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MONOTONE ITERATION SCHEME AND ITS APPLICATION TO

PARTIAL DIFFERENTIAL EQUATION SYSTEMS WITH MIXED

NONLOCAL AND DEGENERATE DIFFUSIONS

QIULING HUANG, XIAOJIE HOU

Abstract. A monotone iteration scheme for traveling waves based on ordered

upper and lower solutions is derived for a class of nonlocal dispersal system
with delay. Such system can be used to study the competition among nonlo-

cally diffusive species and degenerately diffusive species. An example of such
system is studied in detail. We show the existence of the traveling wave so-

lutions for this system by this iteration scheme. In addition, we study the

minimal wave speed, uniqueness, strict monotonicity and asymptotic behavior
of the traveling wave solutions.

1. Introduction

Recently, a lot of attention has been given to the study of nonlocal equations
and systems arising from real world applications and theoretical mathematical de-
velopments. In [1, 2, 3, 12, 13], nonlocal models from interface of crystal were
studied; in [9, 10], the authors handled the nonlocal problems from ecology. In the
natural world, some species diffuse locally while others diffuse non-locally or even
are non-diffusive. As is well known, the classical diffusion equation can be derived
by Brownian motion. By using the position jump method, a rigorous mathemati-
cal derivation of the nonlocal diffusion equation was obtained in [16] under various
boundary conditions, see also [8]. The nonlocal equations have many similar prop-
erties to their classical diffusion counterparts such as the maximum principle and
the comparison principle. In [14], a comparison principle based on sliding domain
method was derived and it was used to study the uniqueness and asymptotics of
the wave solutions of a nonlocal version of Lotka Volterra system. In [15], another
nonlocal Lotka Volterra system was set up to study the outcome of the competition
between the local and non-local species. It is interesting to ask the question of
the outcome of the competition among species without diffusion and species with
nonlocal diffusions. A similar problem was treated in [11] for systems with mixed
local diffusions and non-diffusions by using spreading speed method. In this article,
we study the outcome of the competition between species with nonlocal diffusions
and species with no diffusions. In particular, we will focus on the asymptotic decay
growth rates of those species as well as the uniqueness of the competition’s outcome.
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We consider the traveling wave solutions of the following temporally delayed
reaction diffusion system

∂

∂t
U(x, t) = (DU)(x, t) + F (Ut(x)), (1.1)

where x ∈ R, t ∈ R+, U(x, t) = (u1, u2, . . . , un)(x, t) ∈ Rn, F :C([−τ, 0],Rn)→ Rn,
τ ≥ 0 and

Ut(x) = U(t+ θ, x) ∈ C([−τ, 0],Rn), θ ∈ [−τ, 0], t ∈ R+, x ∈ R.

The n× n matrix function DU = diag(. . . di(Ji ∗ ui − ui) . . . 0 . . . ) is diagonal with
di > 0 for 1 ≤ i ≤ k ≤ n. The term Ji ∗ ui =

∫
R Ji(x− y)ui(y)dy is a convolution,

and Ji ∗ ui − ui represents the nonlocal diffusion. For 1 ≤ i ≤ k, the integration
kernel Ji satisfies: Ji(· ) is even, nonnegative with nontrivial support,

∫
R J(s)ds = 1,

and

J ′i(· ) ∈ L1(R),

∫
R
|s|J(s)ds < +∞.

We further assume that Ji decays sufficiently fast at ±∞ such that
∫
R e

λsJ(s)ds <
+∞ for any λ ∈ R. The function F :C([−τ, 0],Rn) → Rn satisfies the following
conditions [18, 21, 22]:

(H1) F (0) = F (K) = 0 and F (W ) 6= 0 for W ∈ Rn with 0 < W < K.
(H2a) (Quasi-monotonicity condition) There exists a positive matrix β = diag(β1,

β2, . . . , βn) such that

Fi(Ut)− Fi(Vt) + (βi − di)[U(0)− V (0)]i ≥ 0, i = 1, 2, . . . , k,

Fj(Ut)− Fj(Vt) + βj [U(0)− V (0)]j ≥ 0, j = k + 1, . . . , n,

for U, V ∈ C([−τ, 0],Rn) with 0 ≤ V (s) ≤ U(s) ≤ K, s ∈ [−τ, 0]. or
(H2b) (Exponential quasi-monotonicity condition) There exists a positive matrix

β = diag(β1, β2, . . . , βn) such that

Fi(U)− Fi(V ) + (βi − di)[U(0)− V (0)]i ≥ 0, i = 1, 2, . . . , k,

Fj(U)− Fj(V ) + βj [U(0)− V (0)]j ≥ 0, j = k + 1, . . . , n,

for U, V ∈ C([−τ, 0],Rn) with 0 ≤ V (s) ≤ U(s) ≤ K, s ∈ [−τ, 0] and
eβs[U(s)− V (s)] is non-decreasing in [−τ, 0].

(H3) F satisfies uniform Lipschitz condition; that is, there exists a constant L > 0
such that

|F (U)− F (V )| ≤ L|U − V |
for U, V ∈ C([−τ, 0],Rn) in usual norm in C([−τ, 0],Rn).

Remark 1.1. The KPP equation with a non-monotonically delayed reaction term
(see [21])

ut = d(u) + u[1− u(t− θ, x)], (1.2)

where d(u) is either the local diffusion term uxx, or the nonlocal diffusion term
J ∗ u− u, which can be dealt with condition (H2b) but not (H2a).

If k = n, (1.1) is the nonlocal reaction diffusion system that has drawn consid-
erable attention recently. The existence of the traveling wave solutions in this case
was established in [20, 22, 25, 26] by monotone iteration method. In this paper, we
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will consider the case 1 < k < n which describes the competitions and/or coopera-
tions among non-local diffusive and degenerate diffusive species. As a motivational,
we study the system

ut = J ∗ u− u+ u(1− u− rv),

vt = −buv, (1.3)

where u and v represent population densities of two competing species, and the
species u diffuses non-locally while v does not diffuse. This model is a nonlocal
analog of the one studied in [24] which describes the competition between the
precursor and differentiated cells. We assume that the precursor cells diffuse non-
locally. A traveling wave solution connecting the extinction state and coexistence
state will provide insight to the outcome in the competition between local species
v and nonlocal species u.

A traveling wave solution to (1.1) is a C2(R)k × C1(R)n−k function U(x, t) =
U(x+ ct) = U(ξ), ξ = x+ ct, c > 0, which satisfies

D(U)− cU ′ + F c(Uξ) = 0,

U(−∞) = 0, U(+∞) = K,
(1.4)

where F c:C([−τ, 0],Rn)→ Rn is defined by

F c(Ψ) = F (Ψc), Ψc(θ) = Ψ(cθ), θ ∈ [−τ, 0].

Since system (1.1) is monotone/quasi-monotone, an iteration scheme based on
upper and lower solutions can be proposed. In [21], an iteration scheme was de-
veloped, and in [18, 22] a fixed point type of argument was applied to show the
existence of the traveling wave solutions. A suitably constructed upper and lower
solution pairs are the key ingredient in the proof of the existence as well as the
asymptotics of the traveling wave solutions.

In section 2, a continuous mapping which maps a compact invariant region into
itself is constructed. The profile set is proven to be compact by the Helly selection
theorem. We obtain the existence of the traveling wave solution by the Schauder’s
fixed point theorem.

In Section 3, we apply the monotone iteration scheme developed in the previous
section to system (1.3). We use the ideas from [22] to set up the upper solution
and use a known traveling wave solution of a nonlocal KPP equation to set up
the lower solution. Then we show the orderness of the upper and lower solutions
by a generalized sliding domain method. We further show that the traveling wave
solution is unique for every wave speed. In addition, we also derive the monotonicity
of the traveling wave solutions and their asymptotics. We note that there are
few results on asymptotics of the traveling wave solution for nonlocal equations
due to the lack of systematic treatment of linear nonlocal equations [5, 17]. We
overcome the difficulty by adapting Ikehara’s Tauberien Theorem into nonlocal
systems. These results are new and have the potential to be used in studies of
other models in real world applications. However, we would like to point out that
our construction of the upper and lower solutions is different from that in [21, 22].

Throughout this article, the inequality between two vectors is understood com-
ponentwise.
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2. Monotone iteration scheme

The existence of the traveling wave solution for systems (1.4) under the quasi-
monotonicity condition (H2a) is proved in section 2.1. In section 2.2, the cor-
responding results for the systems satisfying the exponential quasi-monotonicity
condition (H2b) are stated without proving.

2.1. Waves in the mixed diffusion system under quasi-monotone condi-
tion. We establish the existence of the monotone traveling solutions for system
(1.4) using the Schauder fixed point theorem. The following set up is standard
[18, 22]. Denote

C[0,K](R,Rn) = {U(ξ) : U(ξ) ∈ C(R,Rn), 0 ≤ U(ξ) ≤ K, ξ ∈ R}, (2.1)

a cube in the continuous function space C(R,Rn).
Let Φ = (φ1, φ2, . . . , φn). System (1.4) is written as

− cφ′i − βiφi + Hi(Φ) = 0, 1 ≤ i ≤ n, (2.2)

where

Hi(Φ) =

{
di(Ji ∗ φi − φi) + βiφi + F ci (Φξ), i = 1, 2, . . . , k,

βiφi + F ci (Φξ), i = k + 1, . . . , n.
(2.3)

Define the map

T : C[0,K](R,Rn)→ C[0,K](R,Rn) (2.4)

by

(TΦ)i(ξ) =
1

c
e−

βi
c ξ

∫ ξ

−∞
e
βi
c yHi(Φ)(y)dy, i = 1, 2, . . . , n. (2.5)

We collect the properties of H and T.

Lemma 2.1. For functions Φ and Φ̄ with 0 ≤ Φ ≤ Φ̄ ≤ K and any Φ ∈ [0,K] we
have

(1) H(Φ)(ξ) ≤ H(Φ̄)(ξ), T(Φ)(ξ) ≤ T(Φ̄)(ξ) for ξ ∈ R;

(2) 0 ≤ H(Φ)(ξ) ≤ βK, 0 ≤ T(Φ)(ξ) ≤ K for ξ ∈ R;

(3) H(Φ)(ξ) and T(Φ)(ξ) are non-decreasing provided Φ(ξ) is nondecreasing on
R.

Proof. (1) The first part of conclusion comes from (H2a), and for 1 ≤ i ≤ n, we
have

Ti(Φ̄)(ξ)− Ti(Φ)(ξ) =
1

c
e−

βi
c ξ

∫ ξ

−∞
e
βi
c y(Hi(Φ̄)−Hi(Φ))(y)dy ≥ 0.

(2) For any 0 ≤ Φ ≤ K, by (1), we have

0 = H(0) ≤ H(Φ) ≤ H(K) = βK,

and the second half of the conclusion comes from direct integration.
(3) If for ζ ≥ 0 we have Φ(ξ+ζ) ≥ Φ(ξ) for ξ ∈ R, then the rest of the conclusion

follows from conclusions (1) and (2). �
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Let ρ be chosen such that

0 < ρ < min
1≤i≤n

{βi
c

}
, (2.6)

then the space

Cw(R,Rn) = {Φ(ξ) ∈ C(R,Rn)|sup
ξ∈R
|Φ(ξ)|e−ρ|ξ| <∞} (2.7)

equipped with norm

|Φ|ρ = sup
ξ∈R
|Φ(ξ)|e−ρ|ξ| (2.8)

is a weighted Banach space.
Note that we may choose other weight functions such that Cw(R,Rn) is a Banach

space and all the proofs in the sequel hold.

Lemma 2.2. T : C[0,K](R,Rn) → C[0,K](R,Rn) is continuous with respect to the
norm (2.8).

Proof. Firstly, we will show that H : C[0,K](R,Rn)→ Cw(R,Rn) is continuous. For
any Φ,Ψ ∈ C[0,K](R,Rn) and 1 ≤ i ≤ k,

|Hi(Φ)−Hi(Ψ)|e−ρ|ξ| ≤ di|Ji ∗ (Φ−Ψ)i − (Φ−Ψ)i|ρ
+ βi|(Φ−Ψ)i|ρ + |(F c(Φ)− F c(Ψ))i|ρ
≤ (2di + βi + L)|Φ−Ψ|ρ,

and for k + 1 ≤ j ≤ n,

|Hj(Φ)−Hj(Ψ)|e−ρ|ξ| ≤ βj |Φ−Ψ|ρ + |F c(Φ)− F c(Ψ)|ρ
≤ (βj + L)|Φ−Ψ|ρ.

The continuity of H follows.
Next, we show that T is a continuous mapping into C[0,K](R,Rn). That T maps

C[0,K](R,Rn) into itself follows Lemma 2.1. For 1 ≤ i ≤ n,

|(TΦ)i(ξ)− (TΨ)i(ξ)|e−ρ|ξ| ≤
1

c
e−

βi
c ξ−ρ|ξ|

∫ ξ

−∞
e
βi
c y+ρ|y|dy|Hi(Φ)−Hi(Ψ)|ρ, (2.9)

if ξ ≤ 0, then (2.9) is

1

c
e−

βi
c ξ+ρξ

∫ ξ

−∞
e(
βi
c −ρ)ydy|Hi(Φ)−Hi(Ψ)|ρ ≤ C1(βi, c)|Hi(Φ)−Hi(Ψ)|ρ,

if ξ > 0, then

1

c
e−

βi
c ξ−ρξ[

∫ 0

−∞
e(
βi
c +ρ)ydy +

∫ ξ

0

e(
βi
c −ρ)ydy]|Hi(Φ)−Hi(Ψ)|ρ

≤ C2(βi, c)|Hi(Φ)−Hi(Ψ)|ρ,

where C1, C2 are two positive numbers depending on βi and c. Therefore, T is
continuous following easily from the continuity of H. �

We next define the upper and lower solutions for system (1.4).
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Definition 2.3. We say Ū(ξ) ∈ C2(R)k × C1(R)n−k, ξ ∈ R, is an upper solution
for system (1.4) if it satisfies

D(Ū)− cŪ ′ + F c(Ūξ) ≤ 0,

Ū(−∞) = 0, Ū(+∞) = K.
(2.10)

A function U(ξ) ∈ C2(R)k × C1(R)n−k, ξ ∈ R, is called the lower solution for
system (1.4) if it satisfies

D(U)− cU ′ + F c(Uξ) ≥ 0,

U(−∞) = 0, U(+∞) ≤ K.

Remark 2.4. If Ū1(ξ) = (ū11, ū12, . . . , ū1n) and Ū2(ξ) = (ū21, ū22, . . . , ū2n), ξ ∈ R
are two upper solutions for (1.4), so is the vector function (min(ū11(ξ), ū21(ξ)), . . . ,
min(ū1n(ξ), ū2n(ξ))). The same conclusion also applies to two lower solutions of
(1.4) but we should change the minimum value of the two components into maxi-
mum of the two [12].

Based on the upper and lower solutions of (1.4), we next define the profile set:

Γ =
{

Φ(ξ) ∈ C(R,Rn) : (1)Φ(ξ) is nondecreasing,

(2)U(ξ) ≤ Φ(ξ) ≤ Ū(ξ), (3)|Φ(ξ)− Φ(ζ)| ≤ L1|ξ − ζ|
}
,

where L1 = max1≤i≤n{ 2kiβi
c }, and ki (1 ≤ i ≤ n) is the i-th component of K.

Lemma 2.5. The set Γ is a compact and convex subset of Cw[0,K](R,R
n) and T

maps Γ into Γ.

Proof. The process for verifying that Γ is convex is straightforward. We next show
that Γ is compact. Let {Φn(ξ)}∞n=1 be a sequence in Γ. Then Φn is uniformly
bounded and nondecreasing. It follows from Helly’s selection theorem [23] that
there is a subsequence {Φni(ξ)}∞n=1 and a function Φ(ξ), ξ ∈ R such that for each
ξ ∈ R, {Φni(ξ)} → Φ(ξ) pointwise as i→ +∞. Then it follows that Φ(ξ) is bound
by U(ξ) and Ū(ξ) and is nondecreasing.

Next we show that Φ(ξ) is continuous in the topology induced by the weighted
norm. For any ξ1, ξ2 ∈ R, we have

|Φ(ξ1)− Φ(ξ2)| ≤ |Φ(ξ1)− Φni(ξ1)|+ |Φni(ξ1)− Φni(ξ2)|+ |Φni(ξ2)− Φ(ξ2)| → 0

as ξ2 → ξ1 and i→ +∞. This shows that Φ(ξ) is a continuous function in C(R,Rn).
Since e−ρ|ξ| ≤ 1 for all ξ ∈ R, the continuity of Φ(ξ) in the weighted Banach Cw

follows from the continuity of Φ in C. This leads to the convergence of {Φni(ξ)}∞n=1

in Cw. Then Φ(ξ) ∈ Γ follows from that Cw[0,K] is a Banach space.

We next show that T maps Γ into itself. First for Φn ∈ Γ and any ζ ≥ 0, we fix
1 ≤ i ≤ n,

(TΦ)i(ξ + ζ)− (TΦ)i(ξ)

=
1

c
e−

βi
c (ξ+ζ)

∫ ξ+ζ

−∞
e
βi
c yHi(Φ)(y)dy − 1

c
e−

βi
c ξ

∫ ξ

−∞
e
βi
c yHj(Φ)(y)dy

=
1

c
e−

βi
c (ξ+ζ)

∫ ξ

−∞
e
βi
c (y+ζ)Hi(Φ)(y + ζ)dy − 1

c
e−

βi
c ξ

∫ ξ

−∞
e
βi
c yHi(Φ)(y)dy
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=
1

c
e−

βi
c ξ

∫ ξ

−∞
e
βj
c y(Hi(Φ)(y + ζ)−Hi(Φ)(y))dy ≥ 0.

This shows that T(Φ)(ξ) is nondecreasing for ξ ∈ R.
We next show that T satisfies the second condition in Γ. By Lemma 2.1, this

can be reduced to show that

U(ξ) ≤ (TU)(ξ) ≤ (TŪ)(ξ) ≤ Ū(ξ), ξ ∈ R.

For 1 ≤ i ≤ n, we have (TU)i(−∞) = 0 and

lim
ξ→+∞

(TU)i(ξ) = lim
ξ→+∞

∫ ξ
−∞ eβiy/cHi(U)(y)dy

eβiξ/c

= U i(+∞) +
1

βi
Fi(U(+∞)) ≥ U i(+∞).

We can also verify that (TU)i(ξ) satisfies

−c(TU)′i − βi(TU)i + Hi(U) = 0, ξ ∈ R.

Since U(ξ) is a lower solution of (1.4),

−c(U)′i − βi(U)i + Hi(U) ≥ 0.

We can set W (ξ) = TU(ξ)− U(ξ). Then Wi(ξ) satisfies

cW ′i + βiWi ≥ 0, ξ ∈ R

or equivalently, c(Wi(ξ)e
βiξ/c)′ ≥ 0, which means Wi(ξ)e

βiξ/c is increasing for ξ ∈
R. In particular,

Wi(ξ)e
βiξ/c ≥ lim

ξ→−∞
Wi(ξ)e

βiξ/c = 0.

Therefore, (TU)i(ξ) ≥ U i(ξ), ξ ∈ R. In the same way, we have TŪ(ξ) ≤ Ū(ξ),
ξ ∈ R.

Finally, we show that T satisfies the third condition on Γ. For Φ ∈ Γ, 1 ≤ i ≤ n
and ζ ≤ ξ, we have

|(TΦ)i(ξ)− (TΦ)i(ζ)|

=
1

c
|e−

βi
c ξ

∫ ξ

−∞
e
βi
c yHi(Φ)(y)dy − e−

βi
c ζ

∫ ζ

−∞
e
βi
c yHi(Φ)(y)dy|

=
1

c
|e−

βi
c ξ

∫ ζ

−∞
e
βi
c yHi(Φ)(y)dy − e−

βi
c ζ

∫ ζ

−∞
e
βi
c yHi(Φ)(y)dy

+ e−
βi
c ξ

∫ ξ

ζ

e
βi
c yHi(Φ)(y)dy|

≤ 1

c
|e−

βi
c ξ − e−

βi
c ζ |
∫ ζ

−∞
e
βi
c yHi(Φ)(y)dy +

1

c
e−

βi
c ξ

∫ ξ

ζ

e
βi
c yHi(Φ)(y)dy

≤ ki|e−
βi
c (ξ−ζ) − 1|+ ki|1− e−

βi
c (ξ−ζ)|

≤ 2kiβi
c
|ξ − ζ| ≤ L1|ξ − ζ|.

The proof is complete. �
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2.2. Waves in mixed diffusion systems under exponential quasi monotone
conditions. We use the same framework as in Section 2.1. Hence, (2.1) through
(2.5) will be carried to this section. Let Ū(ξ) and U(ξ), ξ ∈ R be defined as in
Definition 2.3, we introduce the profile set

Γ1 =
{

Φ(ξ) ∈ C(R,Rn) : (1)U(ξ) ≤ Φ(ξ) ≤ Ū(ξ), Φ(ξ) is nondecreasing,

(2)|Φ(ξ)− Φ(ζ)| ≤ L1|ξ − ζ|, (3)eβiξ(Φi(ξ + s)− Φi(ξ)), e
βiξ(Ūi(ξ)− Φi(ξ))

and eβiξ(Φi(ξ)− U i(ξ)) are nondecreasing, i = 1, 2, . . . , k;

(4)e
βj
c ξ(Φj(ξ + s)− Φj(ξ)), e

βj
c ξ(Ūj(ξ)− Φj(ξ)) and

e
βj
c ξ(Φj(ξ)− U j(ξ)) are nondecreasing, j = k + 1, . . . , n.

}
The following properties of H and T can be proved similarly as in Section 2.1.

Lemma 2.6. For functions Φ and Φ̄ with 0 ≤ Φ(ξ) ≤ Φ̄(ξ) ≤ K and any Φ ∈
C[0,K](R,Rn), we have

(1) H(Φ)(ξ) ≤ H(Φ̄)(ξ), T(Φ)(ξ) ≤ T(Φ̄)(ξ) for ξ ∈ R;
(2) 0 ≤ H(Φ)(ξ) ≤ βK, 0 ≤ T(Φ)(ξ) ≤ K for ξ ∈ R;
(3) eβξ(Φ(ξ+ s)−Φ(ξ)) is non-decreasing, and H(Φ)(ξ) and T(Φ)(ξ) are non-

decreasing provided Φ(ξ) is nondecreasing on R.

Lemma 2.7. T:C[0,K](R,Rn) → C[0,K](R,Rn) is continuous with respect to the
norm (2.8).

Lemma 2.8. The set Γ1 is a compact and convex subset of Cw[0,K](R,R
n), and T

maps Γ1 into Γ1.

Proof. The proof of this first part is the same as that of Lemma 2.5. Next, we will
show that T maps Γ1 into itself. Since U(ξ) ≤ TΦ(ξ) ≤ Ū(ξ), the nondecreasing
of TΦ(ξ), and |(TΦ)(ξ) − (TΦ)(ζ)| ≤ L1|ξ − ζ| can be proved exactly as that in
Lemma 2.5, we will skip this process. We show that TΦ satisfies the third and
fourth conditions in the definition of Γ1.

For 1 ≤ i ≤ n, we can verify that

d

dξ
(eβiξ/c(TΦ)i(ξ + s)− (TΦ)i(ξ))

=
d

dξ
(eβiξ/c(e−

βi
c (ξ+s)

∫ ξ+s

−∞
e
βi
c y(HΦ)i(y)dy − e−

βi
c ξ

∫ ξ

−∞
e
βi
c y(HΦ)i(y)dy)

=
d

dξ
(

∫ ξ

−∞
e
βi
c y(HΦ)i(y + s)dy −

∫ ξ

−∞
e
βi
c y(HΦ)i(y)dy)

= eβiξ/c((HΦ)i(ξ + s)− (HΦ)i(ξ)) ≥ 0.

Next we show that eβiξ/c((TŪ)i(ξ)− (TΦ)i(ξ)) for 1 ≤ i ≤ n are nondecreasing
in ξ.

d

dξ
(eβiξ/c(TŪ)i(ξ)− (TΦ)i(ξ))

=
d

dξ
(eβiξ/c(e−

βi
c ξ

∫ ξ

−∞
e
βi
c y(HŪ)i(y)dy − e−

βi
c ξ

∫ ξ

−∞
e
βi
c y(HΦ)i(y)dy)
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=
d

dξ
(

∫ ξ

−∞
e
βi
c y(HŪ)i(y)dy −

∫ ξ

−∞
e
βi
c y(HΦ)i(y)dy)

= eβiξ/c((HŪ)i(ξ)− (HΦ)i(ξ)) ≥ 0.

We can prove similarly that eβiξ(Φi(ξ) − U i(ξ)) and eβiξ/c(Φi(ξ) − U i(ξ)) are
both nondecreasing in ξ. �

2.3. Existence results.

Theorem 2.9. Assume that the conditions on F hold. If (1.4) has an upper
solution Ū(ξ) and a lower solution U(ξ) for some c > 0 and U(ξ) ≤ Ū(ξ), ξ ∈ R,
then (1.4) has a monotone solution, i.e., there exists a traveling wave solution for
c > 0.

Proof. By Lemma 2.5 and the Schauder fixed point theorem, T has a fixed point
Φ∗ ∈ Γ. Then limt→±∞ Φ∗(t) exists, and we denote it by Φ∗±. The assumption
(H2a) further implies that T(Φ∗±) = 0. Combining these with the assumptions
(H2) and (H3), we have Φ∗− = 0 and Φ∗+ = K. This completes the proof. �

3. Applications

Consider the mixed reaction diffusion model:

∂u

∂t
= J ∗ u− u+ u(1− u− rv),

∂v

∂t
= −buv,

(3.1)

for (x, t) ∈ R × R+. This model is used in population dynamics. In system (3.1),
u(x, t) is the population density of the invasive species and v(x, t) is the population
density of the local species. The invasive species u diffuses non-locally with diffusion
measured by J ∗ u − u while the native species v is non-diffusive. The interaction
constants r and b satisfy the conditions

0 < b < 1− r, r > 0. (3.2)

Lemma 3.1. If (3.2) holds, then the equilibrium (0, 1) is unstable and the equilib-
rium (1, 0) is stable for system (3.1).

Proof. The Jacobian matrix of system (3.1) is(
1− 2u− rv −ru
−bv −bu

)
which is (

1− r 0
−b 0

)
at the equilibrium (0, 1). Therefore, if 1 − r > 0, then (0, 1) is an unstable equi-
librium of the corresponding ODE. It follows that it is also unstable for system
(3.1). Next, we show that the equilibrium (1, 0) is locally asymptotically stable.
The linearized equation at (1, 0) is

∂w1

∂t
= J ∗ w1 − 2w1 − rw2,

∂w2

∂t
= −bw2, (x, t) ∈ R× R+.
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It is easy to verify that the above system admits exponential dichotomy [19]. Hence,
the corresponding linear operator does not have eigenvalues in L2(R)×L2(R). Next,
we study its essential spectrum. Let(

w1

w2

)
=

(
A
B

)
eλt+iηx, λ ∈ C, η ∈ R .

Inserting them in the above linearized system at (1, 0), we have

λ

(
A
B

)
=

(∫
R J(s)eiηsds− 2 −r

0 −b

)(
A
B

)
So, the essential spectra satisfy Reλ = Re(

∫
R J(s)eiηsds− 2) < 0 and λ = −b < 0.

So, (1, 0) is stable [3]. �

Let ξ = x+ ct. Then the traveling wave solution of (3.1) connecting (0, 1) with
(1, 0) is the solution of the system

J ∗ u− u− cu′ + u(1− u− rv) = 0,

cv′ + buv = 0,

(u, v)(−∞) = (0, 1), (u, v)(+∞) = (1, 0).

(3.3)

The existence of a traveling wave solution to system (3.3) implies the successful
invasion of the nonlocal species u. By the transformation

ū = u, v̄ = 1− v,
changes system (3.3) into the monotone system

J ∗ u− u− cu′ + u(1− r − u+ rv) = 0,

−cv′ + bu(1− v) = 0,

(u, v)(−∞) = (0, 0), (u, v)(+∞) = (1, 1),

(3.4)

where we drop the bars over u and v for convenience. Consider the function

∆1(λ) =

∫
R
J(s)eλsds− 1− cλ+ (1− r). (3.5)

According to [26], there exists a positive constant

c∗ = min
λ>0

1

λ

{(∫
R
J(s)eλsds− 1

)
+ (1− r)

}
(3.6)

such that for c = c∗, ∆1(λ) has one double zero λ(c∗) and for any c > c∗, ∆1 has
two positive zeros λ1(c) < λ2(c).

Similar to Definition 2.3, we can define the upper and lower solutions for (3.4)
as follows.

Definition 3.2. A smooth function (u(ξ), v(ξ))T , ξ ∈ R is an upper solution of
(3.4) if it satisfies

J ∗ u− u− cu′ + u(1− r − u+ rv) ≤ 0,

−cv′ + bu(1− v) ≤ 0,
(3.7)

as well as the boundary conditions

(u, v)(−∞) ≥ (0, 0), (u, v)(+∞) ≥ (1, 1). (3.8)

A lower solution of (3.4) is defined similarly by reversing the inequalities in (3.7)
and (3.8).
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We set up the upper solutions for (3.4). For each fixed c > c∗, let

ū(ξ) =

{
eλ1(c)ξ, ξ ≤ 0,

1, ξ > 0.

Lemma 3.3. Let condition (3.2) hold. Then for each c > c∗, (ū, v̄)(ξ) = (ū, ū)(ξ),
ξ ∈ R defines an upper solution for (3.4).

Proof. It is easy to see that (u(ξ), v(ξ)) ≡ (1, 1) satisfies the inequalities (3.7) and
(3.8). For (u(ξ), v(ξ)) = (eλ1(c)ξ, eλ1(c)ξ), ξ ∈ R we have

J ∗ u− u− cu′ + u(1− r)− (1− r)u2 = −(1− r)u2 ≤ 0,

and

− cλ1e
λ1ξ + beλ1ξ(1− eλ1ξ) = eλ1ξ(−cλ1 + b)− be2λ1ξ. (3.9)

Let ∆2(λ) = −cλ+ b. Then by (3.2) we have

∆1(λ)−∆2(λ) =

∫
R
J(s)eλsds− 1− cλ+ (1− r) + cλ− b

=

∫
R
J(s)eλsds− 1 + (1− r)− b

=

∫
R
J(s)(1 + λs+

λ2s2

2
+ . . . )ds− 1 + (1− r)− b

≥ λ2

2

∫
R
J(s)s2ds+ (1− r)− b > 0.

Therefore, ∆2(λ1) < ∆1(λ1) = 0. This means equation (3.9) is negative. Hence,
(u(ξ), v(ξ)) = (eλ1(c)ξ, eλ1(c)ξ) satisfies inequalities (3.7) and (3.8). So, this conclu-
sion follows by Remark 2.4. �

Next, we define the lower solution for system (3.4). The construction of the
lower solution depends on the following information; see [17, 26] for more details.

Lemma 3.4. Let c∗ be defined as in (3.6). Then for any c ≥ c∗, the nonlocal KPP
system

J ∗ u− u− cu′ + (1− r)u(1− 1 + l

1− r
u) = 0,

u(−∞) = 0, u(+∞) =
1− r
1 + l

> 0

(3.10)

has a unique (up to a translation of the origin) monotone solution, and the solution
has the following asymptotic behaviors: for the critical front with speed c = c∗,

w(ξ) = bwξe
λ1(c∗)ξ + o(ξeλ1(c∗)ξ), ξ → −∞,

w(ξ) =
1− r
1 + l

− dweλ̂1(c∗)ξ + o(eλ̂1(c∗)ξ), ξ → +∞ ,

and for the noncritical front with speed c > c∗,

w(ξ) = awe
λ1(c)ξ + o(eλ1(c)ξ), ξ → −∞;

w(ξ) =
1− r
1 + l

− cweλ̂1(c)ξ + o(eλ̂1(c)ξ), ξ → +∞

where λ̂1(c) is the negative root of ∆(λ) =
∫
R J(s)eλsds − 1 − cλ − (1 − r), and

l, aw, cw, dw are positive constants and bw is negative.
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For any fixed c > c∗, let u(ξ), ξ ∈ R, be a solution of (3.10).

Lemma 3.5. If condition (3.2) holds, then for each c > c∗, (u(ξ), v(ξ)) = (u(ξ), 0),
ξ ∈ R, defines a lower solution for (3.4).

Proof. At the boundary, we have (u, v)(−∞) = (0, 0) and (u, v)(+∞) = ( 1−r
1+l , 0).

For the u component, we have

J ∗ u− u− cu′ + u(1− r − u+ rv)

= J ∗ u− u− cu′ + (1− r)u(1− 1 + l

1− r
u)

− (1− r)u(1− 1 + l

1− r
u) + u(1− r − u)

= u(1− r)− u2 + u[−(1− r) + (1 + l)u] = lu2 ≥ 0.

The verification for v component is trivial, so we have omitted it. This completes
the proof. �

For convenience of a later proof, we derive the following version of sliding domain
method for the mixed diffusion systems.

Proposition 3.6. Let N¿0 and for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, consider the system

di(Ji ∗ φi − φi)− cφ′i +

n∑
m=1

aim(ξ)φm ≤ 0,

−cφ′j +

n∑
m=1

ajm(ξ)φm ≤ 0, ξ ∈ [−N,N ]

(3.11)

with boundary conditions:

φi(ξ) ≥ 0, ξ ∈ (−∞,−N ] ∪ [N,+∞), (3.12)

φj(−N) > 0, φj(N) > 0. (3.13)

Suppose alm ≥ 0 for l 6= m, l,m = 1, 2, . . . , n. If φm(ξ) ≥ 0 for ξ ∈ [−N,N ], then
φm(ξ) > 0 for ξ ∈ (−N,N).

Proof. Suppose that the conclusion is not true for some i. If 1 ≤ i ≤ k, then there
is a ξ̄ ∈ (−N,N) such that φi(ξ̄) = 0, then φi(ξ) takes global minimum at ξ̄. It
then follows that φ′i(ξ̄) = 0, and

(J ∗ φi − φi)(ξ̄) =

∫
R
J(ξ̄ − y)(φi(y)− φi(ξ̄))dy > 0. (3.14)

However, by the assumption alm ≥ 0 for l 6= m, l,m = 1, 2, . . . , n, we have for
ξ ∈ (−N,N),

di(Ji ∗ φi − φi)− cφ′i + aii(ξ)φi ≤ −
∑
m6=i

aim(ξ)φm ≤ 0

which leads to a contradiction with (3.14). Hence, we have φi(ξ) > 0 for ξ ∈
(−N,N).

If k + 1 ≤ i ≤ n, then by assumption we have

−cφ′j + ajjφj ≤
∑
m6=j

ajm(ξ)φm ≤ 0.
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Then for ξ ∈ (−N,N), we have

(e−
1
c

∫ ξ
−M ajj(s)dsφi(ξ))

′ ≥ 0

which means e−
1
c

∫ ξ
−M ajj(s)dsφi(ξ) is increasing in [−N,N ]. In particular,

e−
1
c

∫ ξ̄
−N ajj(s)dsφi(ξ̄) ≥ φi(−N) > 0

which leads to a contradiction. This completes the proof. �

Proposition 3.7. Let two C2 vector functions Ū(ξ) = (ū1(ξ), ū2(ξ), . . . , ūn(ξ))
and U(ξ) = (u1(ξ), u2(ξ), . . . , un(ξ)) satisfy the following inequalities

DŪ − cŪ ′ + F (Ū) ≤ 0 ≤ DU − cU ′ + F (U), ξ ∈ [−N,N ],

U(ξ) < Ū(−N), ξ ∈ (−∞,−N ],

U(N) < Ū(ξ), ξ ∈ [N,+∞),

where DU = diag(. . . di(Ji∗ui−ui) . . . 0 . . . ), 1 ≤ i ≤ k, F (U) = (F1(U), . . . , Fn(U))
is C1 with respect to its components and ∂Fi

∂uj
≥ 0 for i 6= j, i, j = 1, 2, . . . , n, then

U(ξ) < Ū(ξ), ξ ∈ [−N,N ].

Proof. We adapt the proof of [4]. Shift Ū(ξ) to the left. For 0 ≤ µ ≤ 2N , consider
Uµ(ξ) := Ū(ξ + µ) on the interval (−N,N − µ). At both ends of the interval, by
(3.7) and (3.7), we have

U(ξ) < Uµ(ξ). (3.15)

Starting from µ = 2N , decreasing µ, for every µ in 0 ≤ µ ≤ 2N , the inequality
(3.15) is true at the end points of the respective interval. For decreasing µ, suppose
that there is a first µ with 0 ≤ µ ≤ 2N such that

U(ξ) < Uµ(ξ), ξ ∈ (−N, N − µ)

and there is one component, for example, the i−th, such that the equality holds at a
point ξ1 inside the interval. Let W (ξ) = (w1(ξ), w2(ξ), . . . , wn(ξ)) = Uµ(ξ)−U(ξ),
then wi(ξ), i = 1, 2, . . . , n satisfies

Diwi − cw′i +
∂Fi
∂ui

wi ≤ Diwi − cw′i +

n∑
j=1

∂Fi
∂uj

wj ≤ 0

wi(ξ1) = 0, wj(ξ) ≥ 0, ξ ∈ [−N,N − µ].

If 0 ≤ i ≤ k, then wi ≡ 0 for ξ ∈ [−N,N − µ] by the Maximum principle. This is
in contradiction with (3.15) on the boundary points ξ = −N and ξ = N − µ. If
k + 1 ≤ i ≤ n, since

−cw′i +
∂Fi
∂ui

wi ≤ 0,

we can have for ξ ∈ [−N,N − µ],

(e
− 1
c

∫ ξ
−N

∂Fi
∂ui

ds
wi(ξ))

′ ≥ 0

which means that e
− 1
c

∫ ξ
−N

∂Fi
∂ui

ds
wi(ξ) is increasing on [−N,N − µ]. This together

with (3.15) implies that wi(ξ) > 0 on [−N,N − µ] which is in contradiction with
wi(ξ1) = 0. Thus, we can decrease µ all the way to zero. This proves the conclusion.

�
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Based on the previous two propositions, we show the upper and lower solutions
constructed in Lemmas 3.3 and 3.5 are ordered.

Lemma 3.8. For each fixed c > c∗, let (ū, v̄)(ξ), (u, v)(ξ), ξ ∈ R be the corre-
sponding upper and lower solutions obtained in Lemmas 3.3 and 3.5 respectively,
then there exists a ζ ≥ 0 such that

(ū, v̄)(ξ) ≥ (u, v)(ξ − ζ), ξ ∈ R.

Proof. According to Lemma 3.4, u has the following asymptotic behaviors

u(ξ) = Aeλ1(c)ξ + o(Aeλ1(c)ξ), ξ → −∞.
Since (3.10) is shifting invariant, we have for any fixed ζ ≥ 0,

u(ξ − ζ) = Ae−λ1(c)ζeλ1(c)ξ + o(Aeλ1(c)ξ), ξ → −∞.
It follows that for a sufficiently large ζ ≥ 0,

Ae−λ1(c)ζ < 1.

The boundary conditions of (ū, v̄)(ξ) imply the existence of a large number N > 0
and ζ0 ≥ 0 such that

(ū, v̄)(ξ) > (u, v)(ξ − ζ0), ξ ∈ (−∞,−N ] ∪ [N,+∞).

Since system (3.4) is monotone and the upper and lower solutions are monotonically
increasing, then by Proposition 3.6 we have

(ū, v̄)(ξ) > (u, v)(ξ − ζ0), ξ ∈ (−N,N).

Hence after a shifting of the lower solution, we have the orderness of the upper and
lower solutions. �

We will still denote the shifted lower solution as (u, v)(ξ), ξ ∈ R.

Theorem 3.9. Assume condition (3.2). Then for each c ≥ c∗, system (3.4) has
a unique traveling wave solution. The solution is strictly monotonically increasing
on R. There is no monotone traveling wave solution for 0 < c < c∗, and c∗ is the
minimal wave speed.

For c = c∗, the traveling wave has the following asymptotic behaviors:(
u(ξ)
v(ξ)

)
=

(
Ac∗ξe

λ1(c∗)ξ

Bc∗ξe
λ1(c∗)ξ

)
+ o

(
ξeλ1(c∗)ξ

ξeλ1(c∗)ξ

)
as ξ → −∞,

and (
u(ξ)
v(ξ)

)
=

(
1− Āc∗e−

b
c∗ ξ − B̄c∗e−λ̄2(c∗)ξ

1− Âc∗e−
b
c∗ ξ

)

+ o

(
Āc∗e

− b
c∗ ξ + B̄c∗e

−λ̄2(c∗)ξ)

Âc∗e
− b
c∗ ξ

)
as ξ → +∞.

For c > c∗, (
u(ξ)
v(ξ)

)
=

(
Ace

λ1(c)ξ

Bce
λ1(c)ξ

)
+ o(eλ1(c)ξ) as ξ → −∞,

and (
u(ξ)
v(ξ)

)
=

(
1− Āce−

b
c ξ − B̄ce−λ̄2(c)ξ

1− Âce−
b
c ξ

)
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+ o

(
Āce

− bc ξ + B̄ce
−λ̄2(c)ξ)

Âce
− bc ξ

)
as ξ → +∞,

where λ̄2 is the smaller one of the real roots of equation
∫
R e

λξJ(ξ)dξ−1−cλ−1 = 0

and −cλ+b = 0. Ac∗ , Bc∗ , Āc∗ , B̄c∗ , Âc∗ , and Ac, Bc, Āc, B̄c, Âc are real numbers
and at least one of Āc, B̄c (or hatAc) is non-zero, the sign of Āc (or Âc) and B̄c
should be chosen such that the above equations are well defined.

Proof. The proof is divided into five steps.

Step 1. The existence of the traveling wave solution for system (3.4) comes from
Theorem 2.9 and Lemma 3.3 through Lemmas 3.5 and 3.8. Since the traveling wave
solution is a fixed point in the profile set, it is monotone. In addition, the component
u of the traveling wave solution is strictly monotonically increasing because of the
maximum principle.

For the component v, from the construction of upper and lower solutions, we
have v < 1 for ξ < 0. Therefore, there exists a positive constant M such that
v′ = b

cu(1 − v) > 0 for ξ ≤ −M . Thus, v is strictly monotonically increasing for
ξ ∈ (−∞, −M ]. Let (w1(ξ), w2(ξ)) = (u′(ξ), v′(ξ)). Then we have

−cw′2 + b(1− v)w1 − buw2 = 0.

We rewrite it as

cw′2 + buw2 = b(1− v)w1 ≥ 0.

Then we have

(e
b
c

∫ ξ
−M u(s)dsw2(ξ))′ ≥ 0, ξ ∈ [−M, +∞)

which means that e
b
c

∫ ξ
−M u(s)dsw2(ξ) is increasing on [−M, +∞). This together

with w2(−M) > 0 implies that w2(ξ) > 0 on (−M,+∞). Therefore v is strictly
monotonically increasing for ξ ∈ [−M,+∞). Hence, v is also strictly monotonically
increasing for ξ ∈ (−∞, +∞).

Step 2. We derive the asymptotics of the traveling wave solutions at infinities.
Comparing the decay rates of the upper and lower solutions at −∞, we have the
asymptotics of the u component at −∞,

u(ξ) = Ace
λ1(c)ξ + o(eλ1(c)ξ).

To derive the asymptotic of the v component at −∞, we investigate the derivative
(w1(ξ), w2(ξ)) of the traveling wave solution (u(ξ), v(ξ)), which satisfies the system

J ∗ w1 − w1 − cw′1 + w1(1− r − 2u+ rv) + rw1w2 = 0,

−cw′2 + b(1− v)w1 − buw2 = 0,(
w1

w2

)
(−∞) =

(
0
0

)
,

(
w1

w2

)
(+∞) =

(
0
0

)
.

(3.16)

The limit system of (3.16) at −∞ is

J ∗ w−1 − w
−
1 − c(w

−
1 )′ + w−1 (1− r) = 0,

−c(w−2 )′ + bw−1 = 0.
(3.17)

Since w1(ξ) is a derivative of u(ξ), we have w−1 (ξ) ∼ eλ1(c)ξ as ξ → −∞. By
integrating the second equation of (3.17), we have

w−2 (ξ) = d̄eλ1(c)ξ + o(eλ1(c)ξ). (3.18)
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From the second equation of (3.17), we see d̄ > 0. Then the asymptotic behavior of
v(ξ) is obtained by integrating w−2 (ξ) from −∞ to ξ. So the traveling wave solution
has the following asymptotic behaviors:(

u(ξ)
v(ξ)

)
=

(
Ace

λ1(c)ξ

Bce
λ1(c)ξ

)
+ o

(
eλ1(c)ξ

eλ1(c)ξ

)
as ξ → −∞.

Next, we derive the asymptotics of the traveling waves at +∞. By introducing
transformations: û = 1− u and v̂ = 1− v, system (3.4) is changed into

J ∗ û− û− c(û)′ + (1− û)(rv̂ − û) = 0,

c(v̂)′ + b(1− û)v̂ = 0

(û, v̂)(−∞) = (1, 1), (û, v̂)(+∞) = (0, 0).

(3.19)

Further, by the transformation ξ̄ = −ξ, system (3.19) is changed into

J ∗ û− û+ c(û)′ + (1− û)(rv̂ − û) = 0,

−c(v̂)′ + b(1− û)v̂ = 0,

(û, v̂)(−∞) = (0, 0), (û, v̂)(+∞) = (1, 1),

(3.20)

where the derivative is taken with respect to ξ̄. Then we need to study the asymp-
totics of (û, v̂) at −∞ for the system (3.20), which can be rewritten as

J ∗ û− û+ c(û)′ − û+ rv̂ = −û+ rv̂ − (1− û)(rv̂ − û)
.
= R1(û, v̂),

−c(v̂)′ + bv̂ = bv̂ − b(1− û)v̂
.
= R2(û, v̂).

(3.21)

Similar to the proof of [14, Lemma 10], we can show that for the solutions of (3.20)
there exists a positive constant γ such that(

û(ξ̄)
v̂(ξ̄)

)
=

(
O(eγξ̄)

O(eγξ̄)

)
as ξ̄ → −∞.

For λ’s such that −γ < Reλ < 0, the two side Laplace transform of û and v̂ are
well defined. Let

(U(λ), V (λ)) =
(∫

R
e−λξ̄û(ξ̄)dξ̄,

∫
R
e−λξ̄ v̂(ξ̄)dξ̄

)
,

then system (3.21) can be written as(∫
R e

λξ̄J(ξ̄)dξ̄ − 1 + cλ− 1 r
0 −cλ+ b

)(
U(λ)
V (λ)

)
=

∫
R
e−λξ̄

(
R1(û(ξ̄), v̂(ξ̄))
R2(û(ξ̄), v̂(ξ̄))

)
dξ̄

or equivalently,(
U(λ)
V (λ)

)
=

(∫
R e

λξ̄J(ξ̄)dξ̄ − 1 + cλ− 1 r
0 −cλ+ b

)−1 ∫
R
e−λξ̄

(
R1(û(ξ̄), v̂(ξ̄))
R2(û(ξ̄), v̂(ξ̄))

)
dξ̄

=

(
1∫

R e
λξ̄J(ξ)dξ̄−1+cλ−1

−r
[
∫
R e
λξ̄J(ξ̄)dξ̄−1+cλ−1][−cλ+b]

0 1
−cλ+b

)

×
∫
R
e−λξ̄

(
R1(û(ξ̄), v̂(ξ̄))
R2(û(ξ̄), v̂(ξ̄))

)
dξ̄
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.
= M̃

∫
R
e−λξ̄

(
R1(û(ξ̄), v̂(ξ̄))
R2(û(ξ̄), v̂(ξ̄))

)
dξ̄.

Further, system (3.21) can be rewritten as(∫ +∞
0

û(ξ̄)eλξ̄dξ̄∫ +∞
0

v̂(ξ̄)eλξ̄dξ̄

)
= M̃

∫
R
e−λξ̄

(
R1(û(ξ̄), v̂(ξ̄))
R2(û(ξ̄), v̂(ξ̄))

)
dξ̄ −

(∫ +∞
0

û(ξ̄)e−λξ̄dξ̄∫ +∞
0

v̂(ξ̄)e−λξ̄dξ̄

)
.

Since û and v̂ are monotonically decreasing, by Ikehara’s Tauberian Theorem [5]
the asymptotics of v̂ and û are

û(ξ̄) ∼ eλ̄2ξ̄, v̂(ξ̄) ∼ e bc ξ̄, ξ̄ → −∞,

with λ̄2 > 0 being the smaller one of the real roots of equations
∫
R e

λξJ(ξ̄)dξ̄ −
1 + cλ− 1 = 0 and −cλ+ b = 0. Therefore, the asymptotics of the traveling wave
(û, v̂) at −∞ are(

û(ξ̄)
v̂(ξ̄)

)
=

(
Āce

b
c ξ̄ + B̄ce

λ̄2(c)ξ̄

Âce
b
c ξ̄

)
+ o

(
Āce

b
c ξ̄ + B̄ce

λ̄2(c)ξ̄)

Âce
b
c ξ̄

)
, ξ̄ → −∞,

where λ̄2 is the smaller one of the real roots of equations
∫
R e

λξJ(ξ)dξ−1+cλ−1 = 0

and −cλ+ b = 0, and Āc, B̄c (Âc) are real number and at least one of Āc, B̄c (Âc)

is non-zero, the sign of Āc, (Âc) and B̄c should be chosen such that the above
equations are well defined.

On changing back to u and v, we have the estimates:(
u(ξ)
v(ξ)

)
=

(
1− Āce−

b
c ξ − B̄ce−λ̄2(c)ξ

1− Âce−
b
c ξ

)
+ o

(
Āce

− bc ξ + B̄ce
−λ̄2(c)ξ)

Âce
− bc ξ

)
, ξ → +∞,

where λ̄2 and Āc, B̄c, Âc are the same as above.

Step 3. We show that for c = c∗, system (3.4) also has a unique monotone traveling
wave solution. Let c > c∗ be a wave speed and (u, v) be the corresponding wave.
We can normalize u such that u(0) = 1/2 and the corresponding v(0) = ṽ due to
the shifting invariance of system (3.4). Choose cn > c∗ such that lim

n→∞
cn = c∗ and

let (un, vn) be the corresponding wave satisfying the above normalization.

claim the functions {(un, vn)}, {J ∗ un} and {(u′n, v′n)} for n =
1, 2, . . . are uniformly bounded and equi-continuous.

In fact, since (un, vn) is a wave solution for the speed cn, we have 0 ≤ un(ξ), vn(ξ) ≤
1, ξ ∈ R and n ≥ 1 which means that (un, vn) are uniformly bounded. The
continuity of (F1, F2) on the interval [(0, 0), (1, 1)] implies that

cn|v′n| ≤ max
0≤un,vn≤1

F2.

This shows that v′n is uniformly bounded and the equi-continuity for vn follows
easily from the mean value theorems.

We can similarly show that J ∗ un and u′n are uniformly bounded on R and the
equi-continuity of un.

We next show the equi-continuity of J ∗ un. For any two points ξ1, ξ2 ∈ R,

|J ∗ un(ξ1)− J ∗ un(ξ2)|

= |
∫
R
J(ξ1 − y)un(y)dy −

∫
R
J(ξ2 − y)un(y)dy|
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= |
∫
R
J(y)un(ξ1 + y)dy −

∫
R
J(y)un(ξ2 + y)dy|

= |
∫
R
J(y)(un(ξ1 + y)− un(ξ2 + y)dy|

≤
∫
R
J(y)|un(ξ1 + y)− un(ξ2 + y)|dy

which together with the equi-continuity of un imply the equi-continuity of J ∗ un
and hence that of u′n follow from this. The claim is then proved.

By Arzela-Ascoli Thoerem and a diagonalization process, we can find a subse-
quence of {(un, vn)}, which we still denote {(un, vn)} such that {(un, vn)}, {J ∗un},
and {(u′n, v′n)} converge uniformly on every bounded interval to functions (u∗, v∗),
J ∗un, w∗ and (X∗, Y ∗). A standard argument [5] shows that (u∗, v∗)′ = (X∗, Y ∗).
Letting n→ +∞, we have

J ∗ u∗ − u∗ − c∗(u∗)′ + u∗(1− a1 − u∗ + a1v
∗) = 0

−c∗(v∗)′ + bu∗(1− v∗) = 0

with the boundary conditions

(u∗, v∗)(−∞) = (0, 0), (u∗, v∗)(+∞) = (1, 1),

which shows the existence of traveling wave solution to system (3.4) for c = c∗.

Step 4. We next show that the traveling wave solution is unique up to a translation
of the origin for c ≥ c∗. If there are two wave solutions of (3.4) (u, v)(ξ) and
(u1, v1)(ξ) with the same asymptotic properties as described by Step 2 at −∞ and
+∞, then there exist a positive constant N and a point ζ such that(

u(ξ + ζ)
v(ξ + ζ)

)
>

(
u1(ξ)
v1(ξ)

)
, ξ ∈ (−∞,−N ] ∪ [N,+∞). (3.22)

In fact, since the traveling wave solution has the following asymptotic behaviors(
u(ξ)
v(ξ)

)
=

(
Ace

λ1(c)ξ

Bce
λ1(c)ξ

)
+ o

(
eλ1(c)ξ

eλ1(c)ξ

)
as ξ → −∞,

and(
u(ξ)
v(ξ)

)
=

(
1− Āce−

b
c ξ − B̄ce−λ̄2(c)ξ

1− Âce−
b
c ξ

)
+o

(
Āce

− bc ξ + B̄ce
−λ̄2(c)ξ)

Âce
− bc ξ

)
as ξ → +∞,

in addition if (
u1(ξ)
v1(ξ)

)
=

(
A′ce

λ1(c)ξ

B′ce
λ1(c)ξ

)
+ o(eλ1(c)ξ) as ξ → −∞,

and (
u1(ξ)
v1(ξ)

)
=

(
1− Ā′ce−

b
c ξ − B̄′ce−λ̄2(c)ξ

1− Â′ce−
b
c ξ

)
+ o

(
Ā′ce

− bc ξ + B̄′ce
−λ̄2(c)ξ)

Â′ce
− bc ξ

)
as ξ → +∞, Then for ξ → −∞, we have(

u(ξ + ζ)
v(ξ + ζ)

)
=

(
Ace

λ1(c)(ξ+ζ)

Bce
λ1(c)(ξ+ζ)

)
+ o

(
eλ1(c)(ξ+ζ)

eλ1(c)(ξ+ζ)

)
=

(
Ace

λ1(c)ζeλ1(c)ξ

Bce
λ1(c)ζeλ1(c)ξ

)
+ o

(
eλ1(c)(ξ+ζ)

eλ1(c)(ξ+ζ)

)
,
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and for ξ → +∞, we have(
u(ξ + ζ)
v(ξ + ζ)

)
=

(
1− Āce−

b
c (ξ+ζ) − B̄ce−λ̄2(c)(ξ+ζ)

1− Âce−
b
c (ξ+ζ)

)
+ o

(
Āce

− bc (ξ+ζ) + B̄ce
−λ̄2(c)(ξ+ζ))

Âce
− bc (ξ+ζ))

)

=

(
1− Āce−

b
c ζe−

b
c ξ − B̄ce−λ̄2(c)ζe−λ̄2(c)ξ

1− Âce−
b
c ζe−

b
c ξ

)

+ o

(
Āce

− bc (ξ+ζ) + B̄ce
−λ̄2(c)(ξ+ζ))

Âce
− bc (ξ+ζ)

)
.

Noting that there exists an N̂ > 0 such that for any |ζ| > N̂ , we have Ace
λ̄1(c)ζ >

Ā′c, Bce
λ̄1(c)ζ > B̄′c, and Āce

−λ̄1(c)ζ < Ā′c, B̄ce
−λ̄2(c)ζ < B̄′c, Âce

−λ̄1(c)ζ < Â′c, where
λ̄1(c) = b/c. So, the inequality (3.22) holds. By Proposition 3.7, we have(

u(ξ + ζ)
v(ξ + ζ)

)
>

(
u1(ξ)
v1(ξ)

)
, ξ ∈ (−N, N). (3.23)

For ζ is decreasing, we have to deal with two cases. The first case is that there
exists a ζ ∈ R such that(

u(ξ + ζ)
v(ξ + ζ)

)
=

(
u1(ξ)
v1(ξ)

)
, ξ ∈ (−∞, +∞). (3.24)

We then have the uniqueness. The other case is that there is a first ζ and a
first ξ, which are denoted by ζ1 and ξ1 separately, such that there is at least one
component, for example, the component v, satisfying v(ξ1 + ζ1) = v1(ξ1). Let
W̄ (ξ) = (u(ξ), v(ξ))− (u1(ξ), v1(ξ)) then wi(ξ), i = 1, 2, satisfies

J ∗ w1 − w1 − cw′1 + (1− r − 2u+ rv)w1

≤ J ∗ w1 − w1 − cw′1 + (1− r − 2u+ rv)w1 + ruw2 ≤ 0,

−cw′2 − buw2 ≤ −cw′2 + b(1− v)w1 − buw2 ≤ 0,

w1(ξ) ≥ 0, w2(ξ1) = 0, ξ ∈ (−∞,+∞).

By the maximum principle for w1 and the same argument as the one in Proposition
3.7 for w2, this is impossible. Therefore,(

u(ξ)
v(ξ)

)
=

(
u1(ξ)
v1(ξ)

)
, ξ ∈ (−∞,+∞).

This proves the conclusion.

Step 5. We show that there is no monotone traveling wave solution for 0 < c < c∗.
Since the traveling wave solution has the following asymptotic behaviors at −∞,(

u(ξ)
v(ξ)

)
=

(
Ace

λ1(c)ξ

Bce
λ1(c)ξ

)
+ o

(
eλ1(c)ξ

eλ1(c)ξ

)
as ξ → −∞,

we can define the two-sided Laplace transform

(U(λ), V (λ)) =
(∫

R
e−λξ̄û(ξ̄)dξ̄,

∫
R
e−λξ̄ v̂(ξ̄)dξ̄

)
.
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Then the first equation of system (3.4) can be written as

[−cλ+

∫
R
eλyJ(y)dy − 1 + (1− r)]U(λ) =

∫
R
e−λx[u− u(u− rv)]dx.

Since −cλ+
∫
R e

λyJ(y)dy − 1 + (1− r) = 0 has no real zeros for 0 < c < c∗, U(λ)
is defined for all λ such that Reλ < 0. (3) can be written as∫

R
e−λξ

[(
− cλ+

∫
R
eλyJ(y)dy − 1 + (1− r)

)
u− u(u− rv)

]
dx = 0.

Since −cλ+
∫
R e

λyJ(y)dy−1+(1−r)→ +∞ as λ→ −∞, we reach a contradiction.
Therefore, there is no monotone traveling wave solution for 0 < c < c∗, and c∗ is
the minimal wave speed. �
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