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NEHARI MANIFOLD APPROACH FOR FRACTIONAL
p()-LAPLACIAN SYSTEM INVOLVING CONCAVE-CONVEX
NONLINEARITIES

RESHMI BISWAS, SWETA TIWARI

Communicated by Hongjie Dong

ABSTRACT. In this article, using Nehari manifold method we study the multi-
plicity of solutions of the nonlocal elliptic system involving variable exponents
and concave-convex nonlinearities,

A, w= A a(e)-2,, , __ @) a(@)=2,1, 8@ 4 e Q.
()5 = da@)uf* )2 el 2up ),

CAY, = pab(@) o]t @ =2y ¢ )@ -2y 8@ g
(~2)5 v = bl s B O
u=v=0, ze€Q :=RV\Q,
where Q C RV, N > 2 is a smooth bounded domain, X,z > 0 are parameters,
and s € (0,1). We show that there exists A > 0 such that for all A + p < A,

this system admits at least two non-trivial and non-negative solutions under
some assumptions on ¢, «, 3, a, b, c.

1. INTRODUCTION

In this article, we consider the nonlocal elliptic system with variable exponents,

—AY u= A\ a(z)=2,, 4 o) a(@)=2, 1 B) cq.
(=A)pu = Aa(@)|ul u a(x)+ﬁ(x)0(x)lu\ ulv| x

A, = ub a@)-2, , @) a(@)=2, 1, 1B() e, (1.1)
(=A% = wbl@) o]0 + —om e @l olul x

u=v=0, ze€Q :=RV\Q,

where Q C RN, N > 2 is a smooth bounded domain, A,z > 0 are the parameters,
s € (0,1), p € O(RN x RN (1,00)) with sp* < N. Here ¢q,a,3 € C(,(1,00))
are the variable exponents and a,b,c : Q — [0,00) are the non-negative weight
functions. The nonlocal operator (—A); ) is defined as

s , |u(@) — u(y) P2 (u(x) — u(y)) N
(Z&)pyule) = PV- /RN |z — y|N+s(@y)p(zy) dy, reRT, (1.2)
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where P.V. stands for Cauchy’s principal value. Problems involving nonlocal op-
erators have gained a lot of interest for research in recent years. Mathematical
modeling of the problems in many areas like mechanics, population dynamics, thin
obstacle problem, optimization and finance involve fractional Laplacian (—A)*® or
fractional p-Laplacian (—A)J. We refer to [12, 24] for the basic results on problems
involving nonlocal operators. Also, one can refer to [0, 11, 23] 26 27] and the
references therein for the existence, multiplicity, and regularity of the solutions of
these problems.

In this work, our objective is to study the nonlocal elliptic problems with variable
exponents. Operators involving variable growth are extensively studied due to the
precision in the modeling of various phenomenon where the property of the subject
under consideration depends on the point of the observation, for example, in image
restoration, study of electrorheological fluid flow, non-Newtonian processes, etc. We
refer to [2] [13 [15], 16, 28] and references therein for the study of the problems in-
volving the local p(x)-Laplace operator, defined as A, u = div (|Vu[P(®)=2Vu).

The fractional Sobolev spaces with variable exponents and the corresponding
fractional p(-)-Laplace operator (—A);(.) were recently introduced by Kaufmann et
al in [22]. Also, in [3| 4] [5 21], the authors have established the basic properties of
such spaces and studied the problems involving fractional p(-)-Laplacian.

Using the Nehari manifold and the fibering map, in the case of local p-Laplacian,
Brown and Wu [§] have obtained multiple solutions of an elliptic system with sign
changing weight functions and concave-convex nonlinearities. In the nonlocal set-
up, Sreenadh and Goyal [20] have studied the same for the single fractional p-
Laplacian equation . Also, we cite [10] where the authors have studied the fractional
p-Laplacian system involving concave-convex nonlinearities via Nehari manifold
and fibering map. In [I8], Pucci et al. have modified the definition of Nehari
manifold and fibering map for the fractional (p,q)-Laplacian system and studied
the corresponding Dirichlet problem. Recently Alves et al [I] have used this Nehari
manifold method to prove the multiplicity of solutions for p(z)-Laplacian problems
in the whole of RV,

Motivated by the above works, in this article, we address the multiplicity of
the solutions of the nonlocal elliptic system with variable exponents involving con-
cave and convex nonlinearities using the analysis of the fibering map and Nehari
manifold. We note that the Nehari manifold approach through the fibering map
analysis for the functional involving variable exponents is interesting due to the
non-homogeneity that arises from the variable exponents. It is also worth mention-
ing that due to the presence of the variable exponents, most of the estimates do not
hold immediately, unlike in the constant exponent set-up. Hence, in our present
work, we need to carry out some extra careful analysis to overcome this issue. To the
best of our knowledge, this is the first work dealing with fractional p(-)-Laplacian
system involving concave and convex nonlinearities using fibering-map approach.

Next, we set some notation. Let D be a domain. For any function ® : D — R,
we set

& :=inf &(z), & :=sup®(x). (1.3)
D D
We also define the function space

Cy(D):={g€C(D,R):1<g <g" <oo}
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To state our result, we assume that the variable exponents p, g, a, 5 and the weight
functions a, b, ¢ satisfy the following hypotheses:
(A1) The variable exponent p € C (RY x RY).
(A2) The function p is symmetric, i.e., p(z,y) = p(y, x) for all (z,y) € RY xRV,
(A3) The variable exponents ¢, a, 8 € C(Q) and p € C; (RN x RY) satisfy
l<qg <qgt<p <p'<a +87 <a"+p57 <pi7,

Np(z,x)

where p*(z) = Nosp(z.a)

(A4) Tt holds that
— - + — - _ —
P ( pT —q )(a +87 —¢q )

is the critical exponent.

(A5) The non-negative weight functions a,b € L9-(®)(Q), where
a(x) + B(x
o) = _la)+ B

~aa) +B(x) —qlz)
(A6) The non-negative weight function ¢ € L>(Q).

Observe that, when all the exponents are constants, (A4) is equivalent to the
condition 0 < p < a+ 8 . Now we define the weak solution of (|1.1)) in the functional
space F (defined in Section [2]) as follows.

Definition 1.1. We say that (u,v) € E is a weak solution of (L.1)), if we have
/ [u(z) — u(y) P92 (u(z) — u(y))(d(z) — d(y))
RN xRN

|1‘ — y|N+SP(mvy)

dx dy

P [, s v<y>|P<w’|y;-2<yv|g o) = D) 4,

- /Q (Aa(z)|u|q@>*2u¢+ ub(x)|u|q<m>*2w)dx (1.4)
+/Qmc(x)ma(@—?mmﬁ(wwdx
+/QOmc(x)|v|“<f>—2v|u|ﬂ<f>¢dx for all (¢,v) € E.

The main result in this article is stated as follows.

Theorem 1.2. Let Q € RN, N > 2 be a smooth bounded domain, s € (0,1) and
p(-,+) satisfy (A1)—(A2) with sp™ < N. Assume that the hypotheses (A3)—(A6)
hold. Then there exists a positive constant A = A(N, s,p, q,a, 8,a,b,c,Q) such that
for any pair of positive parameters (X, p) with A+ p < A, admits at least two
non-trivial, non-negative weak solutions.

2. PRELIMINARY RESULTS

Here we recall the definition and some important properties of the Lebesgue
spaces with variable exponents. For more details regarding these spaces, one can
refer to [13, [16] and the references therein.

For v € C(Q), we define the variable exponent Lebesgue space

LY@ (Q) = {u:Q — R:uis measurable, / '@ < 400},
Q



4 R. BISWAS, S. TIWARI EJDE-2020/98

This space is a separable, reflexive Banach space equipped with the Luxemburg

norm o
. u |z
Jull iy = mt {> 03 [ 5] <1},
Q'n

We have the following Hoélder-type inequality (see [13]) for variable exponents

Lebesgue spaces.
Lemma 2.1. Let~y' € C(Q) such that ﬁ—i— = 1. Then for anyu € L7*)(Q)

and v € L7 @) (Q) we have

|/uvdx| <

Next, we recall [19, Lemma A.l].

Lemma 2.2. Let vi(x) € L*(Q) such that v; >
be a measurable function such that vi(x)va(x) >
u € L @)v2(@) (),

1
v (=)

)||u\|m>(m||v||m o @)

0, v1 0. Letvy : Q = R
1 a.e. in Q. Then for every

IOl sy < Ilully + lull7.

Lv1(@)v2 (@) (Q) Lmz)vw)(g)

The modular function p, : LY®)(Q) — R is defined as

u):/ Ju"®) d.
Q

Now we state the following two lemmas from [16], which establish the relationship
between the norm || - [| @) (o) and the corresponding modular function p.(-).

Lemma 2.3. Let u € LY®)(Q), then
1) Nullpver @) <1 (=1;>1) if and only if py(u) <1 (=1;>1);

|
() 17 a0y > 1 thens i) < (00 < s
(i) If lull oy < 1o then ulJa ) < £ (1) < 1l -

Lemma 2.4. Let u,u,, € L") (Q),m =1,2,3,---. Then the following statements
are equivalent.
(i) limy,— o0 [|tm — t|| v = 0;
(ii) limyy—yoo Py (Um —u) = 0;
(ill) wm converges to w in 2 in measure and lim,, oo py(Um) = py(w).

1. Fractional Sobolev spaces with variable exponents. In this section, we
discuss the properties of the fractional Sobolev spaces with variable exponents.
These spaces have been introduced for the first time in [22]. Also, in [4, 5 21], the
authors have established some important properties of these spaces.

Let Q C RY be a smooth bounded domain and p(-, -) satisfy (A1) and (A2). For
any = € RY, we denote
p(x) := p(x, ).
Thus, p € C(92). Now we define the fractional Sobolev space with variable expo-
nents as follows.

W = WeP@)p(z,y) ()

_ z,y)
_ @) (O - u(z) — u(y)[""Y ‘ }
= {u e LM\ (Q) : /stz P 3 = y| V) dz dy < oo, for some > 0.
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‘We set the seminorm as

s,p(zy) . . . |u(x) — u(y)|p(”f,y)
[ulg =inf{n>0: /Q><Q P [ [N drdy < 1}.

Then (W, | - ||w) is a separable reflexive Banach space (see [5]) equipped with the
norm

lullw = llull Lo () + [u]g’p(’”’y)'

Now we state the following continuous and compact embedding theorem (see [21]).

Theorem 2.5. Let Q be a smooth bounded domain in RN, s € (0,1) and p(-,-)
satisfy (A1), (A2) with spt < N. Let r € C4(Q) such that 1 < r= < r(z) <
pi(x) = Nj\i’;g&) for x € Q. Then, there exits a constant C = C(N,s,p,r,Q) > 0

such that, for any u e W,

lul

L (o) < Kllullw.
Moreover, this embedding is compact.

For studying nonlocal problems involving the operator (—A);(.) with Dirichlet
boundary datum via variational methods, we define another fractional type Sobolev
spaces with variable exponents. One can refer to [24] and references therein for this

type of spaces in fractional Laplacian framework. We set Q := RV \ (Q¢ x Q°¢) and
define the new fractional Sobolev space with variable exponent as

X — Xs,ﬁ(r),p(w,y)(g)
= {u RV SR U, € Lﬁ(m)(ﬂ)7
/ [u(z) — u(y) P

Q

nP(@:Y) | — y|N+5P(3¢7y)

dz dy < oo, for some n > O}.

The space X is equipped with the norm

_ p(z,y)
Jullx 5= [l @y +int {5 > 0+ [ =W

0 np(x,y)|x — y|N+sp(:E7y) dr dy < 1}’

where [u]x is the seminorm

_ , Ju(a) — u(y)[P*¥)
[ulx = inf {77 >0 /Q np@) |z — y|N+sp(z.y) drdy < 1}'

Then (X, ||-||x) is a separable reflexive Banach space. Next, we define the subspace
Xo of X as

Xo = Xg’ﬁ(x)’p(m’y)(fl) ={ue X:u=0ae. in Q.

We define the norm on X as follows

— . Ju(z) — u(y)[P=)
lu]|x, = inf {n >0: /Q P [z [N T dx dy < 1}.

Remark 2.6. For u € Xy, we obtain

_ p(z,y) _ p(z,y)
J R ju(e) w0
Q R

np(w,y) |;1; — y|N+sp(x,y) N xRN np(x,y) |$ — y‘N""SP(?%y)
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Thus, we have

i . Ju(@) = u(y) [P
lu|l x, := inf {17 >0: /RNXRN P[5 = y| VD) drdy < 1}.

Now we state the following continuous and compact embedding result for the
space Xo. The proof follows from [3, Theorem 2.2, Remark 2.2] and [4, Lemma
2.1].

Theorem 2.7. Let Q be a smooth bounded domain in RN and let s € (0,1). Let
p(-,-) satisfy (A1) and (A2) with spt < N. Then for any r € C(Q) such that
1 < r(z) < pi(x) for all x € Q, there exits a constant C = C(N, s,p,r,Q) > 0 such
that for every u € X,

lullzre @) < Cllullx,-

Moreover, this embedding is compact.

Definition 2.8. For u € X, we define the modular px, : Xo — R as

_ Ju(z) — u(y)[""Y)
px,(u) == /RNXRN 7 — ) dx dy. (2.1)

The interplay between the norm in X, and the modular function px, can be
studied in the following lemma.

Lemma 2.9. Letu € Xy and px, be defined as in (2.1)). Then we have the following
results:

(1) Jlullx, <1 (=1;> 1) if and only if px,(u) < 1(=1;>1).
(i) If lullx, > 1, then ||U|\§g+0 < pxo(u) < Jlulli-
(i) 1f ullx, < 1, then [ull%, < py () < lull%e.

The next lemma can easily be obtained using the properties of the modular
function px, from Lemma [2.9

Lemma 2.10. Let u,u,, € Xo, m € N. Then the following two statements are
equivalent:

(1) lmyy—oolltm —ullx, =0,

(ii) limy,—eopx, (Um —u) = 0.

Lemma 2.11 ([3| Lemma 2.3]). (Xo, |- |lx,) is a separable, reflexive and uniformly
convex Banach space.

We define E := Xy x Xg as the solution space corresponding to (|1.1)), equipped
with the norm ||(u,v)| = max{||u|x,, ||v]|x,}- Clearly (E,||(-,-)]]) is a reflexive,
separable Banach space.

3. NEHARI MANIFOLD AND FIBERING MAP ANALYSIS

Here first we discuss certain technical results regarding the Nehari manifold and
the fibering map and the behavior of the energy functional corresponding to (1.1).
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The energy functional Jy ,, : E — R associated with (1.1)) is defined as

1 Ju(z) —u(y) P
J>\7M(u7 'U) = / — L [Ntsp(zy)
rVxrN P(2,Y) |2 =y ’

1 — p(z,y)
4 / o) — )P
v xry P(T,y) | — y|Ntsp(zy)

dx dy

(3.1)

_/Qﬁ()\a(xﬂu‘q(x)+Mb(x)|v|q(x)>dw

1
—/ch(x)|u\a(’”)\v|ﬁ(x)dx.

By a direct computation, it can be checked that Jy, € C!'(E,R) and for any
(¢,v) € E, we have

(T3 u(u,0), (8,9))
_ / |u(z) — u(y) P 2 (u(z) — u(y))(6(x) — 6(y))
RN xRN

|gg — y|N+5p(m,y)

dx dy

N B R OB LR Py
RN xRN

‘x — y|N+5P(1’1y)

—/ ()\a(x)|u|q(x)72ud>—|—ub(a:)|v|q(z)72vw>dx
Q
_/ a(;é(x)mc(x)|u|a(1)_2u|v5(m)¢dx

Q

_/a(:cﬁ(x) —c(2)[v|*® " 2p|ulf W ypda.
Q

Therefore, the weak solutions of (|1.1]) are the critical points of the functional Jy ,.
One can note that J) , is not bounded below on F, but it is bounded below on the
following subset of E. We define the Nehari manifold as

M = {(u,v) € E\{(0,0)} : {J} ,(u,v), (u,v)) = 0}.

Therefore, (u,v) € A3, if and only if

/ Jux) — u(y) P dy+/ o) —vl)pe
RN xRN |Jf — y|N+SP(£,y) RN xRN |$ _ y|N+sp(:1:7y)

—/ (Aae)lu# + ab(a)fof o)) e — / (@) |u]“@ o] @ dg = 0.
Q Q

(3.2)

The Nehari manifold is closely associated with the behavior of the fibering maps
uw : RT = R, defined as ¢y, (t) = Jx . (tu, tv), where (u,v) € E. These maps are
first given by Drabek and Pohozaev in [14] and are discussed in detail in [9] and
[20].
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For (u,v) € E, we have

Ouw(t) = JIx pu(ty, to)

tPE@Y) lu(x) — w(y)|P@-y) v(x) — v(y)|P@y)
-/ (lute) — s o) = ol
RN xRN p($7y) |x — y| +SP(I,y) |"E — y‘ + ;D( Y
fa() (3.3)
— [ ——(Na(@)|u|"® + ub(z)|v]*™) ) da
| 225 (a@ful) + b(w)jof#))
(@) +B(x)
Y a(@) |, |B@) g
c(z)|u v x.
| o @l
Pruo(t)

= (J3 ,(tu, tv), (u,v))
_ p(z,y) _ p(z,y)
:/ tp(z,y)—l{W(x) u@PY o) — o(y)] }dmdy
RN xRN

|z — y|N+sp(z.y) | — y|N+sp(@y) (3.4)
- / tq@)—l(m(x)\uw(w)+ub(x)|v|q<w>)dg;
Q
_/ta(w)+ﬁ(w)—lc(x)|u|a(w)‘U|B(w)dx_
Q
_ p(z,y)
" 1) = 1 tp(w,y)—Q{'“(x) U(y)|
0= [ w1 emheesican
_ p(z,y)
=Y (3.5)

- [ @) = 112 (a(@)aft® + pb(a) o' ) da
Q

= [ (@la) + Bla) = e 2l o],
Q

Then using that ¢}, ,(t) = (J3 ,(tu,tv), (u,v)), we can see that (tu,tv) € Ay, if
and only if ¢, ,(t) = 0. In particular, (u,v) € A3, if and only if ¢, ,(1) = 0.
Thus, it is natural to split .4}, into three parts corresponding to the points of
local maxima, local minima and inflection of the function ¢, , as follows:

{u,v)Ge/VA# 90
{(tu, tv) € E\ {(0, 0} Pu(t) =0, ,(1) > 0},
={(u,v) € M gouvl)<0}

( o(1) >0}

( )

( (
{(tu,tv) € EN{(0,0)} : ¢y, ,, () = 0,0, ,(1) < 0},

( o

( )

={(u,v) € M1 0l 1)f0}
{(tu, tv)GE\{(OO} P (t) = 0,9, ,(1) = 0}.
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Hence, for any (u,v) € A3, from (3.2), (3.4) and (3.5)), we deduce

"oy u(z) —u@)P@ | Jo(z) — o(y) PO
Spu,v(l) - /RNxRN P(:C>y){ |£C — y|N+Sp(a:,y) + ‘.’E — y|N+sp(w,y) }dl’ dy

~ [ ata) (Ja@)ul + bt ol ) (3.6)

_ /Q(a(x) +5($))C(x)|u|a(w)|v‘5(w)dx.

For a given pair of functions (u,v) € E, we set

w(z) — u(y) [Py v(z) — v(y)PEY)
Py = [ (MR )iy,

‘LL’ _ y|N+5p(w,y) |.T _ y|N+5P($ay)

Q(u, v) ::/Q(Aa(m)\u|q<w)+ub(w)|v|q(“5))dx,

R(u,v) := / () |u| @ || @ dz.
Q
In the next lemma, we obtain some estimations on P, and R.
Lemma 3.1. Let (u,v) € E. Then we have the following: Is this what you had
(i) in mind
Pt
Py s {107 i o) <1
[(w, )17, if [ (w, )] > 1,
p_ .
Pl < {21017 o)) <1
2[[(w, )P, if [[(w, 0) [} > 1.
(ii) There exists a constant C; = C1(N, s,p,q,«, B,a,b,) > 0 such that
- +
Q(u,v) < Cr(A + p) max{[[(u, v)[|* , [[(u,v)[|*"}.
(iii) There exists a constant Cy = Co(N, s, p, , B,¢,Q) > 1 such that
r rt
R(u,v) < Comax{|[(u,0)[|" ,[|(u,v)]" }.
Proof. (i) Clearly P(u,v) = px,(u) + px,(v). Hence, we have
max{px, (u), px,(v)} < P(u,v) < 2max{px,(u), px,(v)} (3.7)

For ||(u,v)|| > 1, there are two cases.
Case I: |ju||x, > 1 and |[v||x, > 1. Then from Lemma[2.9, we obtain

- + - +
lull, < pxo(u) < lull’, and [[v]l%, < px,(v) < [v],- (3-8)
Thus, from (3.7)) and (3.8]), we obtain
+ + +
P(u,v) < 2max{|lull,, [lvl%,} = 2/l(u, 0)[”";

P(u,v) > max{lull%,, [vl%,} = ll(w0)|"".

Case II: |jv[|x, < 1 < |lullx,: Then |(u,v)|| = [|u]x,. Now Lemma [2.9) implies
that

. . . .
lullf, < pxo(u) <ulk, and [lvl%, <px,(v) <]k, (3.9)
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Combining (3.7) and (3.9)), we deduce that
+ + +
P(u,v) < 2max{|lull,, llvlf5, } = 2[(w,v)[I”",
P(u,v) > max{[|ul%,, [lv]%,} = [I(u, )]

Next, for ||(u,v)|| < 1, we have |[ufx, < 1 and |v]x, < 1. By Lemma 2.9, we
obtain

+ - + -
lull, < pxo(u) <ulk, and o]k, < px,(v) <]k, (3.10)
Hence, from (3.7) and (3.10)), it follows that
P(u,v) < 2max{|Julk,, [[v]%,} = 2/l (u, 0)|”,
+ + +
Plu,v) = max{ullk,, [lvll%,} = [, 0)[".

Thus, we obtain (i).
(ii) Using Holder’s inequality (Lemma [2.1]), Sobolev-type embedding (Lemma

and Lemma we obtain
@u,v) = / (Aa(@)lul?™ + pb(@) o) ) da
Q

< 2)\”&”“*(1)(9)”\u|q(')|

| a@ise 4 200l La@ @ 11017 atrise
L 1@  (Q) L @ (Q)

< 20l s o2 {0 gy + 10 oror o
o+ 20010 a0 {101 oo 2y + 100 i

< K M Jlulll, + el } + o{ o, + 01%, }]

< Cu(+ o) max {Jull, el &, ol %, ol%, §

= Cy(\+ o) max { mac {[ul %, 0]1%, }, masx {lull %, 0%, b
= C1(n+ gy max { | (w,0) |77 1w, 0) 7,
where
K1 =2(llall poxor @) + 1Bl pas 01 02))
x max { (C(N, 5,p, 0, B, 2)" , (C(N, 5,p, 0, 3,2)" }

and Cl = 4K1
(iii) Using Young’s inequality, Lemma and Lemma we deduce

R(u,v):/c(x)|u|a(””)|v|ﬁ(m)dx
Q
a(z) a(z)+B(x) B(x) a(m)+5(w)}
< - [ S A [ A d
a+ + a” -
< Nell oo [ { Il ey + 180T o

t4gt -48-
LUl + 10 oy ]
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at+pt T+
< s [{Ilullse, ™ + e, ™} + {llells, "+ Iols, ]
+ +
< Cpmax {Jlullg, ™ Iull e, ™ Iol%, ™ ol 7}
= Comax { max {ull§, " ok, " b max {|ulg, 7 el )

a8 atapt
= Cymax {(u,)[* 7, ()|,

where
o a”+8"~ at+p*t
K, = ||CHL°°(Q) max{(C(N,s,p,a,ﬂ,Q)) ,(C(Nwsapaavﬂvﬂ)) }
and CQ :4K2+1 O

In the following lemma, we characterize the critical points of Jy , as the local
minimizers of Jy , on e/V)\tL (or Q/VA;).

Lemma 3.2. Let (u*,v*) € f/V)\‘L (or Ay ,) be a local minimizer for Jy,. on ‘/V>\+u
(or Ay ,)- Then (u*,v*) is a critical point of Jy .

Proof. First assume that (u*,v*) € JV/\"'H is a local minimizer for J , on ‘/V>\+u Let
Iy p(u,v) = (J3 ,(u,v), (u,v)). Note that for (u,v) € E'\ {0} with I, ,(u,v) = 0,
we have ¢y (1) > 0 if and only if (I} ,(u,v), (u,v)) > 0. Since (u*,v*) is a local
minimizer for Jy , on JVAL, using Lagrange’s multiplier theorem we obtain a real
number 7 such that
S 0%) =115 (u*,07).
Therefore,
0= <J/I\,M(U*7 U*)v (U*v U*)> = T<I$\7M(u*7 'U*)v (U*v U*» = T(ﬁ(u*m*)(l).

Since (u*,v*) € /I//\J’rﬂ, we obtain that ¢{,. .,(1) > 0 and hence 7 = 0. This
completes the proof. Similarly we can prove the result when (u*,v*) € JVA_# is a
local minimizer for Jy , on Q/V)f“ (I

Next we show that the set of points of inflection of the function ¢, , is empty
for certain values of the parameters \ and p.

Lemma 3.3. There exists 6 > 0, given by

1(a + 65~ )( P —q )aw—w
G \a +57*q Ca(at + B+ —qt)
such that for any pair of (\,u) € RT x RT with A + u < 6, we have ,/VA% =0,

where the positive constants C1,Cy are given as in Lemma|3. 1}

Proof. We prove this lemma by contradiction. Let us assume that there exist
Apu>0with A\ +p <6 such that A\, # 0. Hence, there is (u,v) € A,’,. Now, if

[I(w,v)|| < 1, then using and Lemma [3.1] (i), (ii), we obtain
0= ¢l (D)
<p"P(u,v) —q Q(u,v) — (@ + ) R(u,v)
=@ —(a” +57)P(w,v) + (e + 87 —q)Q(u,0)
<@ = (@ +B8)@W)” + (@ + B8 =g )Ci(A+ ) (w07
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This implies
g (am+ BT —q)
O e
Again using (3.2), and Lemma [3.1] (i), (iii), we deduce
> p_P(U,U) - (]+Q(U, U) - (O[+ + ﬁ+)R( )
(P~ —q")P(u,v) = (aF + 87 — ¢")R(u,v)
> (p~ — gl v)|” = (@ + 8% — gH)Cal|(u,v) >+

Ci(A+p). (3.11)

U,V
U,V

This yields

1> (ot s @) (3.12)

T Colat + Bt —qt)
Combining (3.11) and (3.12)), we obtain
+ —
1 ra” +p- —p* p_—qt AR
A‘L”Z*(f = 7)( + 1 gt +) v
Cil\a™ + B~ —q /\Caoat + fF —q7)

which is a contradiction.

Next, if ||(u,v)| > 1, again using (3.2)), (3.6) and Lemma (1), (i1), we find

that
0=, (1) < (* = (0™ + B + (™ + B8 — ¢ )C1(A + wll(w, )7,
that is,

)

Iyl < P )

(= + 8~ —p")
On the other hand, by taking into account (3.2)), (3.6) and Lemma (1), (iii), it
follows that

_ - atigt
0=g¢,(1)> @ —¢)lwv)|P —(a*+8% —¢")Cs|l(w,v)|* 77,
that is,

Cr(X + ). (3.13)

+4g+_p— ~—q"
[ (u, 0) [ Tz CQ(OEJZ:Jrﬂi)qu)' (3.14)

Thus, combining (3.13)) and (3.14)), we obtain

1 sa— + B —pt - _ gt . A
/\+u27(a +57 —p )( P —q ) ESE (3.15)
Ci\a™ + B~ —q= /\Cy(at + g+ —qt)
Since 0 < (#gf_m) <1 and af;ﬁlqu, < af’:l;q:w, from ([3.15)) we infer
that
pt—q”
)\+M2i<a‘+ﬁ‘—p+)( P —q* )a—ﬂs:w’
Ci\a™ + B~ —q /\Coat + T —gqt)
which is a contradiction. The proof is complete. (|

In the next result, we discuss the behavior of the functional Jy , on A3 .

Lemma 3.4. For A+ <6, Jyx, is coercive and bounded below on A3 .
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Proof. Let (u,v) € A3 ,. Then for ||(u,v)|| > 1, from (3.1)) and (3.2)) and Lemma
3] (ii), we deduce

Iapu(u,v)
> p%P(u,v) - qi_Q(u,v) - ﬁR(u,v)
/1 1 1 1 (3.16)
= (57~ )P0 - (- o Jeww)
1 1 - 1 1 at
> (o e ol =0 (= = e I ol

Since from (A3), we have 1 < ¢~ < ¢t < p~ < pt < a™ + 7, (3.16) yields
that Jy ,(u,v) = 400 as ||(u,v)|| = +oo. Therefore, Jy , is coercive and bounded
below on A3 . O

Lemma 3.5. We have the following results:

(i) If (u,v) € t/V)\L, then Q(u,v) > 0.

(ii) If (u,v) € Ay, then R(u,v) > 0.
Proof. (i). Since (u,v) € e/V;#, we have q/)i’u’v)(l) > 0. Thus, using (3.2) and (3.6),
we obtain

0< QD/(/%U)(l) < p+P(ua ’U) - q*Q(u,v) - (057 + Bf)R(u,v)
= {p+ - (Oé_ + B_)}P(U,, U) + (a_ + ﬁ_ - q_)Q(u,v).

This implies that

(” +8~ —p")
A2 =)

(ii). Since (u,v) € A} ,, we have ¢, (1) <0. Thus, taking into account (3.2)
and (3.6]), we obtain
0> ¢, (1) 2P~ Plu,v) = ¢"Qu,v) — (o + B7)R(u,v)
= (P~ —¢")P(u,v) = (@™ + 57 = ¢")R(u,v),

P(u,v) > 0.

that is,
(a*+B7 —p7)

= @ =

P(u,v) > 0.
O

From Lemma [3.3] and Lemma [3.:4] we conclude that for any pair of parameters
(A p) € RT x RT with A+ p <6, A, = MY ‘/V>\+u and Jy , is coercive and
bounded below on ‘/VA_N and JV/\JFM Therefore, we can define

0r,= inf Jy,(u,v), 07 = inf I pu(u,v),
o (w,v)EN 7M( ) Ao (u,v)eﬂ;’ru M( )
v, = inf  Jy ,(u, ).
M e,

The following two lemmas give the signs of 9; ., and 0, , respectively.

Ap?

Lemma 3.6. If A+ <4, then 8, , < 9;\"’“ <0.
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Proof. Let (u,v) € ‘/V>\+u Then ¢y (1) > 0. Now combining (3.2) and (3.6), we
obtain
0< (p:;w(l) <ptP(u,v) — ¢ Q(u,v) — (™ + B7)R(u,v)
= (p" = ¢)P(u,v) = (@™ + B~ — ¢ )R(u,v),
that is,
" —q)
(a=+B~—q7)
Using (3.1)), (3.2)) and (3.17]), we deduce

Iap(u,v)

R(u,v) < P(u,v). (3.17)

1
_ mR(u, v)

— (pi— — %)P(u,v) + (qi‘*‘ — ﬁ)R(u, v)
.
= {(pi— - qi'*‘) + (qi"‘ T ot iw) (a—(p+ /3—q—)q—) pP()
(qr —p ) (o + %) +p (o + pF — ) g2l

From (A4), we have (¢7 —p~)(a™ 4+ B)+p (at + BT — q+)M < 0.

s%me—%m%m

(3.18)

@+ =)
Hence, (3.18) implies that Jy ,(u,v) < 0. Therefore, from the definition of 0y ,
and 0;\"’“, it follows that 0, < 9;# < 0. O

Lemma 3.7. If \+pu < (%)5, then 0;;1 > K, where K is some positive constant
depending on N, s,p,q,a, 8,a,b, A, i, ).
Proof. Let (u,v) € A, ,. Then ¢y (1) < 0. Therefore, from (3.12) and (3.13), we

obtain

“—q" /(e +87=p") .
(o) T )] <1
{&}l/mwﬂ*—p*)
Ca(at+BT—qt)
Now for ||(u,v)|| < 1, plugging (3.2)) into (3.1) and using Lemma (i), (ii) and

(3.19), we deduce that

Iap(u,v)

[[(w, 0)|| =

(3.19)
, i ||(u, )] > 1.

> —oP(u0) — —=Qluv) ~

= ( ! #>P(u,v) - (i #)Q(u,v)

pt a+p5- ¢ o +p
1 1 + 1 1 .
> (5~ g @l = (= = g )OO+ il )l

= o)l (55 = 7357 w0~

(e )an]
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——q" TP s
>{C'g(oz(‘;l:—i—,@fl*‘zq“‘)}(cx ’ )[<pi+_oz—j—ﬁ—>
-+ (f::q:,)ﬂr
X{C’Q(Off+ﬁz)q+)}(a ’ )

1 1
- (qf_m>cl(>‘+/i)] =d (3.20)
If
q_
:(ﬂ)i(a*+5*fp+>{ (r~ —q") }(OE;__M
pt/Ci\a=+ 8~ —q/ LCy(at + B+ —¢t) )
then
- - _pt - _ gt _wt-an) o N
)\+N<o¢++ff 57 { (p q') }(a +8 —p+)M.i7
prlam+57) LG(a® + 6+ — ) a”+B7—q7 O
that is,
(L_ 1 ){ (p~ —q") }(“’fﬁq,})
pt  a= + B~/ LCy(at + B+ —gt)
1 1
_(qf_m)01()\+u)>07

and thus, from (3.20)), we obtain that d; > 0.
Similarly for ||(u,v)|| > 1, again plugging (3.2)) in (3.1)) and using Lemma
(1), (#4) and (3.19)), we obtain

Inpu(u,v)

1
> - _
- +P(U,’U) Q( ’ ) a— +6, R(U,’U)
1 1 1 1
:(p+_a,+6,)P(u?v)_(qi_a,_’_B,)Q(uv’U)
1 1 - 1 1
> (g Mol = (= = e )t e
+ 1 1 -t
= [|(u, v)[|* {(pj - m)”(%v)ﬂp I (321)
1 1
(e e
o
>{ (- —q") }7<a++5+7p—> [(i 1 )
~ LCy(at + Bt —qT) pt a4+ 57
{ (r~—q") }wiﬁ;fb (i 1 )C o\ )]
Cz(a++ﬁ+—q+) T\ e Arn
. . - _ + .
Combining that a++,3+ p o +5, p+) and 02(éﬁ+5ﬂ_)q+) < 1, and taking
into account and (3.21] i we deduce that

J)\7M (U, U)
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qt

N { (r~—q") }mwﬁ:m [(i 1 )

~ LGy(at + BT —gT) pt a4+ p8”

{ (p~ —q") }«fﬂ_qﬁﬂ (L bt )C (A + )}
Cola® + BT —¢7) ¢ a rp )T
.
(p~ - q+) (a(—qﬂa—q—z)ﬁ')
> dy=d 0.
> {5 =) PR
Finally by choosing K = min{d;,d2} > 0, the proof is complete. O

The next lemma describes the nature of the map ¢, .. We refer to [§] and [I0]
for the similar results in the case of local p-Laplacian and nonlocal p-Laplacian,
respectively, and [1} [I5] for variable exponent Laplacian.

Lemma 3.8. For (u,v) € E\{(0,0)}, there exists &' > 0 such that for all \+p < ¢,
we have the following:
(i) If Q(u,v) = 0, then there exists a unique t~ =t~ (u,v) such that (t"u,t"v) €
N and Iy (87w, t7v) = supysq Iy (tu, to).
(i) If Q(u,v) > 0, then there exist t* > 0 and unique positive numbers t+ =
t+(du,v) <t =t (u,v) such that (t"u,t7v) € A, (tTu,tTv) € ‘/V/\Tu
an

Inuttu, tto) = inf Iy (tutv), Tyt u,tTv) =sup Jy (tu, to).
0<t<t* t>0

Proof. (i) Using the given assumption, for 0 < ¢ < 1 sufficiently small, we obtain

o pat+8t
Puw(t) > pTP(u, v) — mR(u,v) >0
and for ¢ > 1 sufficiently large, we obtain
o pat+st
Puw(t) < p—_P(u,v) — mR(um) < 0.

Hence, ¢, , achieves its maximum at some point ¢~ (u,v) on [0, 00). Thus, ¢, ,(t7) =
(J3 .t u,t7v), (u,v)) = 0. Set (t"u,t"v) := (u,v). Then (J} ,(w,7),(w,v)) =0,
which implies (@,7) € A3 ;. Thus, from (3.2]), we obtain

P(u,v) = R(u, 7). (3.22)

Now we define the function Oz 5 : [0,00) = R as Oz 5(t) = Jx, . (4, tv). We know
that Oz (1) = J) (W, V) = maxie(o,00) Ou(t) and O (1) = (J} ,(@,), (4, 7)) =
0. For ¢t > 1, by (3.22)), we deduce that

O m(t) = (J3,. (10, t0), (4, V))
<t ~'p(m,v) — t* 7 ~1R(w,T) < 0,
and on the other hand, for ¢ € (0, 1), again using , we obtain
O m(t) = (J) (10, tv), (4, 1))
>t 1P, v) — t T 1R(w, v) > 0.

This shows that the point ¢t~ is unique. Hence, the result follows.
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(i) To prove this lemma, first we set

fi(t) = / P {|u<x>—u<y>|p<w’y> . |v<x>—v<y>|ﬁ<wvy>}dxdy,

|(E _ y‘N+sp(:L’,y) |.’E _ y|N+sp(w,y)

f2(t) = / ") ()\a(:r)|u\q(z)+Nb(x)|v|<I(fL’))dx’
a(z)+B8(z) a(z)|,,|8(z
f3(t) = /Qt o(2)|u]*® |v] @) da.

The f;’s are continuous and strictly increasing functions with f;(0) = 0 for ¢ =
1,2, 3. Also, we have the following observations:

() limy_o+ f3(t)/f1(t) =0
(IT) limy—s 400 fo(t) = +o0.
I Ig limi—s oo (f1 — f3)(1)/ f2(t) =0

— f3 has unique point of maximum, say tmax and (f1 — f3)(t) = —oo as
t — +o0.
(V) There exists £ € (0, tax) such that % is strictly increasing on (0, 7).

From (I), we note that (f; — f3)(¢) > 0 for ¢t — 07 sufficiently small. Hence, by (V)
and intermediate value theorem, for each choice of the pair (A, ) € RT x R* with
f2(t) < (f1 — f3)(f), there exists a unique tT = t+(\, ) € (0,%) such that
(fr = f3)(tF)
fa(th)

Since W1=f2) o f 2) g strictly monotone increasing in (t+,t), from (3.23), we obtain

1— (f1 — f3)(t) < (f1 — f3)(1)
f2(tF) f2(t)

(IV) f

=1. (3.23)

for all t € (tT,1),

that is,

f2(t) < (f1 — f3)(t) forall t € (t1,%). (3.24)
Now we can fix (A*, u*) € RT x R such that for all A € (0, \*), u € (0, u*), taking
into account , we have

fo(t) < (fr — f3)(t) for all t € (tF, tmax). (3.25)

Since f1 — f3 is strictly decreasing in (tmax, 00) and fo is monotonically increasing
in (0,00), by (II) and , there exists a unique positive real number ¢~ > .
such that
fo(t7) = (fr = fo)(t7) for all (A, p) € (0,A7) x (0, 7). (3.26)
Hence, combining and (3.26)), we yield that the function ¢/, ,(t) = f1— fa— f3
has exactly two nontrivial zeroes, t+ < t~, that is, t* and ¢~ are critical points
of ¢u(t). For ¢ := A 4+ pu*, we can choose \*, u* > 0 sufficiently small such
that ¢’ < §, where 0 is given as in Lemma Since @y,,4(0) = 0 and ¢, ,(t) < 0
for t — 0% sufficiently small, we obtain that ¢, ,(t) < 0 for all t € (0,¢") and
@l ,(t) > 0 for all t € (t7,tmax) and ¢}, ,(t7) = 0. Again, by the Lemmauﬁ7 we
have N f\), e ¢ and thus, we infer that ¢, , attains a local minimum at ¢t* and
consequently ¢/ (t7) > 0. Hence, (ttu,t*v) € AT,
Similarly, since ¢}, ,(t) > 0 for all t € [tmax,t7), ¢, (t) <0 for all £ > ¢, and
@n.o(t7) = 0, using the fact that Ny , = 0 from Lemma it follows that ¢~
is the point of global maximum for ¢, , and consequently cpz,v (t7) < 0. Hence,
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(t u,t"v) € A4 ~. Now by appealing to Lemma and Lemma we obtain
Yuw(tT) < 0 and ¢, ,(t7) > 0. Also, by the above discussions, ¢, , is strictly
increasing on [tT,¢7] and strictly decreasing for all ¢ > ¢t~ with ¢, ,(t) = —o0
as t — +oo. Thus, there exists a unique t* € (¢%,¢7) such that ¢, ,(t*) = 0.
Therefore,

Tt u, t70) = 0uo(t) = inf Guo(t) = Inf Jxu(tu,tv),

Iapu(tTu, t70) = 0y o (t7) = sup ¢y, (t) = sup Ji . (tu, tv).
>0 >0

This completes the proof. (Il

4. EXISTENCE OF MULTIPLE SOLUTIONS

In this section, we will prove the existence of at least two distinct non-trivial
and non-negative weak solutions of (1.1). The next two propositions ensure the

existence of minimizers for the functional Jy , in </V/\+“ and .4, , respectively,

Nl
which serve as the weak solutions of ([L.1)). We set dp := min { (2—1)5, 5’}, where §
and &' are given as in Lemma [3.7 and Lemma respectively.

Proposition 4.1. For A+ p < 0o, the functional Jy , has a minimizer (ug,vo) in
J/)\+M, which satisfies the following assertions:
(i) J)\#(U(),’Uo) = Qj\_u < 0,

(ii) (uo,v0) is a solution of (1.1
Proof. (i) Since Jy , is bounded below on .43 , and hence on e/V)\‘;L, there exists a

minimizing sequence {(Upm,, Vm)} C e/i/)ju, such that

mlgnoo Inu (Um7 vm) = (uﬂ);gi‘/;“ J)\,/L(ua ’U).

By Lemma , we have J ,, is coercive on JV;FW which implies that the sequence
{(%m,Vm)} is bounded on E. Therefore, there exists (ug, vg) € E such that, passing
to a subsequence,

Uy, — Uy, Um — Vg in Xgas m — oo
and hence, using Sobolev-type embedding result (Lemma , we have
U — ug  strongly in LY@ (Q), and L¥®+A@)(Q),
Uy — Vo strongly in L) (Q) and LO@HA@)(Q),
U (z) = uo(z) and vy, () = vo(x) a.e. in Q
as m — oo. Now by applying Lemma [2.4] and Lebesgue dominated convergence

theorem, one can check that

lim a(x)|um|q(gﬂ)dx:/a(x)|u0|q(w)dx,

(4.1)
lim b(x)|vm|qw)dx:/b(m)|v0|q(“’)dx;
Q

m— 00 Q
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and

q(x) q(w)
lim a(z) [tm| dx = / a(z) [uol dz,
m—ee Ja q(x) Q q(z)

4.2
) | |4 |vg|2() (42)
lim b(x) de = | b(z)———dzx
m=oo . Jq q(x) Q q(z)
Also, by Lemma and Lemma (see Appendix), we have
liin Rty V) = R(ug,vo),
Y ] Y el (O () 1| | (4.3)
lim = dx,
m—oo o afz) + B(z) o a(z)+B()

respectively. We claim that (ug,vo) # (0,0). Note that Q(ug,v9) > 0. Indeed, if

not then from (4.1),
Q(Um, Um) = Q(ug,v9) =0 as m — oo. (4.4)
Since (U, vm) € JVJM using (3.1) and (3.2), we obtain

1 1
pt a4+ 0~

1 1

)P(umvvm) - (T - 7>Q(um,vm)~

>
J)\,;L(umavm) = ( q a— +6_

Now letting m — oo in the both side of the last expression and using (4.4]), we
obtain

lim Jx u(%m,vm) > 0. (4.5)

m—r 00
But Lemmagives limy, 00 I, (U, Um) = inf(u et Japu(u,v) < 0, which
; .
3

contradicts Thus, the claim is proved and we obtain that (up,v9) € E\

{(0,0)}.

Next, we claim that u,, — ug and v,, — vg strongly in Xy as m — oco. If not,
then w,, /4 ug or v,, # vo in Xg as m — oo. Therefore, using Lemma and
Brezis-Lieb lemma (see [7]), it follows that either

1 — p(z,y)
/ [uo () — uo(y)l d dy
ry xry plxyy) o — y|Ntse(@y)

1 — p(z,y)

<t [ ()t ()
m—=oo [y gy p(T,y) |z —y[Nepley

or (4.6)

1 — p(z,y)
/ [vo(@) = o)) )
BN xrN D(T,y)  |o —y|NHep(@y)

1 — p(x,y)
< lim inf / [m (@) = om @
m—oo Jpn gy p(2,y) |z —y[NHep@y)

dx dy
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Thus, combining (3.1]), (4.2), (4.3) and (4.6), we obtain

W}me J>\7u(uma )

— p(z,y)
— liminf [/ 1 { [t () — um ()]
m—oo L Jgnyry p(,Y) |z — y|NFsp(z.y)
[V () — vy () [P

“'I; — y|N+5p(w7y)

- /Q ﬁ (M) 1) -+ () 1))

- ; a(z) B(z)
/Qa(x>+5<x>0<$>lum\ [om]*da]

1 _ p(@,y)

m=oo Jpnypy P(2,y) |z —y|NFTep(@y)

1 — p(z,y)
+ lim inf/ [vm (@) = v ()] dx dy
RN xRN P(

}dsc dy

dx dy

m—00 z,y) o —y|Ntsel@y) (4.7)
1
— lim —()\a ) |t |1 + b () [0, q(””))dx
Jim [ (a7 + (@)
1
— lim (@) [ | @ |0y [P @)

m=oe Jo a(z) + B(x)
> / 1 ‘Uo(l‘) — uo(y)lp@,y)
ey xrN P(T,y) v — y|Ntsp(@y)

+ / L fo(a) —w)le
rN gy P(T,y) |z —y|NFTep@y)

dx dy

_ /Q ﬁ(/\a(x)mo\q(z)+ub(a:)|v0|‘1(r)>dx

= Jxu(uo0, vo)
By Lemma [3.8] (ii), for (uo,vo) € E \ {(0,0)}, there exists a positive real number
td (uo, vo) such that (t§uo,tdvo) € ‘/V>\+u Again, considering the assumption w,, /4
Uy Or Uy 7> Vg in Xg, we have

px,(tguo) <Hminf px, (tgum) or  px,(tgve) <liminf px,(tgvm).  (4.8)

Furthermore, appealing Lemma [2.4] and Lebesgue dominated convergence theorem,
we obtain

Qtiuo, tgvo) = lim QT wm,tdvm) (4.9)
m—0o0
and by Lemma (see Appendix), we obtain

R(tduo,tgvo) = lim R(t§ tm, tgvm)- (4.10)
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Taking into account (3.4), (4.9)), (4.10) and (4.8]), we deduce that

lim ¢, = (t7)

m—r oo

— liminf |: (tJr)p(ac,y)—l |Um(.’1?) - Um(y)|p(;cyy) d dy
m— 00 RN xRN 0 |x — y|N+SP($7y)

_ (z.y)
+\p(z,y)—1 |’Um(1‘) Um(y)|p
* /RN xRN ) |z — y|NFep(@y) ey

= [ 6 (M) 1)+ (o) 1) d

_/ (tg)“(IHﬁ(”“')_lc(gc)|um\°‘(’”)\vm|5(w)dx} (4.11)
Q

> i [1;51;1;1; P (g wm) + liminf px, (5 vm) — Tim QLG um, tg vm)

— mlgmoo R(t§ tm, tgvm)

1
> {PXO (5 u0) + px, (g vm) — Q(t5 uo, t5 vo) — R(t5 uo, t&vo)}
0

= SD’/U.(],’UO (tg) = O'

Thus, for m large enough, @), , (t5) > 0. Since (upm,vy) € A4", for all m € N,
we have ¢;, , (1) =0and ¢; , (1)>0. Then using Lemma (1), we obtain
O v, () < 0 for all ¢t € (0,1) and therefore, from (4.11)), we must have td > 1.
Since (tguo,tdvo) € z/VA';L, again by Lemma (1), we obtain that ¢y, ., (t) is
monotone decreasing on (0,¢]). Hence using (4.7), we obtain

Tt ug, tTvg) < Jau(uo, vo) < Lm Ty (U, Vm) = inf  Jx,(u,v).
,u(o (ER] 0) ,u< 0 0) 50 ,u( m m) (u,u)GJV;:}_L ,u( )

This is a contradiction to the fact that (tduo,tgvo) € e/V)\‘L S0, (U, Um) = (1o, Vo)
strongly in E as m — oo and thus, (ug,v9) € A,,. Since Lemma gives that
Jlf\?u = () and from Lemma we have Jy (o, v0) = limy, 00 I3 4 (Um, Um) < 0,
we infer that (ug,vg) € ‘/V>\+u

(ii) Using Lemma [3.2] we conclude that (uo,vo) is a solution of (L.1)). O

Proposition 4.2. If A+ p < do, then Jy, has a minimizer (wo, 20) in Ay, such
that the following assertions hold:

(i) Jxpu(wo,20) = 9):” > 0.

(ii) (wo, 20) is a non-semi trivial solution of (|1.1)).
Proof. (i) From Lemma Ji,u is bounded below on t/V)\_M Hence, there exists a
minimizing sequence {(wm, z,m)} C A5, such that

lim Jy ,(wm,2m) = inf  Jy,(u,v).
S (o) =t )

Again from Lemma @, we have J) , is coercive, which implies that the sequence
{(wm, zm)} is bounded on E and thus, there exists (wp, 29) € E such that up to
a subsequence, (W, zm) — (wo, 29) weakly and by Sobolev-type embedding result
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(Theorem [2.7)), we obtain
Wy — Wo, Zm — 20 strongly in L‘I(“’)(Q) and L“(””H'ﬁ(”’f)(ﬂ)7
W (z) = wo(x) and zp, () — zo(z) a.e. in Q

as m — oco. Using Lemma [2.:4] and Dominated convergence theorem, we have

lim /a(x)|wm|q("’”)dx:/a(x)|wo|q(w)dx and

(4.12)
lim [ b(z)|zp|" ™ de = / b(x)|z0| 7™ duz.
Also, Lemma (see Appendix) gives
R(Wiy 2m) — R(wo,29) as m — oo. (4.13)
Next, we have (wg, z9) Z (0,0). Indeed, if (wg, 29) = (0,0), from (4.13)), we obtain
R(Win, 2m) = R(wo,29) =0 as m — oo. (4.14)

Since (W, 2m) € A5, using (3.1, (3.2) and Lemma we have

0 < K < Jypu(Wm, 2m)

< (pi'*' - %)P(wm,zm) + (qi— - ﬁ)R(wm,zm) + om(1).

Now letting m — oo, from the last expression and (4.14)), we obtain

0< K < lim Jy (W, 2zm) <0,
m—00

which is a contradiction. Thus, (wo, z0) € E\{(0,0)}. If Q(wo, 20) = 0, then we use
Lemma [3.8] (i) and if Q(wo, z9) > 0, then we use Lemma [3.8] (ii). In both the cases,
there exists a positive real number ¢, = ¢, (wo, 20) such that (¢, wo,ty 20) € A,
Next, we claim that w,, — wp strongly in Xy and z,, — 2o strongly in Xy as
m — 00.

Suppose the claim does not hold. Then t; w,, /4 t, wo or ty zm 4 ty 20 in X as
m — oco. This implies that either

P, (tg wo) < lim inf i, (ty wnm) (4.15)
or
px,(tg 20) < l}rrlri}glof pxo(to Zm)- (4.16)

Furthermore, using the same assumption, we can have the following as in Proposi-
tion .1} either

/ 1 Jtgwo(x) — tg wo(y) =Y d dy
'Y N D(2,Y) | — y|NFsp(z.y)

1 toy —t- p(,y)
< liminf/ ltg wm (x) 0 Wm(y)| dz dy
m—=o0 Jpn gy P(T,Y) |z — y|N+sp(@w)

or (4.17)

/ L |tg20(@) = to 20" "
'Y N D(Z,Y) |x — y|N+SP($7y)

1 ty — T p(z,y)
< liminf/ Ity zm (x) 0 zm(y)| dz dy.
m—co Jpn gy P(T,Y) |z — y|Ntsp(w)
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Note that, using Lemmal[2.:4]and Lebesgue dominated converges theorem, we deduce
that

1
li —— (Xa(@)|ty wm|T® + pb(x) |t 2|7 ) d
im Qq(x)( a(@)[ty win|T + pb(@) [ty 2m| )w

1 ( _ —
= [ —— (Na(@)|tgwo|"™ + pb(z)|t7 2 qw)dm.
/Qq(x) (@) ty wol pb(x)ty zo|
Also, by Lemma (see Appendix), we have

1
lim (@)t wn | Dt 2 PP da
00 QO&(.??)—Fﬁ(l')(”O | |O ‘

1
= | —————c(a)|ty wol ¥ty 20|* @ da.
/QOA(JZ)*FB(J)) ( )| 0 0| |O 0‘

Thus, combining (3.1)), (4.17)), (4.18]) and (4.19]), we obtain

(4.18)

(4.19)

mh_r)noo JA,H (tawﬂ% tSZm)

= lim inf 1 ‘to_wm(l') — to_wm(y)‘p(m,y)
o (2,9) — y|N+sp(z,y)
wsey PEY) ]

+/ 1 |ty 2m(®) = t5 zm(y) P Loy
’N xrN P(Z,Y) |z — y|N+sp(a.w)

dx dy

1
— [ ——(Aa(@)|ty wim|"® + pb(2)|ty 2m |1 ) da
| o5 (@i + (o)t 2 7)

1
| w2l
0 —t p(z,y)

> lim inf L [ty wm(2) =t win(y)l

m—oo Jpx gy p(T,Y) |z — y|Ntspy)

1 |t 2m(@) — 5 2 (y) [P
+ lim inf lto 2m(2) ]\? zm (Y) dz dy

m=o0 Jgn gy P(T,Y) |z — y[N+sp(@y) (4.20)

1
— 1 — (x o w,, |1 b2t 2, 1) ) d
Jim [ s (et wnl™® -+ bl 2" )

dx dy

1
— lim — @)t wn | @t 2 PP da

1 = — - p(z,y)
RV xRN P(

z,y) |z — y|N+sp(@.y)
+ / 1 |ty z0(z) — tg z0(y)P@®) i dy
RN xRN P(T,Y) |z — y|N+sp(@y)

1
_ A t= a(x) b 72019 ) g
| i (@it + @) 2017

1
_ - - = we @ 14 50 18@) g
/QOL(IE) +ﬂ($)c<x>| Ow0| | 0 ZO‘ €L

= Jaultowo,tgy 20).
Again, using that w,, — wo and z,, — 2z in L) (Q), we obtain

n}grlooQ(to Wn, tg 2m) = Q(tg Wo, Ty 20) (4.21)
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and Lemma [5.1] (see Appendix) gives us
lim R(ty wm,ty 2m) = Rty wo,ty 20)- (4.22)

m—

Considering (3.4]), (4.15), (4.21)) and (4.22)), we obtain

Jim gy, (f)

= lim inf [ (ts )p(m ) — |wm(ﬂc) — wm(y)|P(1,y) de dy
m— oo RN xRN 0 |l‘ _ y|N+Sp(w7y)

_ p(z,y)
= p(z,y)—1 |Zm(l') Zm(y)| da d
+/wanw(0) gt W

_/Q(tO_)q(I)_l()\a(xﬂme(z)+,Ltb($)|2m|q(z))dac

_/ (ta)a(z)w(r)—lc(m”wm|a(m)|Zm|ﬁ(r)dx] (4.23)
Q

1 _ _
> e [lgrimf px,(ty Wm) + hm 1nf pxo(tg 2m) — lg)nOo Q(tg W, to Zm)

- n}gn R(tg wim, ty zm)

1 _ _ _ _ _ _
> =030 (g w0) + px, (tg 2m) = Qltg wo, t 20) = Rlty wo, t 20)|
0

= Puo,o(to) = 0.
For m large enough, <p§va7Zm (tg) > 0. Since (wm, zm) € A, , for all m € N, we
have goivm,zm( )=0and ¢y, . (1) <0forallme N NOW usmg the Lemma
we obtain ¢, . () < 0 for all ¢ > 1. Then from [.23), we must have t; < 1.

Since (ty wo, ty 20) € N5, ,» again using Lemma we obtain that 1 is the global
maximum point for gawmzm( ). Therefore, from (4.20)), it follows that

In(t5 w015 20) < T Ta(t Wy g 2n) < T x (1 2m)

= inf  Jyu(u,v).
(wv)es,
This is a contradiction to the fact that (¢5wo,t; 20) € A, ,. Hence, (Wi, 2m) —
(wo, 20) strongly in F as m — oo and (wp, 20) € 4. Now ublng the fact that JVOH =
) from Lemma and noticing that Jy ,(wo, z0) = inf e, Iapu(u,v) >0, we
conclude that (wo, 20) € A5,

(ii) Using Lemma [3.2] we 1nfer that (wo, z0) is a solution of (L.I)). Now we will
show that (wp, zo) is not semi-trivial, that is, (wg, z9) is not of the form (u,0) (or
(0,v)). The proof follows adapting the similar approach as in [I0]. If (u,0) (or
(0,v)) is a semi-trivial solution of (L.I]), then from we obtain

B |u(x) — u(y)[P=v) _ a(z)
px,(u) = /]RNXJRN [ — gy dxdy =\ Qa(ac)|u\ dx.

Therefore,

1 Ju(z) — u(y) =)
J)\,M(uv O) = / — I N+sp(z,y)
gV xry D(T,Y) |z — Y ’

1
dx d —)\/ —a(x)|u]*@ dx
v [ —satl
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_ p(z,y)
P~ Jrv ey |z —y|N o)
1 1
= (pi - qj)PXo(u) <0,

since by Lemma Ixu(wo, 20) > 0, it follows that (wo, 20) is not semi-trivial. O

Proof of Theorem[1.3. Define A = &, (given as in Section [d]). Let (ug,vo) be ob-
tained as in Proposition Now using Lemma and the fact that (ug,vg) €
Q/V)\';“ for (|uol, |uol) € E\ {(0,0)}, we have Q(|ugl, |vo|) = Q(ug,vo) > 0, and thus
by Lemma (47), there exists ¢1 > 0 such that (¢1|ugl, t1|vo|) € ‘/V>\+u This implies

0 = @l ool (E1) < Prig00 (t1)- (4.24)

Combining ([4:24) with the facts that (ug,vo) € A4 s Pugwo (1) = 0, and again
using Lemma [3.8] (i7), we obtain ¢; > 1. This yields

Ixu(tiluol, trlvo|) < Jx u(luol,s [vol) < Jx u(uo, vo) = ( %Hfjw Ixu(u,v).
u,v)E-. o

Therefore, there exists a non—negatlve minimizer for J , on JV , which is a solu-

tion of . 1.1]) by Lemma

Next, we assert that there exists a non-negative minimizer for Jy ,(w,z) on
A, Indeed, for (Jwol,[20]) € E\ {(0,0)}, by Lemma there exists to > 0
such that (t2|wol,t2[20]) € A5 ,, where (wo,z20) is as in Proposition Since
(wo, 20) € A, ,, again by Lemmaﬁ7 we obtain

A p?

JA7#(t2|w0|,t2|Zo|) S JA,#(tzwo,tQZO) § J)\’#(”LUO,Z()) = mf JML(u, ”U).
(u,v)e/V/\?u

Thus, we obtain a non- negatlve minimizer for Jy , on </V , which is a solution of
. thanks to Lemma

Hence for all 0 < A + w < A, admits two non-trivial and non-negative
solutions in A4 JL and A, " respectlvely Since JV N JV ~ =, these solutions
are distinct. This completes the proof. (I

5. APPENDIX

Lemma 5.1. Let {un}, {vm} be any two bounded sequences in Xo and c,a, 8 be
as in Theorem [.3. Then

m—r o0

lim C(x)|um|a(x)|vm|ﬁ(x)d$:/C(l‘)‘u|a(x)|v|’8(’c)daj_
Q Q

Proof. Since {u,,} and {v,,} are bounded sequences in Xy and X is reflexive, up
to subsequences, u,, — u and v,, — v weakly in Xy as m — oco. First we claim
that

m— oo

lim / |t — | @ |0, — 0] da
(5.1)
= i [ unl* ol #de — [ @] da
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For ¢t € (0,1), we note that
/ / ) |t — tu| D72 (0, — tw)uloy, [P @ d dt
- / / B() |t — u|*® v, — to|P @20 (v, — tv) da dt (5.2)
o Jo

= / |um|a(m)|ym|3(w)dx — / [ty — u|a(m)|vm _ U|’8($)dm.
@ Q

Set
Frn () := [ty — tu| @72 (U, — tu) oy, [P
G (@, 1) = [ty — "D |0, — t0]P @2 (0, — to).
Now from the given assumptions, we have
fon(,t) = (1 — )@ | 2@ =2 )p|f@) ae in RY x (0,1) as m — oo, (5:3)
gm(z,t) = 0 ae. in RY x (0,1) as m — oo. .

Next, using Holder’s inequality and Sobolev-type embedding result (Theorem ,

we obtain
1 (@) +8(2)
|fm| a(@)+B@) -1 dx dt

a+8
< || |u — tul {07 DEE5) )|| e e (5.4)
o) = (2% (0,1))
X | om PO a@ser-1 < My,
L A= (©2%(0,1))

// |g a(xwam 1d;gdt

< |y — | GO | awse (5.5)
a@ (2x(0,1))

and

_ a+p3
X | [um| PV 1()|| ale)+8()=1 < Mo,
Al=1 (Qx(0,1))
where M7, M are positive constants mdependent of m. Hence, the sequences { f,,, }
a(z)+5 ()
and {gm} are uniformly bounded in L=@+=-1(Q x (0,1)) and thus we have, up
to subsequences,

Fn = (1 — £)2@ =1y 0@) =24y [P weakly in La=HET(Q x (0,1)),
a(2)+B(2)

— 0 weakly in Le@+@-1 () x (0,1)).

(5.6)

as m — oo. Using (5.6 , we deduce that

lim // x) frudzdt = lim // x)fudzdt

= lim /|u|o‘(l [v|P®) dz
m—r o0 Q

lim / /01 B(z)gmuv dz dt = 0. (5.8)

m—r o0
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Thus, plugging (5.7) and (5.8]) into (5.2)), we obtain (5.1). Note that, from Theorem
and Lemma [2.4] we have

/ |ty — | @@ gz 0 and / U — v|*@T@ g 50 as m — oco.
Q Q
Now using the above and Young’s inequality, we have

/ |t — 1| |v, — 0[P @ dz
Q

< / {(a(f”)|um _yp@se 0@ v|a(z)+ﬂ(w)}dx

x) + B(x) a(z) + B(z) (5.9)
at g+
< i/ |ty — u|a(x)+6(w)dx + i/ U, — v|oz(:c)+6(af)dx
a”+ 87 Jq a”+ Q
—0 asm — oo.
Thus, inserting (5.9)) into (5.1]), we obtain
lim / [t |2 [0, [P @) i = / || @) v | @) d, (5.10)
Now
R e ey R O
@ (5.11)
< ||c||LDO(Q)/ “um|a(x)|vm|ﬂ(x) _ |u|a(x)|v|ﬂ(a:)|dx_
Q
We define
Wy 1= |um|a(x)|vm|ﬁ(x) + |u|a(x)|v|ﬁ(af) — “um|a(x)|vm|l3(x) — |u|a(x)|v|ﬂ(x)| > 0.
Since U, (z) — u(x) and v, () — v(x) a.e. in RY as m — oo, we have
Wy () = 2Ju(z)|*@ |o(z)[P®  ae. in RN as m — oo.
Thus, by Fatou’s Lemma,
liminf/ W (z)dx > 2/ || @) 0| 2@ . (5.12)
Again from (5.10)), we find that
lim sup/ W, (z)dx
m—oo JQ
< lim / |t |2 [0 [P @ dzz + 1im / || @) 0| @) dy:
(5.13)

- limsup/ “Um|a(x)|vm|’8(r)da: _ |u|a(m)|v|ﬁ(”)’daﬁ
Q

m—00
:2/ |U|a(z)|v|ﬁ(m)dx—limsup/ e[ 5 [ | 2®) — ] @) 0] 2@ | i
Combining (|5.12)) and ( , we have
hmsup/ |t |4 |,,, |P@) — |u|a(x)\v|6(x)|dx<0

that is,
hm / [t @)y [P — )@ I)|v|ﬁ(m)|dac =0.
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Thus, combining the above together with (5.11)), we obtain our final result. O

The proof of the next lemma is similarly to the one for Lemma [5.1} using that
«, B € C—'F(Q)

Lemma 5.2. Let {un}, {vm} be any two bounded sequences in Xo and c,a, 3 be
as in Theorem [L.d. Then

1 1
lim — (@) |um|*® v, mx)dx:/ —(2)|u]*@ [P g,
mm/ﬂa(x)w(@ ()t | ] @l
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