused by interference in wireless mesh networks and presents a routing-

information-aware DCA algorithm. The proposed algorithm handles load-balancing, 

adaptive traffic assignment and fault recovery, but requires nodes to have an additional 

channel resource for exchanging routing information. 

  

Currently there are many proposed dynamic channel assignment techniques that 

allow the system to maintain minimal interference even if the topology changes 

dramatically, but algorithms that work well in simulation are often not applicable in 

reality. Since nodes vary widely in hardware settings and may be deployed remotely, 

frequent channel switching will quickly become costly and unfeasible if dependent on 
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network engineers to carry out switching. For this reason some approaches use variations 

such as SCA with borrowing or a hybrid strategy (HCA) [11, 21] combining SCA and 

DCA, but a better solution is to improve the ease of channel switching. Such a solution is 

soon becoming possible with the introduction of software-defined networks. 

  

Software defined networks (SDNs) decouple wireless network control from the 

physical hardware, allowing for improvements in service such as seamless roaming and 

authentication as well as the ability to direct bandwidth heavy traffic to Wi-Fi and light 

traffic to the more expensive 3G. Future applications could lead to devices that are able to 

aggregate any Wi-Fi/3G/4G signals in an area and seamlessly switch among them 

without interrupting the user. Software defined networks can be easily managed due to 

the use of network function virtualization (NFV) which allows remote updates and 

provisioning of nodes from a central controller. The virtualized network is programmable 

and inexpensive to change. For example, instead of using a network engineer to manually 

assess interference and then deploy someone to change channels on each node in the 

network, an SDN-enabled network switch or router can run software to monitor the entire 

network and push channel switch commands to nodes without any human administrator 

intervention. This paves the way for more stable networks that can maintain high 

performance without human intervention even if nodes are added or removed from the 

network. 

 

Network providers are pushing for SDN because the proliferation of network 

devices in combination with greater demand for data processing is increasing the cost of 
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deploying a network. Cities have begun using municipal Wi-Fi, which is large-scale city 

wide wireless access, meaning network providers must be able to deploy and coordinate 

hundreds of access points. By moving expensive network applications upstream, the cost 

of intermediate and edge devices and thus overall network cost can be kept low. 

  

Allowing channel allocation in a wireless network to be handled by software 

provides a valuable architecture in that the entire process can be automated, resulting in a 

network that can resolve itself into a conflict-free assignment if one exists. A potential 

drawback to a self-resolving network, however, is the limited visibility of each node and 

resulting susceptibility to malicious behavior aimed at decreasing the stability of the 

network. If nodes monitor surrounding signals and switch accordingly, an attacker may 

select and broadcast channels near certain nodes to create the false impression of an 

interfering neighbor, forcing the node to switch channels unnecessarily. In this way the 

attacker may prevent the network from reaching a conflict-free resolution by causing 

continuous switching, and even create more interference by forcing nodes to switch to 

more congested channels. In addition to increased interference, this type of “decoy” 

attack can cause degraded network performance due to delays from accumulating channel 

acquisition times. This type of channel switch attack has been the focus of some previous 

studies [12].  

 

Furthermore, since channel switching can be modeled as a discrete-time process 

and choosing attacks is an optimization problem, the attacker can use mathematical 

decision making to intelligently determine an attack policy that causes maximum damage 
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while requiring minimum attack actions on the part of the attacker. One type of decision 

model is a Markov Decision Process and this framework has been applied to a variety of 

decision problems [2, 5, 19]. By adapting this framework for an attacker targeting 

software-driven channel assignment, we can study the robustness of channel-switching 

techniques under malicious conditions in order to recognize vulnerabilities. 

  

Thesis Focus 

This thesis aims to examine the performance of a dynamic channel allocation 

scheme and expose security weaknesses using a number of different attack policies. We 

simulate various network topologies to represent real life configurations such as 

apartment complexes and individual houses in a neighborhood. We address topologies 

that have known conflict-free assignments as well as those where it is unknown whether 

such a solution exists. An attacker attempts to create channel conflicts in the topology by 

launching a decoy attack. In a decoy attack, the attacker selects one of two possible 

actions- do nothing or create a false conflict at some location in the network to force 

surrounding nodes to change channels. The state space of a network with channel 

switching is immense, so even if an attacker wants to predict all future states and decide 

on an optimally damaging attack, it is not feasible.  

 

The goal of this thesis is to develop a suboptimal attack policy by approximately 

solving an MDP. We run multiple trajectories in simulation to approximate an attack 

policy that will maximize the damage done to the network while keeping the attacker’s 

cost low. We examine the behavior of the system when it is not under attack and when it 
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is under attack by monitoring convergence to a conflict-free assignment if one exists. We 

compare the derived suboptimal attack policy to less intelligent policies such as random 

attacks or DoS attacks to determine if the suboptimal policy is able to force the system 

into worse states. 
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III. SYSTEM MODEL 

Introduction 

The network topologies used in this thesis represent a static wireless network 

where each node is a wireless access point (AP) equipped with one single-channel radio 

and each edge in the topology connects APs within each other’s interference radius. For 

an N-node network, the state 𝑠𝑘 ∈ 𝑆 of the system at time k is represented by the vector 

 𝑠𝑘 = [𝑇 𝐶𝑘 𝑣 𝑏] 

where T is a standard N x N adjacency matrix capturing the network topology, Ck is an N 

x 1 vector containing the channels assigned to each AP at time k, and v and b are two 

describing variables to keep track of the AP most recently attacked (if any) and steps 

since last attack. The edges in the adjacency matrix T show which APs are within an 

interference range, meaning any APs connected by an edge cannot use the same or 

adjacent channels without experiencing interference. The density of T can be controlled 

during topology generation. Channels used in the assignment vector Ck are limited to the 

set of all usable channels C as set by country regulations. In the United States there are 11 

usable channels in the 2.4 GHz band for an 802.11n network, so in our system C = {1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, 11} and for all 𝑐𝑖 ∈ 𝐶𝑘, 𝑐𝑖 ∈ 𝐶. The system transitions from sk to a 

new state sk+1 when an AP switches channels, thus modifying the Ck assignment vector. 

  

Network Topologies 

We tested a range of network topologies selected to reflect real world topologies. 

We generate topologies by creating a location matrix depicting the spatial arrangement of 

all APs in the network. We then convert the location matrix to an adjacency matrix using 
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a given interference radius value. For all topologies generated for this thesis we 

considered the interference radius to be 1, meaning an AP only interferes with 

neighboring APs located one cell away in the location matrix. A description of each 

topology is as follows: 

  

The 5NAN topology is a diamond shape cluster of 5 APs representing a small section of a 

suburb, or “neighbor area network”, where houses adjacent to and across from each other 

interfere. There are maximally 16 conflicts in this topology and it has a known conflict-

free solution. 

 

Figure 1. 5nan topology. 

 

The 5chain topology is a chain of 5 APs where the node degree is 2 for center APs and 1 

for the two APs on the ends. There are maximally 8 conflicts in this topology. This 

topology used to see if attacker could create a ripple effect with its attack. 

 

Figure 2. 5chain topology. 

 

The 6ring topology is a ring of 6 APs where each AP has node degree 2. There are 

maximally 12 conflicts in this topology and it is used to see if attacker could create a 

cyclical effect with its attack. 
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Figure 3. 6ring topology. 

  

The 7tree topology is a binary tree structure of 7 APs, with one root AP, 2 internal APs 

and 4 leaf APs. There are maximally 12 conflicts in this topology and it is used to see if 

attacking the root could propagate to leaves. 

 

Figure 4. 7tree topology 

  

The 8custom topology is a cluster of 8 APs where network density is skewed towards one 

end of the network. There are maximally 20 conflicts in this topology, and it is used to 

examine attack behavior when the network as a range of node degrees. While other 

topologies have nodes where the degree is either 1 or 2, this topology has nodes with 

degrees ranging from 1 to 5. 

 

Figure 5. 8custom topology. 
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The 10barbell topology is a network of 10 APs arranged as two higher density clusters 

connected by a low density chain. There are maximally 26 conflicts in this topology and 

it is used to see if an attacker could attack the center and cause propagation either 

direction. 

 

Figure 6. 10barbell topology. 

 

Channel Assignment Technique 

We present a discrete-time, interference-aware dynamic channel assignment 

technique to reduce channel conflicts in a previously deployed network topology. We 

assume each AP in the network is aware of all usable channels C and is able to query and 

store information about its neighboring APs, which are any APs within an interference 

radius, to determine which channels are currently in use. The system model contains the 

following information: 

All nodes in the network 

𝐴 = {𝐴𝑃1, 𝐴𝑃2, … , 𝐴𝑃𝑛} 

All neighbors of a node 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐴𝑃) = {𝑛1,  𝑛2, … , 𝑛𝑖} 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝛿(𝐴𝑃) 

All channels used by neighbors of a node 

𝑛𝑒𝑖𝑔𝑏ℎ𝑜𝑟_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃) = [𝑛1. 𝑐,  𝑛2. 𝑐,  … ,  𝑛𝑖 . 𝑐] 

All conflicting nodes in the network 
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𝐴′ = {𝐴𝑃|𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝐴𝑃) > 0} 

In the event of a channel conflict with one or more neighbors, an AP can compute 

additional information from its stored information to determine which channels are 

available for it to switch to so that it is no longer in conflict with its neighbors. An 

available channel is one that is in the set of usable channels C but not in any of the 

interference sets of the APs neighbors. An interference set includes all channels that 

overlap with the assigned channel based on a channel separation constant. For an AP on 

channel c, the AP’s interference set contains a set number of adjacent channels as 

follows: 

𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑡(𝐴𝑃) = {𝑐𝑖−𝑥, … , 𝑐𝑖−1, 𝑐𝑖, 𝑐𝑖+1, … , 𝑐𝑖+𝑥}   

where ci is the AP’s local channel and x is the channel separation constant. For example, 

for a separation value of 2 a channel ci will overlap with channels ci-2, ci-1, ci+1 and ci+2. 

For all test cases examined in this thesis we used a channel separation constant of 2. The 

set of channels an AP can freely switch to is the set difference of usable channels and the 

union of the interference sets of all its neighbors. 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃) = 𝐶 − ⋃ 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑡(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐴𝑃))  

The number of channel conflicts experienced by an AP is the number of its neighbors’ 

interference sets that contain its local channel. 

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝐴𝑃) = |{𝑛|𝐴𝑃. 𝑐 ∈ 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑡(𝑛)}|  

If one or more conflicts is detected, the AP will compute its set of available channels. If 

more than one channel is available, the AP will select one at random. If no channels are 

available, an AP will switch to an unavailable channel that is “least conflicted”, meaning 

it appears in the fewest number of interference sets. If more than one channel is “least 



22 
 

conflicted” the AP will select one of them at random. The channel switching procedure 

for an AP is outlined as follows: 

𝐴𝑃𝑠 = 𝑝𝑖𝑐𝑘 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑟𝑜𝑚 𝐴′ 

𝑁 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐴𝑃𝑠) 

𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃𝑠) = ⋃ 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑡(𝑛)

𝑁

  

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃𝑠) = 𝐶 − 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃𝑠) 

𝑖𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃𝑠) = ∅ 

 𝑝𝑖𝑐𝑘 𝑙𝑒𝑎𝑠𝑡 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔 𝑐 ∈ 𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃𝑠) 

𝑒𝑙𝑠𝑒 

 𝑝𝑖𝑐𝑘 𝑟𝑎𝑛𝑑𝑜𝑚 𝑐 ∈ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(𝐴𝑃𝑠)  

A typical progression of normal switching behavior is as follows. 

Step 1, system initially has 3 conflicts: 

 

 

Step 2, system has 1 conflict after a node switches from channel 9 to 2. 
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Step 3, system has 0 conflicts after a node switches from channel 7 to 10. 

 

Decoy Attack 

A decoy attack takes advantage of the spatially static nature of the network. An 

attacker mounting a decoy attack aims to degrade network performance by increasing 

network instability and delays with unnecessary channel switching, increasing signal 

interference and congestion by causing more conflicts, and preventing the system from 

reaching a conflict-free channel assignment if one exists. Since each AP relies on the 

state of its neighbors to make switching decisions, an attacker can travel to an AP in the 

network (e.g. by driving to and sitting outside a home in a neighborhood) and broadcast a 

high power signal that overwhelms that of the AP. Neighboring APs would then see the 

attacker’s broadcasted channel and base their decisions off the fake channel instead of the 

actual channel assigned to the AP. In this way the attacker can make there appear to be a 

conflict where there is none and potentially cause a reaction of APs switching channels 

unnecessarily. 

 

Using the topology shown previously, a typical progression of a system under attack is as 

follows. 

Step 1, system initially has 3 conflicts: 
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An attacker broadcasts fake channel 2 at its victim node: 

 

Based on the fake channel, the system now thinks the following 3 conflicts: 

 

Step 2, the system switches a node from channel 9 to 7, thinking the new channel 

is no longer a conflict: 

 

In reality, however, the channel is still causing a conflict with the victim node and 

the system has 2 conflicts: 
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Under no attack conditions as shown previously, the system would only have 1 conflict 

by this step. 

  

It is not guaranteed that launching an attack will cause a channel switch, because 

all APs in conflict at a given step have equal probability of being selected to switch. Even 

if an attacker creates a fake conflict, an AP involved in a real conflict elsewhere in the 

network may be selected to switch instead of one of the APs affected by the attack. 

Additionally, if an affected AP is selected to switch in will not necessarily switch to a 

conflicting channel. For this reason, the attacker must weigh the potential benefit of 

successfully causing damage against the definite cost of launching an attack. We consider 

the attack cost to be risk of exposure, which means attack cost scales with network 

density as measured by node degree. Attacking an AP with a high node degree could 

possible damage a large number of surrounding APs, but an attacker in a densely 

populated area of the network also runs a higher risk of being caught. To maximize the 

damage caused in comparison to the costs incurred, the attacker must programmatically 

find a damaging attack pattern by maximizing a cost function. 

  

When attacking a victim, a single attacker who must travel to the desired victim 

AP’s location in order to launch the attack. The possible victims available to the attacker 
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at each step depends on the attacker’s location, so travel distance is the limiting factor in 

possible victims. We use the hop distance between APs to represent the travel distance 

for the attacker. The hop distance of all APs in the network is computed as follows where 

the final output is the hop matrix C. The attacker refers to this information when making 

decisions. 

𝐴 = 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑁-𝑛𝑜𝑑𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝐵 = 𝑁𝑥𝑁 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑧𝑒𝑟𝑜𝑠 

𝐶 = 𝐴 

𝑚 = 2 

𝑓𝑜𝑟 𝑎𝑙𝑙 node pairs (i,j) from (1,1) to (n,n) 

 𝑖𝑓 𝑖 == 𝑗 or C(i,j)>0 

  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

 𝑒𝑙𝑠𝑒 

  𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝑁 

   𝑖𝑓 𝐶(𝑖, 𝑘) > 0 && 𝐴(𝑘, 𝑗) > 0 

    𝐵(𝑖, 𝑗) = 𝑚 

    𝑏𝑟𝑒𝑎𝑘 

  𝑖𝑓 𝐵 == 0 

   𝑟𝑒𝑡𝑢𝑟𝑛 𝐶 

  𝑒𝑙𝑠𝑒 

   𝐶 = 𝐶 + 𝐵 

   𝐵 = 0 

   𝑚 = 𝑚 + 1 
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Potential victims after waiting 1 step. 

 

Potential victims after waiting 2 steps. 

 

Potential victims after waiting 3 steps. 

 

 

For a decoy attack, an attacker has two possible actions: (1) do nothing and (2) 

make it appear as though an AP n has switched to channel c. These attack actions are 

represented as <-1,-1> and <n,c>, respectively. In this system model, an attacker knows 

the entire network state including the topology and currently assigned channels, and can 

compute additional information such as node degree and the hop distance between any 

two APs. As the system transitions from state to state, the attacker collects an immediate 
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reward r. The reward r for a particular state sk is the sum of conflicts in the state: 

 𝑟(𝑠𝑘)  =  ∑ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝐴𝑃𝑖)𝑖  

The expected reward g when transitioning from state sk to sk+1 is 

 𝑔(𝑠𝑘, 𝑠𝑘+1) =  𝑃(𝑠𝑘−1 | 𝑠𝑘) ∗ 𝑟(𝑠𝑘+1) 

The more conflicts an attacker causes over the transition, the higher the path reward, 

which is the sum of rewards as the system transitions along a discrete Markov chain. The 

reward earned during a transition from sk to sk+1 is weighted by the probability P(sk+1 | sk) 

of transitioning from sk to sk+1. Mounting an attack using action a incurs a cost that takes 

into account travel to the node and danger of being discovered. 

 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑜𝑠𝑡(𝑎)  =  {
∞ 𝑖𝑓 𝑑(𝐴𝑃0, 𝐴𝑃) > 𝑠𝑘. 𝑏

ℎ ∗ 𝑑(𝐴𝑃0, 𝐴𝑃) + 𝛿(𝐴𝑃) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  

where action =<AP,c>, 𝑐 ∈ ⋃ 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑡(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐴𝑃)), AP is the victim AP 

to attack, AP0 is the last AP attacked sk.b steps ago, d(AP0,AP) is distance between the 

APs, h is a scaling constant, and 𝛿(𝐴𝑃) is degree of the AP. The distance to the AP must 

be less than or equal to the number of steps b that have passed since the last attack in 

order for the attacker to have enough time to travel to the AP. The expected immediate 

reward when transitioning from state sk to sk+1 as a result of action a is 

 𝑔(𝑠𝑘, 𝑎, 𝑠𝑘+1) = 𝑃(𝑠𝑘+1 | 𝑠𝑘) ∗ 𝑟(𝑠𝑘+1) − 𝑎𝑡𝑡𝑎𝑐𝑘_𝑐𝑜𝑠𝑡(𝑎) 

In order to find a tradeoff between reward and attack cost, the attacker must develop an 

optimal attack policy 𝜇 that maps 𝑆 → 𝐴 and specifies the best course of action to take 

given a particular network state. A policy contains a sequence of actions given a state, so 

an optimal policy should maximize reward and minimize attack cost so the attacker can 

achieve maximum damage to the system at little expense to the attacker. Since this is a 

discrete-time system with full visibility, the attacker can solve a Markov Decision 
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Problem (MDP) to select an attack policy. 
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IV. POLICY ITERATION 

Introduction 

A system can be modeled as a Markov decision process if it satisfies the 

requirement of discrete system states which can be reached by state transitions. The 

system’s state should be defined by a set of variable and the transitions must capture the 

change in variable values from the current state to another state without relying on any 

information from previous states. By adding values to the state transitions, a Markov 

decision process can be made into a Markov decision problem and applied to many types 

of decision-making tasks to optimize overall performance. For our system, we have a 

model of states and state transitions as well as a decision-making problem in which an 

attacker must determine a sequence of attack actions to perform. As an MDP, we aim to 

minimize the attack cost while maximizing the path reward. An attack policy outlines the 

sequence of actions the attacker should take over some time frame, but since this channel 

switching model has an infinite horizon we use a discount factor 𝛾 to weight the potential 

rewards and bias the attacker towards closer rewards. From the current state of the 

system, an attacker can determine current conflicts and their sizes as well as potential 

next states and the probabilities that a given action and state will result in a given state.  

 

In order to obtain an optimal attack policy, the attacker would need to exactly 

evaluate a linear set of equations for the expected state reward J for a policy 𝜇 

 𝐽𝜇(𝑠) = ∑ 𝑃(𝑠′|𝑠) ∗ [𝑔(𝑠, 𝑎, 𝑠′) + 𝛾𝐽𝜇(𝑠′)]𝑠′  

over all states s’ reachable from s using an optional discount factor g. Then the attacker 

would iteratively improve the policy 
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 𝜇̅(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

∑ 𝑃(𝑠′|𝑠, 𝑎) ∗ [𝑔(𝑠, 𝑎, 𝑠′) + 𝛾𝐽𝜇(𝑠′)]𝑠′  

and recompute 𝐽𝜇(𝑠) until a policy is found that maximizes the reward. The policy 

improvement iteration loop terminates when the improved policy𝜇̅ is the same as input 

policy 𝜇 for that step.  

 

The optimal policy obtained as an exact solution would outline the optimal action 

the attacker should choose given any state. For a very small network, an attacker could 

possibly enumerate every reachable state and select actions that lead to states with the 

best reward, but since this thesis focuses on a state space S similar to a real-world 

network with N nodes and C channels is CN, it is computationally intractable for the 

attacker to evaluate the expected state reward for every possible state and action 

combination. Instead we apply approximate policy iteration (API) to determine a 

suboptimal attack policy based on estimations of the state reward. 

  

Rather than examining every possible state, API uses representative states and 

features. Representative states are used as “training” states during policy improvement, 

so they must be selected in such a way that they capture most possibilities for the system 

and give wide coverage of useful regions in the state space. We selected representative 

states containing a spectrum of possible conflict states, from minimal conflicts or a 

conflict-free assignment to maximum conflicts with all APs assigned the same channel. 

All APs may start on any default channel, so an experimental run may begin with any 

number of conflicts. The minimal size of a single conflict is 2 and the maximal size is 

𝛿(𝐴𝑃) or the largest degree of an AP in the network. Since graph-coloring is an NP hard 
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problem, we did not attempt to generate a guaranteed minimal conflict state and instead 

approximated it using a greedy graph coloring solution. The greedy solution was found as 

follows: 

𝑉 = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 

𝑠𝑜𝑟𝑡(𝑉) 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑣 𝑖𝑛 𝑉 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑒𝑔𝑟𝑒𝑒 

 𝑖𝑓 𝑣 𝑖𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑜𝑙𝑜𝑟𝑒𝑑 

  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 

 𝑒𝑙𝑠𝑒 

  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝐶 

  𝑛 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑣) 

  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 

   𝑖 = 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑡(𝑛) 

   𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 − 𝑖 

   𝑢𝑝𝑑𝑎𝑡𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

  𝑖𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ≠ ∅ 

 𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝑣 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑖𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

  𝑒𝑙𝑠𝑒 

   𝑎𝑠𝑠𝑖𝑔𝑛 𝑡𝑜 𝑣 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 

From the representative states, a set of representative features is extracted that capture the 

characteristics of the state and can be weighted and used to estimate its value. In API, the 

attacker evaluates the approximated expected state rewards using a weight vector r 

 𝐽𝑟(𝑠) = ∑ 𝑟𝑗𝜑𝑗(𝑠)𝑀
𝑗=1  
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where 𝜙(𝑠) is the set of features for state s and M is the number of features used. Instead 

of iteratively evaluating and improving the policy until the iteration loop naturally 

terminates, API uses Monte Carlo simulations to evaluate the feature weights over a 

number of independent trajectories. 

  

Feature Selection 

In addition to representative states, API also relies on a set of representative 

features to capture the characteristics of each state and approximate the state value. For 

topologies with a diverse range of node degrees, we used the following features: 

φ1= Number of APs in conflict with one or more neighbors in the current state 

φ2= Ratio of maximum number of APs involved the same conflict to degree of the 

network graph 

φ3= Average number of APs involved in the same conflict 

φ4= Average number of channels unavailable to an AP 

φ5= Average conflict size of the highest degree AP(s) 

φ6= Last attacked AP 

φ7= Steps since last attack 

φ8= Flag for whether attacker is at MCN 

φ9= Degree of last attacked location 

φ10= Conflicts at last attacked location 

φ11= Available channels of last attacked location 

φ12= Degree of largest neighbor 

φ13= Fraction of APs within hop distance 



34 
 

We adjust the features applied depending on the network topology. For a ring topology, 

for example, we omitted features 8, 9, 12 since all APs in a ring have the same degree. To 

evaluate how well the selected features captured state characteristics, we compared the 

estimated path reward as computed from the features to the actual path reward seen by an 

attacker over 50 steps and found them to be similar as shown in Figure 7. 

 

Figure 7. Estimated versus actual path reward. 

  

Model Instantiation 

During policy iteration we tested six network topologies using a range of attack 

costs from a low cost of 0.001 to a high cost of 4, gamma values 0.95 and 0.97, channel 

separation constant 2 and 35-100 representative states. Representative states were 

generated by assigning channels to a topology such that the final set of states included 

some with maximal conflicts, some with minimal as found by a greedy coloring solution, 

some with conflicts ranging from 2 to 𝛿(𝑔) and some with random assignments. Each 

topology was tested for 20 policy iterations and each iteration simulated 20 trajectories of 

50 steps. A random attack was used as the rollout policy. 
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The Monte Carlo simulations were written in MATLAB using the parallel 

computing toolbox and run using 20 cores on a research cluster with Univa Grid engine. 

We selected 20 cores so that all 20 trajectories could be run simultaneously during each 

policy iteration. In all test cases we saw fast convergence to a suboptimal policy as 

evidence by convergence of the path reward values found during policy iteration. 

  

Attack Comparison 

To evaluate the performance of an API policy, we compare it to other attack policies 

by generating another set of representative states and computing the average reward 

gained by applying each type of attack. We compare the following types of attacks: 

1. No attack 

2. MCN (most complex node) 

3. Random 

4. DoS (Denial of service) 

5. Myopic 

6. API 

In a no attack policy, the attacker does nothing at every step. This is the lowest cost 

policy and serves as a baseline by which all other attacks are compared. Since a network 

may start with some number of conflicts and resolve over time, the attacker may see a 

nonzero path reward without expending any effort. By comparing other attack policies to 

the no attack policy, we hope to see an elevated path reward representative of additional 

or prolonged conflicts in the system compared to the conflicts that would exist normally 

without the attacker’s intervention. Under a no attack policy we are interested to see 
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whether the system resolves itself to a state with minimal conflicts, and if so how this 

state compares to the greedy channel assignment solution. 

  

In an MCN (most complex node) attack, the attacker takes a greedy approach to 

selecting a victim AP that is within the interference radius of the most other APs. By 

selecting the most complex (highest degree) AP, the attacker can potentially disrupt the 

maximum amount of APs with only one attack action. If there is more than one AP with 

the highest degree, the attacker will pick the one with the shortest hop distance from its 

current location. Once at the victim AP, the attacker will constantly attack at every step 

with a guaranteed conflicting channel. 

  

In a random attack, the attacker selects any random AP within one hop and 

chooses at random whether to broadcast a channel or do nothing. If attacking, the attacker 

selects any random AP, but broadcasts a guaranteed conflicting channel. Since the 

random policy allows the attacker to withhold attacks at random, the attacker may miss 

critical attack opportunities and allow the system to resolve much sooner. 

  

In a DoS attack, the attacker selects any random AP and chooses a random 

channel to broadcast at every step. In a DoS policy, the attacker never chooses to do 

nothing and instead attacks at every step without considering attack cost. This type of 

attack incurs the most cost to the attacker in hopes of also causing high amounts of 

damage with the constant attacks. However, since the victim APs are picked at random 

the attacker may be expending energy needlessly when there are better victims to attack. 
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A myopic attack selects an AP to attack without considering any features of the 

state, thus only considering immediate reward and cost and not the future value of each 

state. The API attack uses the features of the state and the feature weights computed 

during policy iteration to intelligently select an attack that should lead to more rewarding 

states. 

  

For each topology we tested a range of scaling constant values to observe the 

attacker’s behavior when attack cost was low or high. As expected, the path reward for 

no attack remained constant across all attack costs and we used this path reward as a 

baseline to compare the performance of other attack policies. When the attack cost is very 

low, attacker behavior corresponds to a Denial of Service (DoS) attack where constant 

broadcasting of fake channels forces constant switching in the network. When the attack 

cost is very high, this corresponds to no attack where the attacker does nothing at every 

step. A highly connected AP has a high node degree, making it costly to attack due to an 

increased chance of being exposed.  

 

Figure 8. Percentage of “no attack” actions for various attack costs. 
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As the attack cost increased, the path reward of DoS and rand policies decreased, 

dropping well below that of no attack for very high attack costs. For all values, even very 

low attack costs, the path reward of API remained higher than the path reward of DoS. 

The reason API could outperform DoS at low attack costs despite launching the same 

number of attacks is because DoS attempts to maximize damage simply by constantly 

attacking while API maximizes damage by constantly attacking intelligently, taking 

future states into account in addition to the potential immediate reward. 

 

Figure 9. Average path reward for various attack costs. 

  

Over all topologies tested, an attacker following an API policy was able to 

achieve a path reward greater than any other attack policy. Each of the following 

comparisons is based on a test case of a single attacker using each attack policy on the 

same set of representative topologies. The API policy had some defining characteristics 

that held across all topologies. When selected a channel to project, an attacker following 

an API policy always picked a channel that overlapped with as many reachable APs as 

possible. In many cases this meant positioning itself at one AP, but projecting a channel 
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that did not overlap with the victim AP. 

 

For a 5 chain topology, a single attacker following an API policy achieved an 

average path reward 1.3 times greater than a DoS attack. Breaking down the cost and 

reward aspects of the average path reward, API launched much fewer attacks than DoS 

and caused slightly fewer channel switches, but was able to force the system into more 

conflicts than DoS. API focused attacks nearly entirely on the 3 internal nodes, while 

DoS selected its victims without bias. For a chain topology, the maximum conflict size 

that can be caused by a single attack is 2 so an interesting observation is whether conflicts 

can be introduced quickly enough to outpace the system resolving conflicts. API was able 

to introduce more conflicts within 50 steps than DoS. 

 

Figure 10. Average path reward for various attack policies with a 5chain topology. 
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Figure 11. Histogram of victim selection for various attack policies with a 5chain topology. 

  

For a 5 node cluster topology, a single attacker following an API policy achieved 

an average path reward 1.3 times greater than a DoS attack. Compared to the myopic 

policy, the API policy had fewer “do nothing” actions. Compared to the DoS policy, the 

API policy focused attacks more heavily on AP 3, the most complex AP. One possible 

reason the attacker did not avoid this higher cost AP is due to the clustered nature of the 

APs, meaning that the difference between the smallest and largest node degrees was only 

1. An interesting case is one that begins as a resolved state. Myopic, Dos and API can all 

create conflicts in the system, but the created conflicts differ. DoS creates small conflicts 

in the resolved system, but conflicts do not compound and the system generally resolves 

again within a few steps. The no conflict states persist for several steps before the 

attacker successfully creates another conflict. Myopic consistently creates larger conflicts 

than DoS and even when the system is able to resolve the attacker can quickly create new 

conflicts. API creates large conflicts as well, but the system does not resolve as often as it 

does for myopic. 

1 2 3 54
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Figure 12. Average path reward for various attack policies with a 5nan topology. 

 

 

Figure 13. Histogram of victim selection for various attack policies with a 5nan topology. 

 

For a 6 node ring topology, a single attacker following an API policy achieved an 

average path reward 2.7 times greater than a DoS attack. The ring configuration was the 

most challenging topology for every attack, with many attacks performing worse than not 

attacking at all. As soon as the topology converged, the attacker had great difficulty 

reintroducing conflicts. This is because each AP only has two neighbors, so the number 

of conflicts an attacker can introduce using only one attack is very limited. Since the 

victim AP’s location will not give an API attacker any benefit, only the choice of channel 
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will distinguish the API policy from less intelligent policies. For this topology it is easier 

to see the effect of API’s channel selection and how API makes sure to broadcast a 

channel that overlaps as many APs as possible. For example, in one test case a 3-node 

section of the ring had been assigned channels 2-1-9 and API chose to attack the middle 

AP1: 

 

A myopic policy would see that projecting channel 1, 2 or 3 at AP1 would overlap with 2 

out of 3 APs, but instead the attacker projected channel 4 at AP1. At first this choice 

seems less optimal since it only overlaps with one AP, but looking at the larger picture 

helps explain the choice: 

 

The surrounding ring section is 11-2-1-9-10, so prior to the attack AP2 is already 

restricted from switching to channels 9, 10, or 11 due to its left neighbor. By projecting 

channel 4 on the other side of AP2, the attacker has less of an immediate chance of 

conflict, but it broadens AP2’s unavailable set to 2, 3, 4, 5, 6, 9, 10, 11. Not only is 

channel 4 conflicting with AP2 to prompt it to change, but the attacker also strategically 

left channel 1 as a viable switch option when in truth it will cause a conflict with AP1. 



43 
 

 

Figure 14. Average path reward for various attack policies with a 5ring topology. 

 

For a 7 node tree topology, a single attacker following an API policy achieved an 

average path reward 6.3 times greater than a DoS attack. DoS performed exceptionally 

poorly for this topology, while MCN performed fairly well. Compared to DoS, MCN 

focused attacks solely on one internal AP since internal APs in the tree have the highest 

degree. This resulted in more frequent reintroductions of conflicts into the resolved 

system compared to DoS. Both MCN and DoS were unable to introduce conflicts that 

compounded. API was able to both introduce conflicts much more frequently than Dos or 

MCN but also cause compounding conflicts. 

 

Figure 15. Average path reward for various attack policies with a 7tree topology. 
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Figure 16. Victim selection histogram for various attack policies with a 7tree topology. 

  

For an 8 node topology with a range of node degrees, a single attacker following 

an API policy achieved an average path reward 1.5 times greater than a DoS attack. In a 

multiple attacker system, the API policy achieved an average path reward 2.2 times 

greater than DoS. For a single attacker, nearly all myopic attacks were aimed at APs 4 

and 5 located in the center of the AP cluster: 

 

For an API attack, the attacker was more active in the denser side of the network, 

focusing attacks on APs 5, 6 and 7: 
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The API approach is smarter because although AP 4 and 6 have the same node degree, 

AP 6 has more complex neighbors, one of which is the most complex AP in the whole 

network. Rather than constantly attacking AP 5, the most complex AP, directly by 

broadcasting the same channel at AP 5, the attacker often targeted lower cost neighbors 

and broadcasted a channel that overlapped with both AP 5 and other surrounding APs, 

increasing the potential number of conflicts that one attack could cause. The API attack 

outperformed myopic, showing that it is beneficial for an attacker to make decisions 

based on the features of a state. Although the API policy was not always able to prevent 

the system from resolving, it was always able to continually reintroduce conflicts into the 

resolved system and, in some cases, create even more conflicts than the system originally 

had. 

 

Figure 17. Average path reward for various attack policies with an 8custom topology. 
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Figure 18. Histogram of victim selection for various attack policies with an 8custom topology. 

 

For a 10 node barbell topology, a single attacker following an API policy 

achieved an average path reward 1.7 times greater than a DoS attack. For this topology, 

myopic and API policies and nearly the same performance. This indicates that selecting 

victims according to the selected features does not provide any advantage over selecting 

victims based on immediate reward.  

 

Figure 19. Average path reward for various attack policies with a 10barbell topology. 

 

A possible explanation can be drawn from observation of the victim histogram. Most 

attacks are launched at nodes 4 and 7, which are the most complex nodes in the topology. 
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However, moving to the chain of 2-degree nodes between these complex nodes is never 

as beneficial to the attacker as attacking its immediate surroundings. Any potential 

benefit from traveling across the center chain is overwhelmed by the options in the denser 

areas of the topology. It is possible that this drastic difference in immediate reward 

compared to potential future rewards results in API behaving like a myopic policy.  
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Figure 20. Histogram of victim selection for various attack policies with a 10barbell topology. 

 

In addition to overall path reward, policy performance can also be evaluated in 

terms of the total conflicts, number of channel switches, or number of steps until the 

system resolves. For the both the number of channel switches and total conflicts observed 

in the system at high attack costs, API causes fewer conflicts and switches because the 

attacker is much more conservative about launching attacks. 
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Figure 21. Total channels switched observed on average for various attack policies and costs. 

 

 

Figure 22. Total conflicts seen over 50 steps for various attack policies and costs. 

 

Even though fewer conflicts are created, the overall path reward for API is still higher 

because the attacker is not constantly incurring massive penalties. 
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Figure 23. Attack efficiency comparison for DoS attack and API attack. 

 

API is able to prolong the time the system remains in a conflicted state for low and 

medium attack costs. For high attack costs, API launches fewer attacks, so the system is 

able to resolve sooner similar to what would happen during no attack. 

 

Figure 24. Average number of steps until system resolution for no attack, DoS and API attack policies. 
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V. CONCLUSION AND FUTURE WORK 

Conclusion 

Decoy attacks can significantly affect the stability of a network using dynamic 

channel switching by prolonging convergence to a no-conflict state, provoking 

unnecessary channel switching in APs, and introducing conflicts into a resolved system. 

An attacker can successfully estimate the value of a state using a set of predefined 

features and can approximately solve an MDP to obtain a suboptimal attack policy that 

outperforms standard attack such as DoS. The suboptimal policy performed well for a 

number of different topologies and in especially hostile systems with high attack costs. 

  

Future Work 

In this thesis we developed a set of 13 features to capture the characteristics of a 

network state. In the future we may examine additional features and the effect of feature 

selection on attack performance. For example, a potential feature could indicate whether 

a state is susceptible to a chain reaction damage effect. 

  

This work focuses on a system with simple single-channel APs, but our proposed 

system model can be expanded to include multi-radio systems and mobile networks 

where cellular devices connect to a base station that services a particular geographical 

area. In this case, devices would not only interfere with other devices using the same or 

adjacent channels in adjacent cells but also devices in the same cell (co-site interference). 

Channels could be reused in geographically separated cells, however. In addition to 

channel switching latency, a mobile network will also have handoff delays as mobile 
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devices move between ranges of APs. In future work with mobile nodes, it will be 

important to consider the limited power supply of mobile devices and incorporate 

prolonged node activity as a reward for the attacker. 

 

Our system model can also be adapted to a mesh network, where instead of 

assigning channels to nodes in a non-overlapping pattern the channels must be assigned 

to pairs of nodes. In a mesh network nodes must be on the same channel in order to 

communicate. This can be seen as edge coloring where the model covered in this thesis is 

vertex coloring. 

  

In the future, this work can be expanded to incorporate a traffic model and 

develop an adaptive, load balancing channel selection algorithm and attack recovery 

mechanism. In addition to reducing channel overlap, such a system should aim to make 

efficient use of bandwidth based on traffic demands. Interference determination can be 

expanded to include radio sensitivity and SINR in addition to spatial separation. 
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