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ABSTRACT

Human’s sketch understanding is an important and challenging research

problem. It has many applications in human computer interaction, multimedia,

and computer vision. Most previous methods focus on single-object sketch

recognition. Human’s scene sketch understanding has not been studied. In this

work, we make the first attempt to tackle this problem. We create the first scene

sketch dataset “Scene250” and explore deep learning scheme for scene sketch

understanding. We propose a deep Convolutional Neural Network (CNN) model

“Scene-Net” and build a novel scene sketch recognition system based on this

model. Our system has been tested on the collected scene sketch dataset and

compared with other state-of-the-art CNNs and sketch recognition approaches.

We also extend our work to sketch-based 3D model retrieval and design a

complete retrieval system (CNN-SBR) based on deep CNN. It also achieves

better performance than other comparison systems. The experimental results

demonstrate the effectiveness and potential of our method.
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I. INTRODUCTION

Since prehistoric times, sketching has been a unique communication method to

visually render human’s mind. In nowadays, with the increasing popularity of

devices with touch screens (e.g., touchpads and touch phones), sketching has

become one of the most natural schemes in human-computer interaction. It helps

people retrieve similar images by sketching a scene on the smart phone. It

simplifies the task of creating a 3D cartoon model. It is also an attractive

method for children, especially pre-school kids, to effectively communicate with

computers. Thus, enabling computers to understand human’s hand-drawn sketch

is crucial and it has attracted more and more attentions recently. Wide range of

its applications have been investigated, including sketch recognition [Eitz et al.

(2012a); Schneider and Tuytelaars (2014)], sketch-based image retrieval [Eitz

et al. (2011); Hu and Collomosse (2013)], sketch-based 3D model retrieval [Wang

et al. (2015)], and forensic sketch analysis [Klare et al. (2011); Ouyang et al.

(2014)].

An effective sketch understanding system enables a computer to interact with

human intelligently, perform efficient sketch-based search, enhance children

education with computers, and improve game design. Although decades of

graphics research demonstrate that sketching is almost the only way for most

people to render visual context, there has never been a formal study of how

scene sketch can be recognized by computers. We examine this topic for the first

time and demonstrate applications of computational scene sketch understanding.

Sketch understanding is challenging. The difficulty is mainly because a sketch

only contains abstract lines but does not have color, texture, and enough visual

cues. Human sketches also often depict complicated high-level semantic

information. Current sketch-related methods mainly focus on recognizing

single-object sketches that only contain one single object Eitz et al. (2012a);

Schneider and Tuytelaars (2014) in each image. Most prior work generally follow
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the traditional vision classification architecture. That is, extracting hand-crafted

features, e.g., SIFT, sHOG and fisher vector, from sketch images, and usually

yielding the final represented features by Bag-of-Word (BoW), then feeding them

to supervised learning models, e.g., Support Vector Machine (SVM). Those

conventional vision classification paradigms usually require the researchers have

expert knowledge on drawing or specific domains.

Very recently, Yu et al. (2015) proposed a deep CNN model for single-object

sketch recognition task, which inspired our work on scene sketch recognition.

However, scene sketches are very different from commonly drawn sketches, which

usually depict a complete scene, a beautiful sight or even a story. More powerful

deep CNN model need to be proposed to defeat those difficulties. Compared with

single-object sketch recognition, scene sketch understanding is more challenging

due to the complexity, variation, and uncertainty of the scene sketch:

• Complexity: scene sketches usually contain multiple objects (Fig. I.1),

which introduce a lot of difficulty for computer to recognize all the objects

in one scene and understand the semantic information implicated.

• Variation: sketchers from different viewing positions may generate totally

different sketches of the same scene (Fig. I.2: Classroom).

• Uncertainty: one thousand people may draw the same scene in one

thousand different ways. For example, different objects may appear in the

same scene (Fig. I.2: Desert). The sketches of “River” can be either several

strokes to depict the river shape or a portrait with fine details of plants

along the river (Fig. I.2: River).

So far, there is a lack of a comprehensive study of how human’s scene sketches

can be well understood by computers.

In this paper, we perform an initial study of scene sketch understanding. We

create the first scene sketch dataset Scene250 and explore deep learning

technology for scene sketch understanding. We propose a deep CNN model and
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build a novel scene sketch understanding system based on this model. The

performance of our system has been tested on the collected scene sketch dataset

and compared with other state-of-the-art sketch recognition approaches. Our

methods give much better results.

To our best knowledge, this work is the first attempt to explore scene sketch

understanding and to investigate deep learning technology on scene sketch

recognition. The implication of this work could not only accelerate the research

on scene sketch understanding, but also shed inspiring light on human’s

sketch-related research work.

We also extend our work to SHREC’16

(http://cs.txstate.edu/~yl12/SBR2016/), the 3D sketch-based 3D shape

retrieval challenge, and achieve the best performance among five competition

teams. The objective of this track is to evaluate the performance of different 3D

sketch-based 3D model retrieval algorithms using a hand-drawn 3D sketch query

dataset on a generic 3D model dataset. We propose a creative 3D sketch retrieval

system CNN-SBR and outperform over 100% than 2nd place in the competition.

In summary, our main contributions introduced in this paper are highlighted as

follows:

• The first scene sketch dataset is created and open to public. It contains 250

scene sketches across 10 categories which consists of 4 common indoor

categories and 6 common outdoor ones.

• A scene sketch oriented deep CNN model, Scene-net, is proposed for the

first time to target the scene sketch recognition task.

• Comprehensive experiments have been conducted to evaluate the

state-of-the-art sketch recognition approaches on human’s scene sketch

recognition and evaluated on both indoor and outdoor scenes.

• Outstanding performance on SHREC’16 and explore applying deep CNN

on human 3D sketch retrieval problem.
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Figure I.1: Example scene sketches of our Scene250 dataset (one example per category).

• Our work will explicitly guide the research on human’s sketch

understanding and also provide a direction for sketch-based applications.

4



Figure I.2: Examples to demonstrate scene sketch recognition challenges.
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II. BACKGROUND

In this chapter, we introduce the detailed background about the conventional

sketch recognition methods and background about the deep learning algorithm,

i. e. CNN, we use in our scene sketch recognition system.

Convolutional Neural Network

In this section, we review the paradigm of deep CNN design and its core four

layer types, i. e. (i) convolutional, (ii) pooling, (iii) ReLU, and (iv)

fully-connected [Stanford (2016)].

Like traditional Neural Network, CNN is made up of neurons which consist of

learnable weights and biases. Each neuron receives some inputs, performs a dot

product and optionally follows it with a non-linearity. The whole CNN could be

expressed as a single differential score function, i. e. from the raw image pixels on

one end to classification scores at the other.

CNN also employs backpropagation, which consists of forward pass and

backward pass to adjust the learning weights, coupled with gradient descent

optimization methods to train the learning model. At the end of the

architecture, a loss function (e. g. SVM/Softmax) will be appended after the last

fully-connected layer and all optimization technique developed for learning

regular Neural Networks still apply.

To most common deep CNN models, including our Scene-Net, their architecture

follows this pattern:

Input− > [[Conv− > ReLU ]∗N− > Pool?]∗M− > [FC− > ReLU ]∗K− > FC

where ∗ denotes repetition, and Pool? means pooling layer could be an optional

layer. N,M,K are all integers greater than or equal to 0. All the deep CNNs

mentioned in this work [Krizhevsky et al. (2012); Yu et al. (2015)], including our
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Figure II.1: Architecture of LeNet for digits recognition.

Scene-Net, accept this scheme to construct the actual deep CNN models.

Figure II.1 shows the LeNet [Lecun et al. (1998)] as the example.

Input Layer

Input layer is the raw pixel data volume of the image in 3D space,

i. e. W ×H ×D where W,H indicates the image width and height and D

indicates its depth or channel number. The depth number could be one

(gray-scale image), three (RGB image), or even higher (aligned stereo model

data).

Convolutional Layer

Convolutional layer could be considered as the keystone of a CNN, and compute

the dot product between the layer weights and the local region they connected to

in the input volume.

The convolutional layer’s parameters are a set of kernel, which can be regarded

as sliding matrices during computation procedure. As mentioned above, in the

forward pass, we move the sliding matrix across the width and height of the

input data and compute the dot product for each sliding matrix, yielding a 2D

activation map of the kernel (see Figure II.3). When learning kernels see some

specific type of feature at some spatial position in the input, they will construct

the activation maps. Stacking these activation maps for all the kernels along the

depths yields the output data volume. We now dive into the two key concepts:
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(i) local connectivities and (ii) spatial arrangement.

Local connectivities. When dealing with high-dimentional inputs such as

images, it is unrealistic to connect neurons to all neurons in the previous layer

for the extremely high computation pressure. In practice, each neuron will only

be connected with a local region of the input volume. The spatial extent of this

connectivity is a hyper-parameter, which is a parameter of a prior distribution,

called the receptive field of the neuron. The connectivity extent along the depth

dimension is equal to the depth of the input data volume. The connections are

local along width and height, while full along the entire depth dimension of the

input volume. Figure II.2 explains this concept.

Spatial arrangement. We have reviewed the connectivity between neurons in

the convolutional layer and the input volume. Now, we the number of neuron

and the spatial arrangement in output volume. Three hyper-parameters control

the size of output volume:

1. Output volume depth. It controls the number of neuron number in the

convolutional layer which connect to the same region of the input layer.

2. Stride. If the stride is less than filter size, it would lead to the overlapping

filter field and larger output volume. Otherwise, it lead to the

non-overlapping filter and smaller output volume.

3. Zero-padding. To control the output size, it’s convenient to pad zeros on

the board of input volume.

The spatial size of the output volume can be computed using the input size W ,

the kernel size of the convolutional layer F , the stride step S, and the number of

zero padding P . The formula can be expressed by (W − F + 2P )/S + 1.

We use an real-world example here to illustrate the formula. Our Scene-Net

accepts the input image of size [193× 193× 3]. On the first convolutional layer,

it used neurons with filter size F = 7, stride S = 3 and no zero padding P = 0.

Since (193− 7)/3 + 1 = 63, and since the convolutional layer has a depth of

8



Figure II.2: Example for neuron connectivities.

Figure II.3: Illustration of dot product in 2D convolution.

K = 96, the convolutional layer output volume has size of [63× 63× 96]. Each of

the 63× 63× 96 neurons in the volume was connected to a region of size

[7× 7× 3] in the input volume.

We now summarize that a convolutional layer:

• Accept the input volume of size W1 ×H1 ×D1.

• Require four parameters: (i) kernel number K, (ii) kernel size F , (iii) stride

size S, and (iv) the number of zero padding P .

• Yield the output volume of size W2 ×H2 ×D2, where

W2 = (W1 − F + 2P )/S + 1, H2 = (H1 − F + 2P )/S + 1, and D2 = K.

• Applying parameter sharing introduces F · F ·D1 weights per kernel, for a

total of (F · F ·D1) ·K weights and K biases.

9



Figure II.4: Example of convolutional layer.

Pooling Layer

A pooling layer usually follows a convolutional layer in CNN scheme. The

motivation for applying pooling layer is to reduce the number of neurons and the

spatial size of the representation feature. The common used pooling types

include max pooling (the most common one in modern CNNs), average pooling,

and L2-norm pooling.

A widely used pooling form is a pooling layer with kernel of size 2× 2 coupled

with a stride of 2, which will downsamples every depth slice in the input by 2

and ignoring 75% of the activation neurons.

• Accept the input volume of size W1 ×H1 ×D1

• Require two parameters: (i) kernel size F , (ii) stride size S

• Yield the output volume of size W2 ×H2 ×D2, where

W2 = (W1 − F + 2P )/S + 1, H2 = (H1 − F + 2P )/S + 1, and D2 = D1

• It is uncommon to use zero-padding for pooling layers

Note that there are only two types of commonly used max pooling: A overlapping

pooling with F = 3, S = 2, and a non-overlapping pooling with F = 2, S = 2.

10



Figure II.5: ReLU activation function.

ReLU Layer

In modern deep neural network theory, the rectifier is an activation function

defined as

f(x) = max(0, x) (II.1)

while a neuron in deep CNNs employing the rectifier is called a ReLU. It will

apply an element-wise activation function and leave the size of input volume

unchanged.

Fully-connected Layer

Fully-connected layer have full connections to all activations in the previous

layer. Thus, their activations can be simply computed using a matrix

multiplication with a bias offset. We should note that the only difference between

the fully-connected layer and the convolutional layer is convolutional layer that

the activation in convolutional layer only connected to a local region in the input

rather than the whole region in fully-connected layer. Thus, it is possible to

convert between normal convolutional layer and fully-connected layer.

11



Backpropagation Algorithm in Convolutional Neural Network

Although employing 2D convolution layer, the mathematical theory of deep

CNN should be exactly same to conventional neural network. In this section, we

discuss the forward propagation and backward propagation, which consist of the

mathematic base of deep CNN algorithm [Stanford (2015)].

Forward Propagation

Suppose there are m labeled training instances

{x(1), y(1)}, {x(2), y(2)}, · · · , {x(m), y(m)} and a L layers deep CNN model. For a

specific training instance {x, y}, we can define the cost function as

J(W, b;x, y) =
1

2
‖hW,b(x)− y‖2 (II.2)

where W denotes weights, b denotes bias term, and h denotes the heuristic

function (or activation function).

Given a training set of m instances, then we can define the overall cost function

as

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

L∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2

=

[
1

m

m∑
i=1

(
1

2
‖hW,b(x(i))− y(i)‖2

)]
+
λ

2

L∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2

(II.3)

In the above definition, the first term is the average sum-of-square error term

and the second one is the regularization term (also called weight decay term),

which used to decrease the magnitude of weights and alleviate over-fitting. The

weight decay parameter λ controls the balance of the two terms. The above cost

function can be applied to regression or classification problems. For regression,

we re-scale the output y to [0, 1] range (or if we were using tanh activation

function, then [−1, 1]). For classification, we convert the output y to a 0-1 vector

to represent the class labels (or if we were using tanh activation function, then -1

12



and +1 instead).

Backward Propagation

Our goal is to minimize the cost function J(W, b) using neural network training.

We first randomly initialize each parameter W (l)
ij and bli and then apply batch

gradient descent as optimization algorithm. Although J(W, b) is a non-convex

function and gradient descent usually reaches to local optima, gradient descent

works well in practice.

The formula to update W, b in one iteration of gradient descent as follows:

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b)

(II.4)

where α denotes the learning rate. We now discuss the backpropagation

algorithm which gives an efficient way to compute the partial derivatives above.

In fact, we need to apply backpropagation algorithm to compute
∂

∂W
(l)
ij

J(W, b;x, y) and
∂

∂b
(l)
i

J(W, b;x, y), the partial derivatives of the cost

function J(W, b;x, y) defined with respect to a single instance (x, y). Then, we

can compute the derivatives of overall cost function J(W, b) using:

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i))

]
+ λW

(l)
ij

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i))

(II.5)

The weight decay is applied to W but not b. Therefore, there is slightly

difference between above two lines.

Now We can describe the backpropagation algorithm as follows:

1. We perform a forward propagation to compute the activations for layers

L2, L3, . . . , Ln

13



2. In layer nl, for each output unit i, we set

δ
(nl)
i =

∂

∂z
(nl)
i

1

2
‖y − hW,b(x)‖2 = −(yi − a(nl)

i ) · f ′(z(nl)
i ) (II.6)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2 and each node i in layer l, we set

δ
(l)
i =

(
sl+1∑
j=1

W
(l)
ij δ

(l+1)
j

)
f ′(z

(l)
i ) (II.7)

4. Now we compute the partial derivatives, which are given as:

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i ,

∂

∂b
(l)
i

J(W, b;x, y) = δ
(l+1)
i .

(II.8)

For the convenience in real implementation, we can also re-write the above

algorithm using matrix-vectorial notation. We use “•” to denote the element-wise

product operator (i. e.“.*” in Matlab), so that if a = b • c, then ai = bici. Then,

the algorithm is:

1. We perform a forward propagation to compute the activations for layers

L2, L3, . . . , Ln

2. In layer nl, we have

δ(nl) = −(y − a(nl)) • f ′(z(nl)) (II.9)

3. For l = nl − 1, nl − 2, nl − 3, . . . , 2,

δ(l) = ((W (l))T δ(l+1)) • f ′(z(l)) (II.10)
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4. Now we compute the partial derivatives, which are given as:

∇W (l)J(W, b;x, y) = δ(l+1)(a(l))T ,

∇b(l)J(W, b;x, y) = δ(l+1).

(II.11)

We should note that, in this backpropagation pipeline, a max-pooling layer does

not contribute to the learning process. Instead, it reduces the size of the input

data volume by introducing sparseness. For example, in the 4th layer of our

Scene-Net model, the max-pooling layer has filter size 3× 3 with stride 2, and it

reduces 3× 3 blocks to a single value in forward propagation based on the pooling

layer formula above. Then, in back propagation, we can get the error signal of

this single value from its previous layer. This error is then forwarded to the place

where it come from. Because it only come from one place in the 3× 3 block, the

distribution of backpropagated error from max-pooling layers are sparse.
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III. RELATED WORK

Scene sketch recognition targets at recognizing scene sketch category given a

hand-drawn sketch. In this chapter, we review two components related to our

work: public sketch datasets and state-of-the-art sketch recognition approaches.

Object and Scene Classification

Recent advanced work in the computer vision community contribute to object

and scene visual phenomena recognition using large-scale databases. These

benchmarks include:

• Caltech-256 database [Griffin et al. (2007)]: object images

• SUN databse [Xiao et al. (2010)]: scene images

• LabelMe [Russell et al. (2008)] and Pascal VOC [Everingham et al. (2010)]

databases: spatially labeled objects in scenes

With the building of these datasets, it allows the researchers to design

algorithms to learn increasingly effective classifiers and compare the performance

of recognition systems on these common benchmarks. Our recognition system

follows the similar design scheme of many modern computer vision algorithms,

however we are working on a challenging task and need novel methods.

Sketch Recognition

Most early sketch datasets are the small scale collections include:

• Artistic drawings [Sousa and Fonseca (2009)]

• Professional CAD figures [Mohamad et al. (2009)]

• specific domain structure sketches [Ouyang and Davis (2011); Lu et al.

(2005)]
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Recently, a large-scale collection of free-hand sketches (TU Berlin dataset [Eitz

et al. (2012a)]) is open to public. It contains 20,000 single-object sketches in 250

daily object categories.

In earlier sketch recognition works Herot (1976); Sutherland (1964), sketching is

introduced as a human-computer interaction technology in which mouse or pen

is used to draw lines and curves. Recently, researchers explore more hand-crafted

features, such as stroke length, stroke order and even stroke orientation to

understand human sketch input at a higher level. Eitz et al. (2012a)

demonstrated sHOG feature coupled with BoW methods on sketch

understanding and achieved promising result of 56% accuracy in identifying

unknown sketches on TU Berlin dataset.

Very recently, Schneider and Tuytelaars (2014) explore that Fisher Vectors, an

image feature representation obtained by pooling local image features, can be

applied to single-object sketch recognition and achieve human-like recognition

accuracy (68.9% vs. 73.1% for human on the TU Berlin dataset). Despite these

great efforts, hand-crafted features still require researchers to have solid

knowledge on drawing or specific domains. More general sketch understanding

approaches need to be explored.

Deep CNNs for Visual Recognition

Recently, deep CNNs have showed promising results on many vision recognition

tasks in different domains. CNN was introduced in early 1980s, and was applied

to solve simple and small vision recognition tasks like handwritten digit

recognition [LeCun et al. (1990)].

In early time, the biggest bottleneck of deep CNN was the high computational

cost when the classes number and input data volume are large, which

significantly increase the number of neurons in CNN. However, with the

proliferation of modern GPU, this bottleneck has been relieved. With the

introduction of rectifier linear (ReLU) [LeCun et al. (2002)], max-pooling, local
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response normalization (LRN) [Krizhevsky et al. (2012)], and dropout

regularization units [Hinton et al. (2012)], CNNs become more effective, robust,

and applicable. In particular, some benchmark top results of visual recognition

challenge, e. g. ILSVRC [Deng et al. (2009)], have been dominated by deep CNN.

Yu et al. (2015) designed a sketch-oriented deep CNN model “Sketch-a-Net” for

sketch recognition task and achieved the accuracy of 74.9% on TU Berlin dataset.

Nevertheless, most previous works only focus on single-object sketch recognition.

However, in realistic world, people usually draw a sketch with abundant context

information, i.e., a scene sketch, rather than a simple single-object sketch.

Compared with single-object sketch recognition, scene sketch understanding is

more challenging. Some examples are shown in Fig. I.2 to demonstrate the

difficulties.

Sketch-Based 3D Model Retrieval

In computer vision community, the effort of sketch-based retrieval research work

has been introduced for many years [Funkhouser et al. (2003)]. Early work on

this task focus on global shape descriptors, such as distance functions [Kazhdan

et al. (2002)] and shape statistics [Osada et al. (2002)]. Recently, researchers

employ local features for partial matching [Funkhouser and Shilane (2006)] and

use BoW [Bronstein et al. (2011)] for 3D model retrieval.

Most of the above 3D model representation methods are borrowed from

traditional 2D image feature, such as BFDSIFT which is an extended SIFT

feature with BoW [Furuya and Ohbuchi (2013)]. Therefore, it is important to

choose a good representation of line drawing images for sketch-based 3D model

retrieval. Recently, Eitz et al. proposed the GALIF and built on a collection of

Gabor filters followed by a BoW method.

Instead of relying on the traditional 2D image feature, some methods also

explore graph-based feature [Li et al. (2015)] and semantic labeling [Gong et al.

(2013)] to facilitate the 3D model retrieval. In this work, we employ view based
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methods and only use 2D sketch features in 3D model retrieval.
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IV. METHODOLOGY

In this chapter, we describe the details of methodology applied on our Scene-Net

model. Although our Scene-Net still follows the common used design scheme in

other modern CNNs, we employ some novel features, e. g. fine-tuning, in our

CNN and efficiently reduce the over-fitting and improve the performance of our

recognition system.

Overview

We propose a novel scene sketch oriented deep CNN model “Scene-Net”. Its

architecture is illustrated in Fig. IV.1, while more detailed parameters can be

found in Table IV.1.

As shown in Fig. IV.1, our Scene-Net CNN contains five convolutional layers

(L1∼L5) followed by three fully-connected layers (L6∼L8). Each layer has a

ReLU! (ReLU!) except for the layer L8. LRN units are appended to the layers

L1 and L2 while max pooling units are appended to the layers L1, L2 and L5.

We apply dropout units to the first two fully connected layers (L6 and L7). The

third fully connected layer (L8), which is appended by a softmax loss, is the last

layer of our CNN model. The output size of the last layer is 10 that corresponds

to the 10 scene categories.

Figure IV.1: Overall architecture of Scene-Net model.
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Commonalities Between Scene-Net and Other Deep CNNs

Motivated by prior advanced work on deep CNN, we follow the design scheme

applied in other deep CNN models, such as AlexNet, Sketch-A-Net,

GoogleNet [Szegedy et al. (2014)], etc.

Filter Number

Like most photo-oriented and sketch-oriented deep CNNs [Krizhevsky et al.

(2012); Simonyan and Zisserman (2014); Yu et al. (2015)], the filter number

increases with the model depth in our Scene-Net. We set the filter number of the

first layer to 96 and increase it after each max pooling layer until 4096.

Padding

We apply zero-padding to the layers L3∼L5, which is used to ensure that size of

input and output data volume are consistent in these layers.

Stride

We set the stride of the first convolutionaly layer to 3 while set it after the first

layer to 1. Employing this configuration could keep as much data as possible

after each convolution operation.

Local Response Normalization

LRN! (LRN!) is inspired by real neuroscience study. It performs a kind of

“lateral inhibition” by normalizing over local input regions and create

competition with different kernels for big activities among neuron outputs. It is

also widely used in modern CNN recognition architecture.

In this paper, we denote the activity of a neuron computed by applying kernel i

at position (x, y) as aix,y with ReLU non-linearity, and denote the
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response-normalized activity as bix,y, and give the expression of

bix,y = aix,y/(k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

)β (IV.1)

where n denotes the local region size, N denotes the total number of kernels in

the layer, α denotes the scaling parameter, and β denotes the exponent.

The constants k, n, α, β are hyper-parameters whose values are based on

experimental results. We use k = 2, n = 5, α = 10−4, andβ = 0.75 in this work

and applied this normalization unit after first two ReLU! units (in the layers L1

and L2).

Dropout

Prior deep CNNs successfully deal with the over-fitting issue by combining the

predictions of many different models. However, it is too expensive for modern

deep CNN models, because of the longer training time for each model. Recent

work [Hinton et al. (2012)] demonstrate that employing dropout regularization,

which can reduce complex co-adaptations of neurons by randomly setting unit

activation to zero. In this way, the “dropped out” neurons do not contribute to

the forward pass and do not participate in back-propagation.

In our Scene-Net, we use dropout in the first two fully-connected layers and set

the dropout rate as 0.5, which is a reasonable approximation and append it to

the first two fully connected layers.

Novel Features in Our Scene-Net Architecture

In this section, we explain the novel features applied in our Scene-Net. Although

few prior CNN research work discuss the detail why to set a parameter using a

specific value, and it’s also impossible to exhaustively verify the effectiveness of

each hyper-parameter, we still propose some points which are different to

conventional deep CNN models’ setting and explain the reason. At the same
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time, we also introduce fine-tuning, a very important technique to alleviate

over-fitting problem in our small-scale benchmark Scene250.

Smaller Input Size

Input size in deep CNN is one of the most critical parameter, as all the following

layers depend on the input layer. Many modern deep CNNs ,

e. g. AlexNet[Krizhevsky et al. (2012)] and Sketch-A-Net Yu et al. (2015), use

large input size around 225× 225. However, we find that smaller input size is

more appropriate for scene sketch recognition. The major reason is that scene

sketches usually contain multiple objects within one image. Smaller input size

combined with random data augmentation can capture more sophisticated

features. To this end, input size of 193× 193 is used in our Scene-Net.

Overlapped Max Pooling

Some recent deep CNNs employ 2× 2 max pooling with stride 2 [Simonyan and

Zisserman (2014)]. This sort of non-overlapped max pooling can bring some

spatial invariance and reduce the layer size by 75%. However, we find that the

3× 3 pooling size with stride 2, i. e.overlapped max pooling, applied on our

Scene-Net model could bring the improvement for our recognition system while

reduce the layer size by 50%.

Fine-tuning

Fine-tuning is a commonly used method in deep CNN study to prevent

over-fitting on small-scale dataset. It pre-trains a CNN model on a large

ancillary dataset and learns the initial weights for the model. Then, it resumes

the training process of the same CNN model on the target dataset (usually a

small one) with the learned initial weights.

More specifically, in our work, we first pre-trained Scene-Net model on the TU

Berlin dataset and obtained the initial learning weights for the Scene-Net model.
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Table IV.1: Detailed architecture of Scene-Net
Index Layer Type Filter Size Filter Num Stride Pad Output Size
0 Input - - - - 193 × 193
1 L1 Conv 7 × 7 96 3 0 63 × 63
2 ReLU - - - - 63 × 63
3 LRN(n = 5, α = 10−4, β = 0.75) - - - - 63 × 63
4 Maxpool 3 × 3 - 2 0 31 × 31
6 L2 Conv 5 × 5 256 1 0 27 × 27
7 ReLU - - - - 27 × 27
8 LRN(n = 5, α = 10−4, β = 0.75) - - - - 27 × 27
9 Maxpool 3 × 3 - 2 0 13 × 13
10 L3 Conv 3 × 3 384 1 1 13 × 13
11 ReLU - - - - 13 × 13
12 L4 Conv 3 × 3 384 1 1 13 × 13
13 ReLU - - - - 13 × 13
12 L5 Conv 3 × 3 256 1 1 13 × 13
13 ReLU - - - - 13 × 13
14 Maxpool 3 × 3 - 2 0 6 × 6
15 L6 Fully-connected 6 × 6 1024 1 0 1 × 1
16 ReLU - - - - 1 × 1
17 Dropout(0.5) - - 1 0 1 × 1
18 L7 Fully-connected 1 × 1 4096 1 0 1 × 1
19 ReLU - - - - 1 × 1
20 Dropout(0.5) - - 1 0 1 × 1
18 L8 Fully-connected 1 × 1 10 1 0 1 × 1
19 Softmax loss - - - - 1 × 1

Then, we resumed the training process on the Scene250 dataset to fine tune

Scene-Net model for scene sketch recognition task. Because we want to predict

10 scene categories in fine-tuning step instead of 250 object categories in

pre-training, we change the output number of last layer from 250 to 10.

We also decrease the learning rate to slow down the fine-tuned training. The

motivation is, after pre-training, we have gotten the stable classification model

and just want to apply this model to a new recognition task. Thus, the learning

rate should be decreased to avoid change its stability.

In our experiments, we find applying fine-tuning would significantly increase the

recognition accuracy and reduce the over-fitting problem.
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V. EXPERIMENTS

Overview

In this chapter, we discuss details of experiment dataset collection and the

compare our proposed deep CNN model with other state-of-the-art CNNs which

are designed for similar tasks. We also demonstrate that our Scene-Net model

get better performance than other comparison models.

Scene Sketch Recognition

Scene250 Dataset Collection

We create the first scene sketch dataset “Scene250” for scene sketch recognition

task. Scene250 (Fig. I.1) contains 250 scene sketches collected from Internet.

These sketches cover 10 different categories and each category has 25 sketches.

More specifically, we searched on Google using a specific category name. Then

we downloaded more than 100 sketches for each category and selected 25

representative ones. The following criteria are used for selecting 10 categories

and 25 scene sketches in each category.

• Completeness. Although the categories of Scene250 cannot exhaustively

cover all the scene categories, the selected 10 categories are the most

common scenes in our daily life and it contains both indoor and outdoor

scenes.

• Unambiguous. Each selected sketch contains no more than one scene

content. For example, we don’t select the sketches that contain both

“desert” and “river”.

• Recognizable. That is human can easily recognize these selected sketches

with their shape alone and do not need additional context information.
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• Diversiform. Sketches in the same scene category should be diversified.

Thus, we don’t select the sketches that are visually similar in order to

guarantee the diversity.

We inspected the whole dataset by displaying sketches on a screen. All the scene

sketches in the same category were displayed together, which allowed us to

identify improper ones easily. We removed those sketches that are in the wrong

category (e.g., a mountain scene in the bedroom category) or not qualified with

our selection criteria. We also rescaled the dataset to contain exactly 25 scene

sketches per category yielding final 250 scene sketches in the Scene250 dataset.

Benefited from consistent size of each category, there is no need to correct for

bias toward the categories with different size when performing training or testing.

Image Format

We rescaled all the images to 256 × 256 pixels and read the images as single

channel or multiple channels, which depends on the architecture of CNNs. In our

experiments, we find employing multiple channels, i. e. RGB channels, has a

promising result on our Scene-Net model.

Data Augmentation

We performed data augmentation, which is a commonly used technique in

machine learning study to prevent overfitting. In our experiments, we replicated

our scene sketches by 500 times using random rotation, shift and flip. More

specifically, we describe our algorithm as follow:

Based on the above algorithm, an image duplicate would be generated with one

or more image transformations of shift, rotation and flip. We introduce this

random data augmentation algorithm to increase the variety of the experiment

dataset, which significantly reduces the sketching noise from different user

hand-drawing.
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Input : Original sketch dataset S
Output : Enlarged sketch dataset T with random shifts, rotations, and flips
initialization;
w = widthoriginal − widthtarget;
foreach I ∈ S do

for i← 1 to 500 do
C ← copy(I);
xshift ← random(0, w);
yshift ← random(0, w);
C ← shift(C, xshift, yshift);
roll← random(0, 1);
if roll < 0.5 then

rd← random(−5, 5);
C ← rotate(C, rd);

end
roll← random(0, 1);
if roll < 0.5 then

C ← flip(C)
end
append(T,C);

end
end

Algorithmus 1 : Data augmentation algorithms

Comparison

We compared our Scene-Net model with other two deep CNN models:

AlexNet [Krizhevsky et al. (2012)] and Sketch-a-Net. Although AlexNet is a

photo-oriented deep CNN model designed for ImageNet, it has shown great

results in many applications (e.g., video, robotics, and bioinformatics).

Sketch-a-Net is a sketch-oriented deep CNN model specifically designed for

sketch classification. It even beats human recognition accuracy by 1.8% on TU

Berlin dataset. Both AlexNet and Sketch-a-Net have five convolutional layers

followed by three fully-connected layers (last fully-connected layer is the output

layer). Sketch-a-Net also employs larger first layer filters (11× 11), higher

dropout rate (0.55), and overlapped pooling to achieve promising result on

sketch-based object recognition. More detailed architecture of AlexNet and and

Sketch-A-Net can be learned in V.1 and V.2.

We tested our Scene-Net on Scene250 dataset for scene sketch recognition and
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Table V.1: Detailed architecture of AlexNet
Index Layer Type Filter Size Filter Num Stride Pad Output Size
0 Input - - - - 224 × 224
1 L1 Conv 11 × 11 48 4 0 55 × 55
2 ReLU - - - - 55 × 55
3 Maxpool 3 × 3 - 2 0 27 × 27
4 L2 Conv 3 × 3 128 2 0 13 × 13
5 ReLU - - - - 13 × 13
6 Maxpool 3 × 3 - 1 1 13 × 13
7 L3 Conv 3 × 3 192 1 1 13 × 13
8 ReLU - - - - 13 × 13
9 L4 Conv 3 × 3 192 1 1 13 × 13
10 ReLU - - - - 13 × 13
11 L5 Conv 3 × 3 256 1 1 13 × 13
12 ReLU - - - - 13 × 13
13 Maxpool 3 × 3 - 2 0 7 × 7
14 L6 Fully-connected 7 × 7 2048 1 0 1 × 1
15 ReLU - - - - 1 × 1
16 Dropout(0.55) - - 1 0 1 × 1
17 L7 Fully-connected 1 × 1 2048 1 0 1 × 1
18 ReLU - - - - 1 × 1
19 Dropout(0.55) - - 1 0 1 × 1
20 L8 Fully-connected 1 × 1 10 1 0 1 × 1
21 Softmax loss - - - - 1 × 1

compared it with the above state-of-the-art CNN models. Following previous

work, we used 2/3 sketches per category for training and 1/3 for testing. In

addition, since there are two types of scene sketches in Scene250: indoor scene

(i.e., bedroom, classroom, kitchen, and library) and out-door scene (i.e., barn,

beach, castle, desert, mountain, and river), we also tested these CNN models on

in-door scene and out-door scene recognition individually. The comparison

results are listed in Table V.3 and V.4. From the results, we find that our

Scene-Net model not only beats AlexNet and Sketch-a-Net on overall recognition

performance but also beats them on both in-door and out-door scene recognition

task.
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Table V.2: Detailed architecture of Sketch-A-Net
Index Layer Type Filter Size Filter Num Stride Pad Output Size
0 Input - - - - 225 × 225
1 L1 Conv 15 × 15 64 3 0 71 × 71
2 ReLU - - - - 71 × 71
3 Maxpool 3 × 3 - 2 0 35 × 35
4 L2 Conv 5 × 5 128 1 0 31 × 31
5 ReLU - - - - 31 × 31
6 Maxpool 3 × 3 - 2 0 15 × 15
7 L3 Conv 3 × 3 256 1 1 15 × 15
8 ReLU - - - - 15 × 15
9 L4 Conv 3 × 3 256 1 1 15 × 15
10 ReLU - - - - 15 × 15
11 L5 Conv 3 × 3 256 1 1 15 × 15
12 ReLU - - - - 15 × 15
13 Maxpool 3 × 3 - 2 0 7 × 7
14 L6 Fully-connected 7 × 7 512 1 0 1 × 1
15 ReLU - - - - 1 × 1
16 Dropout(0.55) - - 1 0 1 × 1
17 L7 Fully-connected 1 × 1 512 1 0 1 × 1
18 ReLU - - - - 1 × 1
19 Dropout(0.55) - - 1 0 1 × 1
20 L8 Fully-connected 1 × 1 10 1 0 1 × 1
21 Softmax loss - - - - 1 × 1
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Table V.3: Scene sketch recognition performance comparison

Scene-Net AlexNet Sketch-a-Net

60.00% 52.50% 38.75%

Table V.4: In-door/Out-door scene sketch recognition comparison

Scene-Net AlexNet Sketch-a-Net

In-door 50.00% 46.88% 25.00%
Out-door 66.67% 56.25% 47.92%

Running Cost

We implemented Scene-Net model using Matlab and the MatConvNet toolbox.

All the experiments were executed on a server with an 8-core 3.50GHz CPU and

a GeForce GTX Titan X GPU. The pre-training time for our Scene-Net model

on the TU Berlin dataset is approximately 8 hours on GPU, while fine-tuning

with Scene250 dataset is about 3 hours on GPU.

Sketch-Based 3D Model Retrieval

Introduction of SHREC’16

The objective of SHREC’16 is to evaluate the performance of different 3D

sketch-based 3D model retrieval methods using a hand-drawn 3D sketch query

dataset on a 3D model benchmark dataset (SHREC13STB [Li et al. (2013)]).

3D sketch-based 3D model retrieval is to retrieve relevant 3D models using

corresponding 3D sketch as input. Prior sketch-based 3D model retrieval systems

Table V.5: Recognition performance for each category

Barn Beach Bedroom Castle Classroom

Accuracy 62.50% 62.50% 25.0% 62.50% 75.00%

Desert Kitchen Library Mountain River

Accuracy 62.50% 37.50% 62.50% 87.50% 62.50%
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are built on 2D sketching technology, which require users to draw sketches on the

2D plane. However, 2D sketching lose the 3D or space information, which

creating a huge gap between a 2D sketch and the accurate space motion

representation of a 3D model.

Inspired by the above gap, 3D sketching technology is introduced to this task.

3D sketching offers more accurate space representation of a 3D model than

conventional 2D sketching. In realist, a Kinect could be used to track the human

hand’s motion to construct a 3D sketch. Considering Kinect is a cheap and

popular motion sensing input device developed by Microsoft and support RGB

camera, depth sensor and multi-array microhone, we can easily obtain a large

number of human 3D sketches.

In this challenge, we have two benchmark datasets: (i) 3D sketch dataset. The

3D sketch query set consists of 300 3D sketches (30 categories, 10 sketches per

category, also called Kinect300), while 21 categories have the corresponding

models in the target SHREC13STB dataset. The dataset is collected from 17

volunteers (13 males and 4 females) where each volunteer drew several sketch

categories.. Figure V.1 shows some example 3D sketches. (ii) 3D model dataset.

The 3D benchmark dataset is built on the SHREC13STB, which consists of 1258

models unevenly distributed in 90 categories. Figure V.2 shows some example 3D

models.

Figure V.1: Example 3D sketches of Kinect300 dataset
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Figure V.2: Example 3D models of the SHREC13STB benchmark

Retrieval Architecture Design

Our 3D sketch-based shape retrieval architecture (CNN-SBR) is inspired by

early sketch-based image retrieval work. We employ state-of-the-art deep CNN in

sketch object recognition and combine multiple 3D model processing techniques

in this work. We first pre-train our deep CNN model on TU Berlin dataset and

obtain well learned weights for our CNN model. Then, we convert all the 3D

sketches to multiple 2D sketch views for both training and query dataset, and

perform data augmentation for these 2D sketch views, then fine-tune the CNN

model using previous well learned weights. After that, we have the classification

result for each query 3D sketch based on its 2D sketch views and fine-tuned

CNN model. Finally, we use majority vote and simple label matching to generate

the output result. Our CNN-SBR architecture is listed in Figure V.3.

TU Berlin
Dataset CNN

Training
Dataset

2D sketch
views CNN

Query
Dataset

2D sketch
views CNN Target

Dataset

Pre-train

Train

Fine-tune

Test

Same model

Label matching

Majority vote

Figure V.3: Illustration of CNN-SBR architecture

To adapt the framework for 2D sketch-based CNN model, we need to convert the

3D sketches to 2D sketch views. We project all the coordinates in each 3D sketch

to its six square faces, if we regard a 3D sketch as regular hexahedron, and
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convert the coordinates to 2D depth image where the pixel value represents the

distance to its view point (0 is the nearest while 255 is the furthest).

We use Sketch-a-Net as our core CNN model for our 3D model retrieval system.

The motivation is the Sketch-a-Net is designed for single sketch recognition

problem. We feed it with the TU Berlin dataset as the ancilary training dataset

for pre-training. Although the TU Berlin dataset is obtained from human 2D

sketching, it provides deep CNN a good representation of drawing features which

could help deep CNN to build a initial learning weight for future fine-tuning on

3D sketch dataset.

In fine-tuning step, instead of employing mature learned pre-trained model

(training epoch over 500), we choose the pre-trained model at epoch 50, which

means the local optima has not been convergent and the learning weights are

still flexible. We find using this method would significantly alleviate the

over-fitting issue during fine-tuning.

For each 3D sketch, we use majority vote algorithm to choose the final

classification label based on its six 2D sketch views. More specifically, for each

2D sketch view, we have a similarity vector for predicting categories. Thus, we

have totally 6 similarity vectors and 6 top-1 labels for six sketch views. In order

to rank the categories correctly, we use the following algorithm to evaluate the

similarity vectors:

1. We rescale the similarity between a 3D sketch and target 3D model

categories to range [0, 1]. Higher value means more similar.

2. We then compute the average similarity between this sketch and target 3D

models based on 6 similarity vectors. Average similarity would also fall into

range [0, 1].

3. For each target 3D model category, we first count the number of top-1

label among 6 similarity vectors.

4. Finally, we rank all the target 3D model category using the score “top-1
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label count + average similarity” for each 3D sketch.

Based on the above algorithm, we first consider those target 3D model categories

have the most top-1 label count and rank them at the top places. We should

note that, in the experiment, there are only 6 top-1 labels but 21 target 3D

model categories. In this case, some target categories may have the same top-1

label count, then we need to compute the average similarity between the input

3D sketch and target 3D model categories and rank the rest of target models.

Comparison

There are 6 participants participate in the SHREC’16 challenge. In this section,

we discuss three 3D model retrieval algorithms: (i) Localized Statistical Feature

and Manifold Ranking (LSFMR), (ii) Histogram of Oriented Distances (HOD)

and (iii) CNN-Point and CNN-Edge, which are proposed by Fan et al., Tabia et

al. and Li, respectively.

LSFMR. LSFMR is based on Bag of Words (BoW) paradigm. It consists of two

main components: (i) LSF extraction and (ii) Manifold ranking. In

preprocessing, SVM is applied to remove the noise points of the 3D sketches

while PCA is applied to normalize their position. Then, the local feature of the

training 3D sketch data were clustered using k-means method. Note that the

local feature is a new feature vector named as Localized Statistical Feature

(LSF) proposed in this work. We will discuss this feature later. After clustering,

a visual dictionary is built for these feature descriptors. In the implementation,

the size of visual dictionary is 1024. After that, feature quantification is used to

count the condition of the distribution from the different visual vocabulary in a

3D sketch. All the visual vocabulary weight of the 3D models are ranked based

on (i) Primary index: the indexing of all 3D features applied visual vocabulary,

(ii) Secondary index: the weight of the visual vocabulary. Figure V.4 shows the

overall pipeline of LSFMR.

LSF feature describes the local region shape, which come with the dense grid
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Figure V.4: Main steps of LSFMR

dividing, as the point statistical result. A dense network is built based on this

feature and it capture both the local and global features. The local region is

divided into L× L× L cells to statistic the 3D points distribution in the local

region. For each cell, the feature value is the number of points in the cell. The

final representation of a local region is 1-D vector constructed by accumulation

all the cell feature values. For comparing two LSF vectors, instead of employing

Euclidean distance, χ2 distribution is used for comparison.

χ2(F1, F2) =

√√√√ L3∑
c=1

(
F1(c)− Eχ(F1)

Eχ(F1)
) +

L3∑
c=1

(
F2(c)− Eχ(F2)

Eχ(F2)
) (V.1)

where F denotes LSF vector, Eχ denotes the expectation of F .

In this work, manifold ranking is embedded into a high-dimensional Euclidean

space that recovers the intrinsic structure of 3D shape. Two manifolds of LSF

feature is created here. First one is from the comparison between a 3D sketch

and each target 3D model, and is used to train the visual vocabulary. The second

one is from the comparison of two different target 3D models. In second

manifold, the 3D models are used as training data. In both two manifolds,

precise retrieval results can be obtained using this method.

Given the LSF vectors χ = {x1, · · · , xq, xq+1, · · · , xn} ⊂ RD of 3D sketches and
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3D models, r :→ R is defined as a ranking function which assigns to each point

xi a ranking score ri, and a intial vector p = [p1, · · · , pn]T is defined as a query

3D sketch and ith target 3D model. Thus, the cost function C(r) can be

described as:

C(r) =
1

2

n∑
i,j=0

Wij‖
ri√
Dii

− rj√
Djj

‖
2

+ µ
n∑
i=0

‖ri − pi‖2 (V.2)

where W denotes the affinity matrix, D denotes the diagonal matrix

Dii =
∑

j σWij, and µ > 0 is a regularization parameter.

Lower cost function value means more accuracy of the ranking. Thus, C(r)

derivation operator is conducted by r and the convergent function of the

sequence ri(t) can be defined as:

r∗ = (I − αS)−1p (V.3)

where S is derived from the symmetrical normalization of the matrix W ,

S = D−1/2WD−1/2, I denotes a unit matrix. Finally, we have the ranking mark

r = [r1, · · · , rn]T .

HOD. The main idea of HOD is to build a dubbed Histogram of Oriented

Distances descriptor on the joint distribution of two parameters accumulated in

a 2D histogram. The algorithm is constructed as follows:

1. Randomly sample n points P = pi, i = 1 . . . n from the 3D sketch.

2. Compute the Euclidean distance di = ‖pi − pj‖ and measure the angle θij

between the two vectors −→cpi and −→cpj, where c is the sketch’s center of mass.

3. Compute the probability distribution of the distance d ∈ R+ and the

orientation θ ∈ [0, π] of the sample pairs of points as a 2D histogram

h(d, θ).

The global structure feature of the 3D sketches can be extracted using this

representation. In addition, the similarity of the input 3D sketch between the
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(g) (a) (h) (b) (i) (c) (j) (d) (k) (e) (l) (f)

Figure V.5: Example of HOD descriptors of some 3D sketch shapes.

target 3D model can be computed using the L2 distance between the two

distributions. This approach does not need to do extra preprocessing for both 3D

sketch and target 3D model except the normalization for scale and random points

sampling. Figure V.5 shows the histogram distribution of 64 bins for the distance

and 4 bins for the orientation from six 3D sketches: (a) and (b) are from two

chairs, (c) and (d) are from two scissors, while (e) and (f) are from two houses.

CNN-Point and CNN-edge. Li proposes the CNN-Point and CNN-Edge

retrieval methods for this challenge. The only difference between these two

methods is the processing techniques applied on query dataset. Based on this

pipeline, all 3D models are converted to multiple representative images, then a

classifier is trained on this image dataset, which consists of 1258 models and 120

images per each. To the target dataset, noise is randomly added on each 3D

model according to their length. Then, this point cloud model is rendered to

128× 128 gray-scale images from 120 uniformly distributed points of view.

Meanwhile, the query dataset is also converted to point-based or edge-based 3D

sketch according to pre-defined setting. Figure V.6 shows this 3D model

conversion. The overall pipeline of CNN-Point and CNN-Edge is listed in

Figure V.7.

To comprehensively evaluate the performance of the participant retrieval

systems, we perform the comparison on 6 widely used evaluation metrics [Shilane

et al. (2004)]: Nearest Neighbor (NN), First Tier (FT), Second Tier (ST),

E-Measure (E), Discounted Cumulative Gain (DCG) and Average Precision

(AP). The final result is listed in Table V.6.
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Figure V.6: From left to right are 3D model, noised 3D model, point-based 3D sketch
and edge-based 3D model

Offline: Target Dataset Edges

Online: Query Dataset 1. Edges
2. Points Convolutional neural network

Points
Noise

Train
Test

Figure V.7: Shape retrieval pipeline

From the above table, we can see that our CNN-SBR retrieval system beats

other participant algorithms on the all evaluation metrics.
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Table V.6: Performance metrics comparison on the SHREC’16 3D Sketch Track Bench-
mark.

Participant Method NN FT ST E DCG AP
LL 3DSH 0.029 0.021 0.038 0.021 0.254 0.029
Fan LSFMR 0.033 0.020 0.033 0.018 0.248 0.032

Li CNN-Point 0.124 0.044 0.075 0.046 0.294 0.060
CNN-Edge 0.114 0.056 0.084 0.051 0.302 0.063

Tabia

HOD1-4 0.029 0.015 0.035 0.026 0.259 0.032
HOD64-1 0.052 0.031 0.053 0.034 0.274 0.044
HOD64-2 0.067 0.031 0.057 0.032 0.272 0.044
HOD64-4 0.124 0.019 0.022 0.013 0.230 0.026

Ye CNN-SBR 0.222 0.251 0.320 0.186 0.471 0.314
Yin CNN-Maxout-Siamese 0.000 0.031 0.108 0.048 0.293 0.072
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VI. CONCLUSION AND FUTURE WORK

Recently, sketch recognition has been a highly popular research area due to its

wide applications. Scene sketch understanding is a much more challenging

research problem than conventional single-object sketch recognition tasks.

However, there is no prior scene sketch benchmark and research work related to

complexity scene sketch understanding. Prior research work focus on

single-object sketch recognition and employ traditional photo-oriented schemes

for this task. Recently, with the popularity of deep CNN, advanced deep CNN

model has been proposed for single-object sketch recognition. We are inspired by

this novel methodology and apply it to our scene sketch understanding work. In

SHREC’16, we extend our work to 3D sketch-based 3D shape retrieval and build

a novel CNN based 3D sketch retrieval system CNN-SBR which achieves very

promising result and beats other competition retrieval systems.

In this work, we make the first effort to understand human’s scene sketches. We

build the first scene sketch dataset “Scene250” and open it to public. We also

propose, implement, and test a novel deep CNN model “Scene-Net” on scene

sketch recognition. We perform fine-tuning to reduce over-fitting and improve

robustness of our “Scene-Net” model. The experiment results show that

Scene-Net outperforms other two deep CNN models (AlexNet and Sketch-a-Net)

by 7.50% and 21.25% on scene recognition respectively.

In SHREC’16 challenge, we explore the potential of deep CNN in 3D

sketch-based shape retrieval problem which is an innovative and very challenging

problem in current vision community. Integrated with 3D vision techniques, we

convert the 3D sketches to the depth images of their 2D sketch views. We find

applying this method would not only keep original 3D space information of a 3D

sketch, but also adapt the 3D sketch data to traditional 2D deep CNN

framework. In addition, we employ fine-tuning and data augmentation methods

in this retrieval system and find it significantly alleviate the over-fitting problem.
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From the evaluation result provided from challenge organizer, our CNN-SBR

system wins the 1st place among 6 teams and its performance surpasses the 2nd

place by about 100%.

In the future, further improvement work include collecting a large-scale scene

sketches dataset, optimizing Scene-Net architecture to reduce training time, and

applying our method to real world 3D model retrieval application.
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APPENDIX SECTION

APPENDIX A

MatConvNet

MatConvNet (http://www.vlfeat.org/matconvnet/) is a MATLAB toolbox

implementing CNNs for computer vision applications. It is distributed under

BSD license. The main features include: It is simple, efficient, and can run and

learn state-of-the-art deep CNNs. Many pre-trained deep CNNs for image

classification, segmentation, face recognition, and text detection are available.

1. Flexible. CNN layers are written and implemented directly in Matlab code,

which lets user to modify, extend, or integrate existing CNN easily.

2. Power. With the support of modern GPU and CUDA technology,

MatConvNet can run large CNN models such as AlexNet.

3. Efficiency. The computation could be switched between CPU and GPU.

Several pre-trained CNN model are also provided.

MatConvNet provides two wrappers for users to implement CNN models: (1)

SimpleNN. A lightweight wrapper designed for CNN constructing of a single

chain of layers. (2) DagNN. DagNN denotes directed acyclic graph neural

network and is used to implement complex deep CNNs. The layers of DagNN are

connected to local variables and vice-verse, which consists of a bipartite directed

acyclic graph structure. In our implementation, we use SimpleNN wrapper due

to the straightforward structures of the deep CNNs used in the experiments.

We use MatConvNet as the main library to implement the deep CNN models.

Since Matlab provides abundant APIs for image processing, we just need to

focus on core deep CNN design.
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APPENDIX B

Caffe

Caffe [Jia et al. (2014)] (http://caffe.berkeleyvision.org/) is a deep

learning framework made with expression, speed, and modularity in mind. It is

developed by the Berkeley Vision and Learning Center (BVLC) and by

community contributors. Yangqing Jia created the project during his PhD at UC

Berkeley. Caffe is the implemented in C++, and it also provides the wrappers for

Matlab and Python. It is distributed under the BSD 2-Clause license.

Since Caffe has abundant existing deep CNN models where the parameter

configuration is highly optimized, we transfer some deep CNN models from Caffe

to MatConvNet with its highly optimized parameters. We also employ Caffe to

validate the experimental results, that is re-run the same pipeline of a deep CNN

model in both MatConvNet and Caffe and see if the result is consistent. Insert

supplementary material here.
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