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EXISTENCE RESULTS FOR ELLIPTIC SYSTEMS INVOLVING
CRITICAL SOBOLEV EXPONENTS

MOHAMMED BOUCHEKIF, YASMINA NASRI

Abstract. In this paper, we study the existence and nonexistence of positive

solutions of an elliptic system involving critical Sobolev exponent perturbed
by a weakly coupled term.

1. Introduction

We establish conditions for existence and nonexistence of nontrivial solutions to
the system

−∆u = (α+ 1)uαvβ+1 + µ(α′ + 1)uα′vβ′+1 in Ω

−∆v = (β + 1)uα+1vβ + µ(β′ + 1)uα′+1vβ′ in Ω
u > 0, v > 0 in Ω
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded regular domain of RN (N ≥ 3) with smooth boundary ∂Ω,
µ ∈ R, α, β, α′, β′ are positive constants such that α+β = 4

N−2 and 0 ≤ α′+β′ <
4

N−2 .
In the scalar case, the problem

−∆u = up + µuq in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(1.2)

has been considered by several authors. The paper of Brezis-Nirenberg [7] has
drawn our attention.

In [7], they have obtained the following results: Suppose that Ω is a bounded
domain in RN , N ≥ 3, p = N+2

N−2 , q = 1 and let λ1 > 0 denote the first eigenvalue
of the operator −∆ with homogeneous Dirichlet boundary conditions.

(1) If N ≥ 4, then for any µ ∈ (0, λ1) there exists a solution of (1.2).
(2) If N = 3, there exists µ∗ ∈ (0, λ1) such that for any µ ∈ (µ∗, λ1) problem

(1.2) admits a solution.
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(3) If N = 3 and Ω is a ball, then µ∗ = λ1
4 and for µ ≤ λ1

4 problem (1.2) has
no solution.

They have also obtained the following results for 1 < q < N+2
N−2 :

(a) There is no solutions of (1.2) when µ ≤ 0 and Ω is a starshaped domain.
(b) When N ≥ 4, (1.2) has at least one solution for every µ > 0.
(c) When N = 3, We distinguish two cases:

(i) If 3 < q < 5, then for every µ > 0 there is a solution of (1.2).
(ii) If 1 < q ≤ 3, then for every µ large enough there is a solution of (1.2).
Moreover, (1.2) has no solution for every small µ > 0 when Ω is strictly
starshaped.

In the vectorial case, Alves et al. [1] and Bouchekif and Nasri [4] have extended
the results of [7] to elliptic system. A number of works contributed to study the
elliptic system for example: Boccardo and de Figueiredo [3], de Thélin and Vélin
[11] and Conti et al. [8].

Our aim is to generalize the results of [7] to an elliptic system when the lower
order perturbation of uα+1vβ+1 for each equation is weakly coupled i. e.

−
→
∆U = ∇H + µ∇G,

where
→
∆ =

(
∆
∆

)
, H(u, v) = uα+1vβ+1, U =

(
u
v

)
,

G(u, v) = uα′+1vβ′+1 and µ is a real parameter.
Our main results are stated as follows :

Theorem 1.1. If α+ β = 4
N−2 ; 0 ≤ α′ + β′ < 4

N−2 ; µ ≤ 0 and Ω is a starshaped
domain, then (1.1) has no solution.

Theorem 1.2. We suppose that N ≥ 4 and α+ β = 4
N−2 . We have:

• If 0 < α′ + β′ < 4
N−2 , then for every µ > 0 problem (1.1) has at least one

solution.
• If α′ + β′ = 0, then for every 0 < µ < λ1 problem (1.1) has a solution.

Theorem 1.3. Assume that N = 3 and α+ β = 4. We distinguish two cases:
• If 2 < α′ + β′ < 4, then for every µ > 0 problem (1.1) has a solution.
• If 0 < α′ + β′ ≤ 2, then for every µ large enough there exists a solution to

problem (1.1).

The paper is organized as follows. Section 2 contains some preliminaries and
notations. Section 3 contains the proof of nonexistence result. Section 4 deals with
the existence theorems proofs.

2. Preliminaries

Lemma 2.1 (Pohozaev identity [10]). Suppose that (u, v) ∈ [C2(Ω)]2 is the solution
to the problem

−∆u =
∂F

∂u
(u, v) in Ω

−∆v =
∂F

∂v
(u, v) in Ω

u = v = 0 on ∂Ω,
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where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, F ∈
C1(R2), F (0, 0) = 0, then we have∫

∂Ω

(|∂u
∂ν
|2 + |∂v

∂ν
|2)xνdσ+ (N − 2)

[ ∫
Ω

(u
∂F

∂u
+ v

∂F

∂v
)dx

]
= 2N

∫
Ω

F (u, v)dx (2.1)

where ν denotes the exterior unit normal.

We shall use the following version of the Brezis-Lieb lemma [6].

Lemma 2.2. Assume that F ∈ C1(RN ) with F (0) = 0 and | ∂F
∂ui

| ≤ C|u|p−1. Let
(un) ⊂ Lp(Ω) with 1 ≤ p <∞. If (un) is bounded in Lp(Ω) and un → u a.e. on Ω,
then

lim
n→∞

(
∫

Ω

F (un)− F (un − u)) =
∫

Ω

F (u).

Let us define:

Sα+β+2 = Sα+β+2(Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx

(
∫
Ω
|u|α+β+2dx)

2
α+β+2

Sα,β = Sα,β(Ω) := inf
(u,v)∈[H1

0 (Ω)]2\{(0,0)}

∫
Ω
(|∇u|2 + |∇v|2)dx

(
∫
Ω
|u|α+1|v|β+1dx)

2
α+β+2

.

Lemma 2.3 ([1]). Let Ω be a domain in RN (not necessarily bounded) and α+β ≤
4

N−2 , then we have

Sα,β =
[(α+ 1
β + 1

) β+1
α+β+2 +

(α+ 1
β + 1

) −α−1
α+β+2

]
Sα+β+2.

Moreover, if Sα+β+2 is attained at ω0, then Sα,β is attained at (Aω0, Bω0) for any
real constants A and B such that A

B = (α+1
β+1 )1/2.

We adopt the following notation:

• For p > 1, ‖u‖p = [
∫
Ω
|u|pdx]

1
p ;

• H1
0 (Ω) is the Sobolev space endowed with the norm ‖u‖1,2 = [

∫
Ω
|∇u|2dx]1/2;

• ‖(u, v)‖2E := ‖u‖21,2 + ‖v‖21,2;
• E := [H1

0 (Ω)]2;
• E′ denotes the dual of E;
• 2∗ := 2N

N−2 is the critical Sobolev exponent;
• u+ := max(u, 0) and u− = u+ − u.

The functional associated to problem (1.1) is written as

J(u, v) :=
1
2
‖(u, v)‖2E −

∫
Ω

(u+)α+1(v+)β+1dx− µ

∫
Ω

(u+)α′+1(v+)β′+1dx. (2.2)

3. Nonexistence result

Theorem 1.1 is a direct consequence of the Pohozaev identity.

Proof of Theorem 1.1. Arguing by contradiction. Suppose that problem (1.1) has
a solution (u, v) 6= (0, 0), applying Lemma 2.1 and putting

F (u, v) = H(u, v) + µG(u, v),
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the expression (2.1) becomes∫
∂Ω

(
|∂u
∂ν
|2 + |∂v

∂ν
|2

)
xν dσ = µ [2N − (N − 2)(α′ + β′ + 2)]

∫
Ω

|u|α
′+1|v|β

′+1dx.

Since 2N − (N − 2)(α′ + β′ + 2) > 0 and the fact that Ω is starshaped with respect
to the origin, we get

0 ≤
∫

∂Ω

(|∂u
∂ν
|2 + |∂v

∂ν
|2)xν dσ < 0.

A contradiction. Hence (1.1) has no a solution for µ ≤ 0. �

4. Existence results

The proof of Theorems 1.2 and 1.3 are based on the following Ambrosetti-
Rabinowitz result [2].

Lemma 4.1 (Mountain Pass Theorem). Let J be a C1 functional on a Banach
space E. Suppose there exits a neighborhood V of 0 in E and a positive constant ρ
such that

(i) J(u, v) ≥ ρ for every U in the boundary of V .
(ii) J(0, 0) < ρ and J(ϕ,ψ) < 0 for some Ψ := (ϕ,ψ) /∈ V .

We set
c = inf

φ∈Γ
max

t∈[0,1]
J(φ(t))

with Γ = {φ ∈ C([0, 1], E) : φ(0) = 0, φ(1) = Ψ}. Then there exists a sequence
(un, vn) in E such that J(un, vn) → c and J ′(un, vn) → 0 in E′.

Proof. Using Holder’s inequality and Sobolev injection, we obtain that

J(u, v) =
1
2
‖(u, v)‖2E −

∫
Ω

(u+)α+1(v+)β+1dx− µ

∫
Ω

(u+)α′+1(v+)β′+1dx

≥ 1
2
‖(u, v)‖2E −A‖(u, v)‖2

∗

E −B‖(u, v)‖α′+β′+2
E

where A and B are positive constants.
If α′ + β′ > 0 then (i) is satisfying for small norm ‖(u, v)‖E = R. If α′ + β′ = 0,

we have
J(u, v) ≥ 1

2
(
1− µ

λ1

)
‖(u, v)‖2E −A‖(u, v)‖2

∗

E

and condition (i) is still satisfied for µ < λ1 and R < (
1− µ

λ1
2A )

1
2∗−2 . For any (ϕ,ψ) ∈

E with ϕ 6= 0 and ψ 6= 0, we have that limt→+∞ J(tϕ, tψ) = −∞. Thus, there
are many (ϕ,ψ) satisfying (ii). It will be important to use with a special (ϕ,ψ) :=
(t0ϕ0, t0ψ0) for some t0 > 0 chosen large enough so that (ϕ,ψ) /∈ V , J(ϕ,ψ) < 0
and supt≥0 J(tϕ, tψ) < 2∗

N (Sα,β

2∗ )N/2. Then there exists a sequence (un, vn) ∈ E
such that J(un, vn) → c and J ′(un, vn) → 0 in E′. �

Lemma 4.2. Suppose µ > 0 and let (un, vn) be a sequence in E such that
J(un, vn) → c and J ′(un, vn) → 0 in E′ with

c <
2∗

N
(
Sα,β

2∗
)N/2 =

2
N − 2

(
Sα,β

2∗
)N/2

Then (un, vn) is relatively compact in E.
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Proof. We show that the sequence (un, vn) is bounded in E. Since (un, vn) satisfies:

1
2
‖(un, vn)‖2E −

∫
Ω

(u+
n )α+1(v+

n )β+1dx− µ

∫
Ω

(u+
n )α′+1(v+

n )β′+1dx = c+ o(1) (4.1)

and

‖(un, vn)‖2E − 2∗
∫

Ω

(u+
n )α+1(v+

n )β+1dx− µ(α′ + β′ + 2)
∫

Ω

(u+
n )α′+1(v+

n )β′+1dx

= 〈εn, (un, vn)〉
(4.2)

with εn → 0 in E′. Combining (4.1) and (4.2), we obtain

(
2∗

2
− 1)

∫
Ω

(u+
n )α+1(v+

n )β+1dx+ µ(
α′ + β′

2
)
∫

Ω

(u+
n )α′+1(v+

n )β′+1dx

≤ c+ o(1) + ‖εn‖E′‖(un, vn)‖E .

(4.3)

From this inequality, we obtain∫
Ω

(u+
n )α+1(v+

n )β+1dx ≤ C ,∫
Ω

(u+
n )α′+1(v+

n )β′+1dx ≤ C .

Where C is any generic positive constant. Therefore, the sequence (un, vn) is
bounded in E. By the Sobolev embedding Theorem, there exists a subsequence
again denoted by (un, vn) such that

• (un, vn) → (u, v) weakly in E
• (un, vn) → (u, v) strongly in Lr × Lq for 2 ≤ r, q < 2∗

• (un, vn) → (u, v) a. e. on Ω.

Since wn := uα
nv

β+1
n and tn := uα+1

n vβ
n are bounded sequences in [L

2∗
2∗−1 (Ω)]2,

these sequences converge to w := uαvβ+1 and to t := uα+1vβ respectively. Passing
to the limit, we obtain

−∆u = (α+ 1)(u+)α(v+)β+1 + µ(α′ + 1)(u+)α′(v+)β′+1

−∆v = (β + 1)(u+)α+1(v+)β + µ(β′ + 1)(u+)α′+1(v+)β′

i.e

‖(u, v)‖2E = 2∗
∫

Ω

(u+)α+1(v+)β+1dx+ µ(α′ + β′ + 2)
∫

Ω

(u+)α′+1(v+)β′+1dx

Moreover,

J(u, v) = (
2∗

2
− 1)

∫
Ω

(u+)α+1(v+)β+1dx+ µ(
α′ + β′

2
)
∫

Ω

(u+)α′+1(v+)β′+1dx ≥ 0.

We put
u = un + ϕn, v = vn + ψn and H(un, vn) = uα+1

n vβ+1
n

Applying Lemma 2.2 for H(un, vn) and the following two relations (Brezis-Lieb [6])

‖un‖2 = ‖u− ϕn‖2 = ‖u‖2 + ‖ϕn‖2 + o(1) ,

‖vn‖2 = ‖v − ϕn‖2 = ‖v‖2 + ‖ψn‖2 + o(1),



6 MOHAMMED BOUCHEKIF, YASMINA NASRI EJDE-2004/138

we obtain

J(u, v) +
1
2
‖(ϕn, ψn)‖2E −

∫
Ω

H(ϕ+
n , ψ

+
n )dx = c+ o(1) (4.4)

and

‖(ϕn, ψn)‖2E + ‖(u, v)‖2E = 2∗
[ ∫

Ω

(H(u+, v+) +H(ϕ+
n , ψ

+
n ))dx

]
+ µ(α′ + β′ + 2)

∫
Ω

(u+)α′+1(v+)β′+1dx+ o(1).
(4.5)

From this equality, we deduce

‖(ϕn, ψn)‖2E = 2∗
∫

Ω

H(ϕ+
n , ψ

+
n )dx+ o(1).

We may therefore assume that

‖(ϕn, ψn)‖2E → k and 2∗
∫

Ω

H(ϕ+
n , ψ

+
n )dx→ k.

By the Sobolev inequality,

‖(ϕn, ψn)‖2E ≥ Sα,β

( ∫
Ω

(
ϕ+

n

)α+1 (ψ+
n )β+1dx

) 2
2∗
.

In the limit, k ≥ Sα,β( k
2∗ )2/2∗ . It follows that either k = 0 or k ≥ 2∗(Sα,β

2∗ )N/2.
We show that (un, vn) → (u, v) strongly in E i. e. (ϕn, ψn) → (0, 0) strongly in

E. Suppose that k ≥ 2∗(Sα,β

2∗ )N/2. Since

J(u, v) +
k

N
= c

and J(u, v) ≥ 0, then k
N ≤ c i.e. c ≥ 2∗

N (Sα,β(Ω)
2∗ )N/2 in contradiction with the

hypothesis. Thus k = 0 and (un, vn) → (u, v) strongly in E. �

Proof of Theorem 1.2. It suffices to apply the mountain pass theorem with the
value c < 2∗

N (Sα,β(Ω)
2∗ )N/2. We have to show that this geometric condition on c is

satisfied. Following the method in [7]. Without loss of generality we assume that
0 ∈ Ω, we use the test function

ωε(x) =
ϕ(x)

(ε+ |x|2)N−2
2

, ε > 0

where ϕ is a cut-off positive function such that ϕ ≡ 1 in a neighborhood of 0. Let
A and B be positive constants such that

A

B
= (

α+ 1
β + 1

)1/2

then (Aωε, Bωε) is a solution of

−∆u = (α+ 1)uαvβ+1 in RN

−∆v = (β + 1)uα+1vβ in RN

u(x) = 0, v(x) = 0 as |x| → +∞

By [7, lemma 1], we obtain

sup
t≥0

J(tAωε, tBωε) ≤
2∗

N

(Sα,β

2∗
)N/2 +O

(
ε

N−2
2

)
− µKεθ
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where K is a positive constant independent of ε, and θ := (4− (α′+β′)(N − 2))/4.
For θ < N−2

2 if N > 4 the inequality is satisfying for all 0 ≤ α′ + β′ < 4
N−2 .

Thus we obtain

sup
t≥0

J(tAωε, tBωε) <
2∗

N

(Sα,β

2∗
)N/2 for ε > 0 small enough.

Then problem (1.1) has a solution for every µ > 0.
For N = 4, we distinguish two cases. Case 1: We have θ < 1 for all α′ + β′ > 0.

Case 2: If α′ + β′ = 0, we obtain

sup
t≥0

J(tAωε, tBωε) ≤ (
Sα,β

4
)2 +O(ε)− µKε| log ε|,

so for ε > 0 small enough, supt≥0 J(tAωε, tBωε) < (Sα,β

4 )2.
Note that the maximum principle ensures the positivity of solution. �

Proof of Theorem 1.3. In three dimension the situation is different. We have

sup
t≥0

J(tAωε, tBωε) ≤ 2(
Sα,β

6
)3/2 +O(ε1/2)− µKεθ.

In this case we distinguish two cases.
(i) 0 < θ < 1

2 if 2 < α′ + β′ < 4,
(ii) θ ≥ 1

2 if 0 < α′ + β′ ≤ 2.
In case (i) we have the same conclusion as in the previous proof for (N ≥ 4).

So for the case 0 < α′ + β′ ≤ 2, the existence of positive solution is assured for µ
large enough. It follows that supt≥0 J(tAωε, tBωε) < 2(Sα,β

6 )3/2. Thus (1.1) has a
solution. �
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