
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 09, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

NON-LOCAL ELLIPTIC SYSTEMS ON THE
HEISENBERG GROUP

NASSER AL-SALTI, SEBTI KERBAL

Abstract. We present Liouville type results for certain systems of nonlinear
elliptic equations containing fractional powers of the Laplacian on the Heisen-

berg group. Our method of proof is based on the test function method and
a recent inequality proved by Alsaedi, Ahmad, and Kirane, leading to the

derivation of sufficient conditions in terms of space dimension and systems

parameters.

1. Introduction

This article concerns Liouville type results for two nonlinear systems of elliptic
equations with nonlocal diffusions posed on the Heisenberg group. We start with
the system

(−∆H)µ/2u = |v|q, q > 1,

(−∆H)ν/2v = |u|p, p > 1,
(1.1)

posed in R2N+1, and where the fractional power of the Laplacian on the Heisenberg
group (−∆H)δ/2 (0 < δ < 2) accounts for anomalous diffusion and is to be defined
later. Using the test function method and a variant of Cordoba-Cordoba’s inequal-
ity [3] for the Heisenberg group proved in [1], we find a relation relating N,µ, ν, p
and q leading to Liouville type results. Let us point out that we overcome a diffi-
culty raised by the test function by using the inequality proved in [1] for (−∆H)

µ
2 .

Then we consider the system

(−∆H)µ1/2|u|+ (−∆H)µ2/2|v| = |v|q, q > 1,

(−∆H)ν1/2|v|+ (−∆H)ν2/2|u| = |u|p, p > 1,
(1.2)

where 0 < µi, νi ≤ 2 (i = 1, 2) are constants. Here the positivity condition on the
solutions is omitted and replaced by the absolute value of u and v.

2. Preliminaries

For the reader’s convenience, let us briefly recall the definition and basic prop-
erties of the Heisenberg group and the inequality in [1].
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2.1. Heisenberg group. The Heisenberg group H, whose points will be denoted
by η = (x, y, τ), is the Lie group (R2N+1, ◦) with the non-commutative group
operation ◦ defined by

η ◦ η̃ = (x+ x̃, y + ỹ, τ + τ̃ + 2(x · ỹ − x̃ · y)),

where “·” is the usual inner product in RN . The Laplacian ∆H over H is obtained
from the vector fields Xi = ∂

∂xi
+ 2yi ∂∂τ and Yi = ∂

∂yi
− 2xi ∂∂τ , by

∆H =
N∑
i=1

(X2
i + Y 2

i ). (2.1)

Explicit computation gives the expression

∆H =
N∑
i=1

( ∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4(x2

i + y2
i )
∂2

∂τ2

)
. (2.2)

A natural group of dilations on H is given by

δλ(η) = (λx, λy, λ2τ), λ > 0,

whose Jacobian determinant is λQ, where

Q = 2N + 2 (2.3)

is the homogeneous dimension of H.
The operator ∆H is a degenerate elliptic operator. It is invariant with respect to

the left translation of H and homogeneous with respect to the dilations δλ. More
precisely, we have

∆H(u(η ◦ η̃)) = (∆Hu)(η ◦ η̃),

∆H(u ◦ δλ) = λ2(∆Hu) ◦ δλ, η, η̃ ∈ H.
(2.4)

The natural distance from η to the origin is

|η|H =
(
τ2 +

( N∑
i=1

(x2
i + y2

i )
)2)1/4

. (2.5)

2.2. Fractional powers of sub-elliptic Laplacians. The representation of the
fractional power of (−∆H)s is given by the following theorem.

Theorem 2.1. The operator ∆H is a positive self-adjoint operator with domain
W 2,2

H (H). Denote now by {E(λ)} the spectral resolution of ∆H in L2(H). If α > 0,
then

(−∆H)α/2 =
∫ +∞

0

λα/2 dE(λ),

with domain

Wα,2
H (H) := {v ∈ L2(H);

∫ +∞

0

λα d〈E(λ)v, v〉 <∞},

endowed with graph norm.

Proposition 2.2 ([1]). Assume that the function ϕ ∈ C∞0 (R2N+1). Then

σϕσ−1(−∆H)σ/2ϕ ≥ (−∆H)σ/2ϕσ (2.6)

holds point-wise.

A proof of the above proposition can be found in [1].
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3. Main results

The definition of solutions we adopt for system (1.1) is as follows.

Definition 3.1. We say that the pair (u, v) is a weak solution of (1.1), if

(u, v) ∈ Lploc(R2N+1)× Lqloc(R2N+1),∫
R2N+1

u(−∆)µ/2ψ dx =
∫

R2N+1
|v|qψ dx, (3.1)∫

R2N+1
v(−∆)ν/2ψ dx =

∫
R2N+1

|u|pψ dx, (3.2)

for any nonnegative test function ψ ∈ C∞0 (R2N+1).

Before we present our results, let us mention some important works on Liouville
type theorems for the classical nonlinear elliptic equations/systems on the Heisen-
berg group. Véron and Pohozaev [9] improved the study of Birindelli, Capuzzo
Dolcetta and Cutri [2] concerning the equation

∆H(au) + |u|p ≤ 0 (3.3)

with a bounded function a and 1 < p; they proved that (3.3) admits only trivial
solution whenever 1 < p ≤ Q

Q−2 . Their work has been improved recently by Xu [10]

who proved that u ≡ 0 provided 1 < p < Q(Q+2)
(Q−1)2 .

For nonlinear equations we refer to the paper of Garofalo and Lanconelli [5]
as well as the one of Uguzzoni [8]. Recently, Quas and Xi [7] emphasis that, the
condition 1 < p, q ≤ N

N−α covered by Dahmani-Karami-Kerbal [4, theorem 2] was
not considered in [7, Theorem 1.3]. Here, we are considering the first system 1.1
for fractional Laplacian operators on Heisenberg Group, while in [7] and [4] the
authors treated the system in RN for classical Laplacian with the same fractional
exponents and classical Laplacian with different fractional exponents respectively.
The main result for system (1.1) is as follows.

Theorem 3.2. Let (u, v) be a weak solution of system (1.1). If Q, the homogeneous
dimension of H, satisfies the inequality

Q <
( pq

pq − 1
)

max
{ν
p

+ µ,
µ

q
+ ν
}
, (3.4)

then (u, v) is trivial.

Our second main results concerns system (1.2).

Theorem 3.3. Let (u, v) be a weak solution to system (1.2). If

Q < max
{
γ, θ
}

(3.5)

where

γ = min
{ ν2p

p− 1
, ν1 +

µ2

q − 1
, (
µ1

q
+ ν1)

pq

pq − 1

}
,

θ = min
{ µ2q

q − 1
, µ1 +

ν2

p− 1
, (
ν1

p
+ µ1)

pq

pq − 1

}
,

then (u, v) is trivial.
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4. Proofs of main results

Note that for a function ψ ∈ C∞0 (RN ), δ ∈ (0, 2] and β > p′ ((β − 1)p′ − β p
′

p > 0)
we have∫

R2N+1
ψ(β−1)p′−β p

′
p |(−∆H)δ/2ψ|p

′
dη =

∫
K

ψ(β−1)p′−β p
′
p |(−∆H)δ/2ψ|p

′
dη <∞,

where K := supp(ψ) stands for support of ψ, and p + p′ = pp′. For the proof of
our main results, we consider a cut-off function ϕ ∈ C∞0 (R) such that 0 ≤ ϕ ≤ 1,
|ϕ′(r)| ≤ C

r , and for any r > 0,

ϕ(r) =

{
1 if r ≤ 1,
0 if r ≥ 2.

Proof of Theorem 3.2. From (3.1) and (3.2) we have∫
R2N+1

u(−∆H)µ/2ψβdη =
∫

R2N+1
|v|qψβ dη,∫

R2N+1
v(−∆H)ν/2ψβdη =

∫
R2N+1

|u|pψβ dη,

for any nonnegative test function ψβ ∈ C∞0 (RN ) with β > max (p′, q′).
Using the convexity inequality in Proposition 2.2 and the Hölder inequality, we

estimate the first integral over K as follows,∫
R2N+1

u(−∆H)µ/2ψβ dη

≤ β
∫
K

uψβ/pψ−β/pψβ−1(−∆H)µ/2ψ dη

≤ β
(∫

K

|u|pψβ dη
)1/p(∫

K

ψ(β−1)p′−β p
′
p |(−∆H)µ/2ψ|p

′
dη
)1/p′

,

where K := supp(ψ) and p+ p′ = pp′.
Similarly, we obtain the estimate for the second integral∫

R2N+1
v(−∆H)ν/2ψβ dη

≤ β
∫
K

vψβ/qψ−β/qψβ−1(−∆H)ν/2ψ dη

≤ β
(∫

K

|v|qψβ dη
)1/q(∫

K

ψ(β−1)q′−β q
′
q |(−∆H)ν/2ψ|q

′
dη
)1/q′

,

where q + q′ = qq′. If we set

A(r, δ) :=
(∫

K

ψ(β−1)r′−β r′r |(−∆H)δ/2ψ|r
′
dη
)1/r′

,

then we can write∫
R2N+1

|u|pψβdη ≤ βA(q, ν)
(∫

R2N+1
|v|qψβdη

)1/q

, (4.1)∫
R2N+1

|v|qψβdη ≤ βA(p, µ)
(∫

R2N+1
|u|pψβdη

)1/p

. (4.2)
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Therefore,(∫
R2N+1

|v|qψβ dη
)1/q

≤ β1/q
(∫

R2N+1
|u|pψβ dη

)1/pq(
A(p, µ)

)1/q

. (4.3)

Using (4.1) and (4.3), we obtain∫
R2N+1

|u|pψβ dη ≤ β1+1/q
(∫

R2N+1
|u|pψβ dη

)1/pq(
A(q, ν)

)(
A(p, µ)

)1/q

,

and consequently,(∫
R2N+1

|u|pψβ dη
)1−1/(pq)

≤ β1+1/q
(
A(q, ν)

)(
A(p, µ)

)1/q

.

Similarly, we obtain(∫
R2N+1

|v|qψβ dη
)1−1/(pq)

≤ β1+1/p
(
A(p, µ)

)(
A(q, ν)

)1/p

.

Now, we take

ψ(η) = ϕ
(τ2 + |x|4 + |y|4

R4

)
,

and change variables from η = (x, y, τ) to η̃ = (x̃, ỹ, τ̃) as follows:

τ = R2τ̃ , x = Rx̃, y = Rỹ.

Using

|(−∆H)ν/2ψ|
p′

= R−p
′µ|(−∆H)ν/2ϕ(η̃)|

p′

and dη = RQdη̃, we obtain

A(p, µ) ≤ CR−µ+ Q
p′ (4.4)

where

C = β1+1/p
(∫

Ω

ϕ(β−1)p′−β p
′
p |(−∆H)µ/2ϕ|p

′
dη̃
)1/p′

,

Ω =
{

(x̃, ỹ, τ̃) ∈ R2N+1 : τ̃2 + |x̃|4 + |ỹ|4 ≤ 2
}
.

So, we have (∫
R2N+1

|u|pψβ dη
)1−1/(pq)

≤ CRθ1 ,(∫
R2N+1

|v|qψβ dη
)1−1/(pq)

≤ CRθ2 ,

where

θ1 = (−µp′ +Q)
1
p′q

+ (−νq′ +Q)
1
q′
,

θ2 = (−νq′ +Q)
1
pq′

+ (−µp′ +Q)
1
p′
.

Now, using (3.4), we can see that if

θ1 < 0 ⇐⇒ Q < (
pq

pq − 1
)(
µ

q
+ ν)

or
θ2 < 0 ⇐⇒ Q < (

pq

pq − 1
)(
ν

p
+ µ);
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that is,
Q < (

pq

pq − 1
) max

{ν
p

+ µ,
µ

q
+ ν
}
,

then, we have

lim
R→∞

∫
R2N+1

|u|pψβ dη =
∫

R2N+1
|u|p dη = 0

or
lim
R→∞

∫
R2N+1

|v|qψβ dη =
∫

R2N+1
|v|q dη = 0;

therefore (u, v) ≡ (0, 0). This completes the proof. �

In the case of a single equation

(−∆H)µ/2u = |u|p, u ≥ 0 in R
N

using the scaled variables as in the proof of Theorem 3.2, one can verify that if
1 < p < Q

Q−µ then the solution is trivial.

Proof of Theorem 3.3. Let (u, v) be a weak solution of system (1.2). Following the
same method as in the proof of Theorem 3.2 for system (1.1), one obtains∫

R2N+1
|u|pψβ dη ≤ βA(q, ν1)

(∫
K

|v|qψβ dη
)1/q

+ βA(p, ν2)
(∫

K

|u|pψβ dη
)1/p

,

and∫
R2N+1

|v|qψβ dη ≤ βA(p, µ1)
(∫

K

|u|pψβ dη
)1/p

+ βA(q, µ2)
(∫

K

|v|qψβ dη
)1/q

.

Similarly, we have(∫
R2N+1

|u|pψβ dη
)pq
≤ C

{(
A(p, ν2)

) pq
p−1

+
(
A(q, ν1)

)q(
A(q, µ2)

) q
q−1

+
((
A(q, ν1)

)qAβ(p, µ1)
) pq
pq−1

}
,

and (∫
R2N+1

|v|qψβ dx
)pq
≤ C

{(
A(q, µ2)

) pq
q−1

+
(
A(p, µ1)

)p(
A(p, ν2)

) p
p−1

+
((
A(p, µ1)

)pA(q, ν1)
) pq
pq−1

}
.

Also, using the arguments of the previous theorem, we obtain(∫
R2N+1

|u|pψβ dx
)pq
≤ C(Rγ

′
1 +Rγ

′
2 +Rγ

′
3),

where

γ′1 =
(
− ν2 +

Q

p′
) pq

p− 1
,

γ′2 =
(
− ν1 +

Q

q′
)
q +

(
− µ2 +

Q

q′
) q

q − 1
,

γ′3 =
((
− ν1 +

Q

q′
)
q +

(
− µ1 +

Q

p′
)) pq

pq − 1
,(∫

R2N+1
|v|qψβ dη

)pq
≤ C(Rθ

′
1 +Rθ

′
2 +Rθ

′
3),
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where

θ′1 = (−µ2 +
Q

q′
)
pq

q − 1
,

θ′2 = (−µ1 +
Q

p′
)p+ (−ν2 +

Q

p′
)

p

p− 1
,

θ′3 =
(

(−µ1 +
Q

p′
)p+ (−ν1 +

Q

q′
)
) pq

pq − 1
.

Taking either max(γ′1, γ
′
2, γ
′
3) < 0 or max(θ′1, θ

′
2, θ
′
3) < 0, and using the same argu-

ments as in the previous proofs one can show that u = v = 0. �
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