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COMPETITIVE EXCLUSION IN A MULTI-STRAIN SIS
EPIDEMIC MODEL ON COMPLEX NETWORKS

JUNYUAN YANG, TOSHIKAZU KUNIYA, XIAOFENG LUO

Abstract. In this article, we propose an infection age-structured multi-strain

SIS epidemic model on complex networks. We obtain the reproduction num-

bers for each strain by using the classical theory of renewal equations, and we
define the basic reproduction number R0 for the whole system by the max-

imum of them. We prove that if R0 < 1, then the disease-free equilibrium

of the model is globally asymptotically stable, whereas if R0 > 1, then there
exists an endemic equilibrium in which only one strain with the largest repro-

duction number survives. Moreover, under an additional assumption that the

recovery rate is homogeneous, we prove that such an endemic equilibrium is
globally asymptotically stable. Interestingly, our theoretical results imply that

the competitive exclusion can occur in a sense that only one strain with the

largest reproduction number survives.

1. Introduction

Multi-strain epidemic models are systems of ordinary or partial differential equa-
tions, in which the infected population is subdivided into several homogeneous
groups according to the type of strain of a pathogenic agent. In multi-strain epi-
demic models, the competitive exclusion often occurs, which means that only one
strain dominates the other strains and persists alone (see [15, Section 8.1.3]). Bre-
mermann and Thieme [2] studied a multi-strain SIR epidemic model, which is a
system of ordinary differential equations and regarded as a modified Anderson and
May model of host parasite dynamics. They showed that the competitive exclusion
can occur in their model in a sense that only one strain with the largest reproduc-
tion number survives. Since their work, various multi-strain epidemic models have
been studied from the viewpoint of the competitive exclusion (see, for instance,
[3, 5, 16]).

To make epidemic models more realistic, taking into account the heterogene-
ity of contact patterns of each individual is essentially important. For instance,
Dalziel et al. [4] clarified that the heterogeneity of contact patterns can limit the
emergence and spread of influenza. To take into account it in the modelling, the
complex network structure plays an important role. So far, one-strain epidemic
models have mainly been studied on complex networks (see, for instance, [14]). To
our knowledge, there have been less studies on multi-strain epidemic models on
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complex networks. Wu et al. [25, 26], studied two-strain epidemic models on com-
plex networks from the viewpoint of the competitive exclusion, and showed that the
mutation and superinfection can lead to the coexistence of strains. In this paper,
we aim to clarify the dynamics of a more general m(∈ N)-strain epidemic model on
complex networks.

In the epidemic modelling, infection age is also an important factor, which means
the time elapsed since the infection. Most of the previous epidemic models on com-
plex networks were systems of ODEs with constant coefficients, and infection age
has not been considered. In these models, it is implicitly assumed that both of the
transmission and recovery processes satisfy the Markov property, that is, the wait-
ing time between two events of these processes obeys the exponential distribution.
However, many empirical data have shown that non-Markovian distributions such
as the log-normal distribution ([8]) and the Gamma distribution [19] are often more
realistic. Infection age enables us to consider such non-Markovian distributions. In
this article, we focus on an infection age-structured multi-compartment system of
PDEs, for which we need a more rigorous and advanced mathematical analysis.
Through the analysis, we aim to investigate the possibility of the competitive ex-
clusion in our general framework.

In mathematical epidemiology, the basic reproduction number R0 is known as
the expected value of secondary cases produced by a typical infected individual
during its entire period of infectiousness in a fully susceptible population (see, for
instance, [6, 13]). R0 is important as it is an indicator of the epidemic size. Mathe-
matically, R0 is defined by the spectral radius of the next generation operator (see,
for instance, [7]). However, it is often difficult to obtain the explicit formulation
of R0 for epidemic models with general forms. In this paper, we first define the
reproduction numbers for each strain based on the classical theory of renewal equa-
tions, and then define the basic reproduction number R0 for the whole system by
the maximum of them. In terms of R0, we investigate the global dynamics of our
model. Specifically, we prove that ifR0 < 1, then the disease-free equilibrium of the
model is globally asymptotically stable, whereas if R0 > 1, then the model has an
endemic equilibrium in which only one strain with the largest reproduction number
persists. Moreover, under an additional assumption that the recovery rate is ho-
mogeneous, we prove that such an endemic equilibrium is globally asymptotically
stable if R0 > 1. Interestingly, our theoretical results imply that the competitive
exclusion can occur in a global sense in our model.

The rest of this paper is organized as follows. In Section 2, we propose our model
and give some basic assumptions. In Section 3, we define the basic reproduction
number R0 by the maximum of the reproduction numbers Rj0 for each strain
j ∈ {1, 2, . . . ,m}. In Section 4, we prove the asymptotic smoothness of the solution
semiflow and the existence of a compact attractor, which are needed for the global
stability analysis in the subsequent sections. In Section 5, we prove the global
asymptotic stability of the disease-free equilibrium for R0 < 1 by constructing a
Lyapunov function and applying the invariance principle. In Section 6, we assume
without loss of generality that R0 = R10, and prove that if R0 = R10 > 1, then
there exists an endemic equilibrium in which only strain 1 persists. We further
prove the uniform persistence of the system for R0 = R10 > 1, which is needed
to construct a Lyapunov function for the proof of the global asymptotic stability
of the endemic equilibrium. Under the additional assumption as stated above, we
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prove the global asymptotic stability of it for R0 = R10 > 1. In Section 7, we
perform numerical simulation to illustrate our theoretical results, which show that
the competitive exclusion can occur in the cases of two-strain and three-strain.
Finally, Section 8 is devoted to the discussion.

2. Model formulation

Let S(t) and I(t) denote the number of susceptible and infected nodes at time
t, respectively. Following [14], a basic SIS epidemic model on an arbitrary network
is formulated as follows:

dS(t)
dt

= −β[SI](t) + γI(t),

dI(t)
dt

= β[SI](t)− γI(t),
(2.1)

where t ≥ 0, [SI] denotes the average number of edges connecting susceptible and
infected nodes, and β and γ denote the transmission and recovery rates, respec-
tively. Let N be the total number of nodes in the network, which is constant as
[S(t) + I(t)]′ = 0 holds for solutions in (2.1). If the network is homogeneous, that
is, the degree of every node is equal to n, then the average number of infected nodes
connected to one susceptible node is given by nI/N . Therefore, [SI] is described
as follows.

[SI](t) = nS(t)
I(t)
N

, t ≥ 0. (2.2)

Hence, model (2.1) can be rewritten to the classical SIS epidemic model (see, for
instance, [1]). By considering the heterogeneity of degree k ∈ Nn = {1, 2, . . . , n},
n ∈ N of each node, system (2.1)-(2.2) can be generalized to the following model
on complex networks (see, for instance [20]).

dSk(t)
dt

= −β[SkI](t) + γIk(t),

dIk(t)
dt

= β[SkI](t)− γIk(t),
(2.3)

where t ≥ 0, k ∈ Nn, Sk(t) and Ik(t) denote the number of susceptible and infected
nodes with degree k ∈ Nn at time t ≥ 0, respectively. [SkI] is given by

[SkI](t) = kSk(t)
∑n
l=1 lIl(t)∑n
l=1 lNl

, t ≥ 0, k ∈ Nn, (2.4)

where Nl denotes the total number of nodes with degree l ∈ Nn, which is constant
as [Sk(t) + Ik(t)]′ = 0 holds for all k ∈ Nn for solutions in (2.3). [27] incorporated
the infection age into system (2.3)-(2.4), and studied the following one-strain SIS
epidemic model on complex networks.

dSk(t)
dt

= −kSk(t)Θ(i(t, ·)) +
∫ ∞

0

γ(a)ik(t, a)da,

∂ik(t, a)
∂t

+
∂ik(t, a)
∂a

= −γ(a)ik(t, a),

ik(t, 0) = kSk(t)Θ(i(t, ·)),

(2.5)
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where t ≥ 0, a ≥ 0, k ∈ Nn, and

Θ(i(t, ·)) =
1
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β(a)il(t, a)da, i(t, ·) = (i1(t, ·), i2(t, ·), . . . , in(t, ·)),

〈k〉 =
n∑
l=1

lp(l), p(k) =
Nk
N
, Nk = Sk(·) +

∫ ∞
0

ik(·, a)da, k ∈ Nn,

N =
n∑
k=1

Nk.

Here, ik(t, a) denotes the number of infected nodes with degree k ∈ Nn and infection
age a ≥ 0 at time t ≥ 0. β(a) and γ(a) denote the age-specific transmission and
recovery rates, respectively. In this paper, we consider a generalization of system
(2.5) to the following multi-strain SIS epidemic model on complex networks.

dSk(t)
dt

= −kSk(t)
m∑
j=1

Θj(ij(t, ·)) +
m∑
j=1

∫ ∞
0

γj(a)ijk(t, a)da,

∂ijk(t, a)
∂t

+
∂ijk(t, a)

∂a
= −γj(a)ijk(t, a),

ijk(t, 0) = kSk(t)Θj(ij(t, ·)),

(2.6)

for t ≥ 0, a ≥ 0, j ∈M, and k ∈ Nn. Here M = {1, 2, . . . ,m} and

ij(t, ·) = (ij1(t, ·), ij2(t, ·), . . . , ijn(t, ·)), t ≥ 0, j ∈M,

Θj(ψ) =
1
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

βj(a)ψl(a)da, j ∈M,

ψ = (ψ1, ψ2, . . . , ψn) ∈ (L1(R+))n, 〈k〉 =
n∑
l=1

lp(l),

p(k) =
Nk
N
, Nk = Sk(·) +

m∑
j=1

∫ ∞
0

ijk(·, a)da, k ∈ Nn, N =
n∑
k=1

Nk.

(2.7)

Here, ijk(t, a) denotes the number of nodes infected by strain j ∈ M with degree
k ∈ Nn and infection age a ≥ 0 at time t ≥ 0. βj(a) and γj(a) denote the age-
specific transmission rate and recovery rate for infected nodes with strain j ∈ M.
We make the following assumptions.

Assumption 2.1.

(i) βj(·) ∈ L∞+ (R+) and γj(·) ∈ L∞+ (R+) for all j ∈M.
(ii) βj(·) is Lipschitz continuous on R+ with Lipschitz constant Lβj > 0 for all

j ∈M.
(iii) There exists γ

j
> 0 such that γj(a) > γ

j
for all a ≥ 0 and j ∈M.

Let β̄j := ess supa∈[0,∞) βj(a) < ∞ and γ̄j := ess supa∈[0,∞) γj(a) < ∞ for all
j ∈M. By integrating the second equation in (2.6), we have

d
dt

∫ ∞
0

ijk(t, a)da = kSk(t)Θj(ij(t, ·))−
∫ ∞

0

γj(a)ijk(t, a)da, j ∈M, k ∈ Nn.



EJDE-2019/06 COMPETITIVE EXCLUSION IN AN SIS EPIDEMIC MODEL 5

Note that ijk(t,+∞) = 0 for all t > 0, j ∈ M and k ∈ Nn by Assumption 2.1 (iii).
Hence,

d
dt

[
Sk(t) +

m∑
j=1

∫ ∞
0

ijk(t, a)da
]

= 0, k ∈ Nn,

and thus, Nk is constant for all k ∈ Nn. In what follows, without loss of gen-
erality, we assume that Nk is normalized as 1 for all k ∈ Nn. Then, Sk(·) =
1−

∑m
j=1

∫∞
0
ijk(·, a)da for all k ∈ Nn and hence, (2.6) can be rewritten as follows

∂ijk(t, a)
∂t

+
∂ijk(t, a)

∂a
= −γj(a)ijk(t, a),

ijk(t, 0) = k
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
]
Θj(ij(t, ·)),

(2.8)

for t ≥ 0, a ≥ 0, j ∈M, and k ∈ Nn.
We consider the following initial condition for (2.8),

ijk(0, ·) = ijk0(·) ∈ L1
+(0,∞), j ∈M, k ∈ Nn.

For the sake of simplicity, we use the following notation in the rest of this paper.

X = (L1(R+))mn, ‖ψ‖X =
m∑
j=1

n∑
k=1

∫ ∞
0

|ψjk(a)|da, ψ = (ψjk(·))(j,k)∈M×Nn
∈ X,

X(t) = (i11(t, ·), i12(t, ·), . . . , i1n(t, ·), i21(t, ·), . . . , imn(t, ·)) ∈ X, t ≥ 0,

Kjk(t) =
∫ ∞

0

βj(a)ijk(t, a)da, bjk(t) = ijk(t, 0), j ∈M, k ∈ Nn, t ≥ 0,

πj(a) = e−
R a
0 γj(σ)dσ, j ∈M, a ≥ 0.

3. The basic reproduction number R0

In this section, we define the basic reproduction number R0 for system (2.8).
Obviously, (2.8) always has the unique disease-free equilibrium E0 = (0, 0, . . . , 0) ∈
X. Linearizing system (2.8) around the disease-free equilibrium E0, we obtain the
following system in the disease invasion phase.

∂ijk(t, a)
∂t

+
∂ijk(t, a)

∂a
= −γj(a)ijk(t, a),

ijk(t, 0) = kΘj(ij(t, ·)),
(3.1)

for t ≥ 0, a ≥ 0, j ∈M, and k ∈ Nn. Integrating the first equation in (2.8) or (3.1)
along the characteristic line t− a = c (constant), we have

ijk(t, a) =

{
bjk(t− a)πj(a), t > a,

ijk0(a− t) πj(a)
πj(a−t) , t ≤ a,

(3.2)

for t ≥ 0, a ≥ 0, j ∈M, and k ∈ Nn. By substituting (3.2) into the second equation
in (3.1), we obtain the following Volterra integral equation (see, for instance, [12]).

bjk(t) =
k

〈k〉

n∑
l=1

lp(l)
∫ t

0

βj(a)bjl(t− a)πj(a)da+ gjk(t), (3.3)
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where t ≥ 0, j ∈M, k ∈ Nn, and

gjk(t) =
k

〈k〉

n∑
l=1

lp(l)
∫ ∞
t

βj(a)ijl0(a− t) πj(a)
πj(a− t)

da, t ≥ 0, j ∈M, k ∈ Nn.

Multiplying both sides of (3.3) by kp(k)/〈k〉, and summing on k from 1 to n, we
have that for all t ≥ 0,

Θ̃(bj(t)) =
∫ t

0

Ψj(a)Θ̃(bj(t− a))da+ fj(t), j ∈M, (3.4)

where

Θ̃(ϕ) =
1
〈k〉

n∑
l=1

lp(l)ϕl, ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Rn, (3.5)

bj(t) = (bj1(t), bj2(t), . . . , bjn(t)), fj(t) =
1
〈k〉

n∑
l=1

l2p(l)gjl(t), t ≥ 0, j ∈M,

Ψj(a) =
〈k2〉
〈k〉

βj(a)πj(a), a ≥ 0, j ∈M, 〈k2〉 =
n∑
l=1

l2p(l).

Since (3.4) can be regarded as a renewal equation for strain j ∈ M, we obtain
the reproduction number Rj0 for strain j by using the classical theory of renewal
equations as follows.

Rj0 =
∫ ∞

0

Ψj(s)ds =
〈k2〉
〈k〉

Kj , Kj =
∫ ∞

0

βj(a)πj(a)da, j ∈M.

Note that
〈k2〉
〈k〉

=
∑n
l=1 l

2p(l)∑n
l=1 lp(l)

=
∑n
l=1 l

2Nl

N∑n
l=1 l

Nl

N

=
n∑
l=1

l
lNl∑n
l=1 lNl

. (3.6)

Since kNk/
∑n
k=1 kNk, k ∈ Nn denotes the proportion of edges with degree k in

total edges, (3.6) implies that 〈k2〉/〈k〉 is equal to the average number of edges
in the network. Besides, πj(a), j ∈ M denotes the survival probability for one
infected node with strain j to age a. Consequently, Rj0 = (〈k2〉/〈k〉)Kj represents
the average number of secondary infected nodes produced by one typical infected
node with strain j during its infectious period in the network. Using Rj0, j ∈ M,
the next generation operator for system (2.6) is defined by matrix diag1≤j≤m(Rj0).
Hence, the basic reproduction number R0 for system (2.6), which is the spectral
radius of the next generation operator, is obtained as follows.

R0 = max{Rj0}j∈M = max{R10,R20, . . . ,Rm0}. (3.7)

4. Asymptotic smoothness of the solution semiflow

In this section, we show the asymptotic smoothness of the solution semiflow and
the existence of a compact attractor, which are needed for the global stability anal-
ysis in Sections 5 and 6. It is easy to see that system (2.8) generates a continuous
semiflow Φ : R+ × X→ X, defined by

Φ(t,X0) = X(t) = (i11(t, ·), i12(t, ·), . . . , imn(t, ·)), t ≥ 0, (4.1)
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where X0 = (i110(·), i120(·), . . . , imn0(·)) ∈ X. Let us define the following set.

Ω = {X(·) = (i11(·, ·), . . . , imn(·, ·)) ∈ X+ :
m∑
j=1

∫ ∞
0

ijk(·, a)da ≤ 1 ∀k ∈ Nn},

where X+ denotes the positive cone of X.

Lemma 4.1.
(i) Ω is positively invariant for system (2.8), that is, Φ(t,Ω) ⊂ Ω for all t ≥ 0.

(ii) For any solution Φ(t,X0) = X(t) with X0 ∈ Ω, inequalities Kjk(t) ≤ β̄j
and bjk(t) ≤ β̄jk hold for all t > 0, j ∈M and k ∈ Nn.

Proof. (i) Let X0 ∈ Ω. The nonnegativity of Φ(t,X0) = X(t) for all t ≥ 0 is a
simple matter and we omit the proof. By integrating the first equation in (2.8), for
all j ∈M and k ∈ Nn, we have

d
dt

∫ ∞
0

ijk(t, a)da = k
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
]
Θj(ij(t, ·))−

∫ ∞
0

γj(a)ijk(t, a)da.

Let Yk(·) :=
∑m
j=1

∫∞
0
ijk(·, a)da for all k ∈ Nn. From the above equality, we have

dYk(t)
dt

= k[1− Yk(t)]
m∑
j=1

Θj(ij(t, ·))−
m∑
j=1

∫ ∞
0

γj(a)ijk(t, a)da, k ∈ Nn. (4.2)

By the way of contradiction, suppose that there exist a t∗ > 0 and a k∗ ∈ Nn such
that Yk(t) ≤ 1 for all t ∈ [0, t∗) and k ∈ Nn, Yk∗(t∗) = 1 and Y ′k∗(t

∗) > 0. From
(4.2), we have

dYk∗(t∗)
dt

= −
m∑
j=1

∫ ∞
0

γj(a)ijk∗(t∗, a)da ≤ 0,

which is a contradiction. Thus, Yk(t) =
∑m
j=1

∫∞
0
ijk(t, a)da ≤ 1 for all t ≥ 0 and

k ∈ Nn, provided X0 ∈ Ω. This implies that Φ(t,Ω) for all t ≥ 0, and thus, Ω is
positively invariant.

(ii) From (i), we see that
∫∞

0
ijk(t, a)da ≤ 1 for all t ≥ 0, j ∈ M and k ∈ Nn.

Hence, by Assumption 2.1 (i), we have

Kjk(t) ≤ β̄j
∫ ∞

0

ijk(t, a)da ≤ β̄j ,

bjk(t) ≤ β̄j
k

〈k〉

n∑
l=1

lp(l)
∫ ∞

0

ijl(t, a)da ≤ β̄j
k

〈k〉

n∑
l=1

lp(l) = β̄jk,

for all t ≥ 0, j ∈M and k ∈ Nn. This completes the proof. �

Next, we prove the asymptotic smoothness of semiflow Φ with X0 ∈ Ω. Based
on Proposition 3.13 in [23], we decompose Φ into two operators: Φ = Φ̂ + Φ̃, where

Φ̂(t,X0) =
(
î11(t, ·), î12(t, ·), . . . , îmn(t, ·)

)
, t ≥ 0, X0 ∈ Ω,

Φ̃(t,X0) =
(
ĩ11(t, ·), ĩ12(t, ·), . . . , ĩmn(t, ·)

)
, t ≥ 0, X0 ∈ Ω,

(4.3)

îjk(t, a) =

{
0, t > a,

ijk(t, a), t ≤ a,
ĩjk(t, a) =

{
ijk(t, a), t > a,

0, t ≤ a,
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for t ≥ 0, a ≥ 0, j ∈M, and k ∈ Nn. To prove the asymptotic smoothness of Φ, we
use the following lemma.

Lemma 4.2 ([23, Proposition 3.1.3]). Let Φ̂ and Φ̃ be defined as in (4.3). Suppose
that Φ̂ and Φ̃ satisfy the following properties:

(i) There exists a function θ : R+ × R+ → R+ such that for any r > 0,
limt→+∞ θ(t, r) = 0 and ‖Φ̂(t,X0)‖X ≤ θ(t, r) for all t > 0, provided
‖X0‖X ≤ r.

(ii) For all t > 0, Φ̃(t, ·) maps any bounded set of Ω into a set with compact
closure in X.

Then {Φ(t,X0) : t ≥ 0} has compact closure in X.

We also use the following lemma.

Lemma 4.3. bjk(·) is Lipschitz continuous on R+ for all j ∈M and k ∈ Nn. That
is, there exists Lipschitz constant Lbjk

> 0 for all j ∈M and k ∈ Nn such that

|bjk(t+ h)− bjk(t)| ≤ Lbjk
h, t ≥ 0, h ≥ 0, j ∈M, k ∈ Nn.

Proof. Let Yk(·), k ∈ Nn be defined as in the proof of Lemma 4.1. From (4.2), we
have ∣∣dYk(t)

dt

∣∣ ≤ k[1− Yk(t)]
m∑
j=1

Θj(ij(t, ·)) +
m∑
j=1

∫ ∞
0

γj(a)ijk(t, a)da

≤ k
m∑
j=1

β̄j +
m∑
j=1

γ̄j =: LYk
, t ≥ 0, k ∈ Nn.

(4.4)

This implies that Yk(·) is Lipschitz continuous on R+ with Lipschitz constant LYk
>

0 for all k ∈ Nn. For any t ≥ 0 and h ≥ 0, we then have

|bjk(t+ h)− bjk(t)|

=
∣∣∣ k〈k〉{[1− Yk(t+ h)]

n∑
l=1

lp(l)
∫ ∞

0

βj(a)ijl(t+ h, a)da

− [1− Yk(t)]
n∑
l=1

∫ ∞
0

βj(a)ijl(t, a)da}
∣∣∣

≤ k

〈k〉

{
|Yk(t+ h)− Yk(t)|

n∑
l=1

lp(l)
∫ ∞

0

βj(a)ijl(t+ h, a)da

+ [1 + Yk(t)]
n∑
l=1

lp(l)
∣∣∣ ∫ ∞

0

βj(a)ijl(t+ h, a)da−
∫ ∞

0

βj(a)ijl(t, a)da
∣∣∣}

≤ k

〈k〉

{
LYk

β̄j〈k〉h+ 2
n∑
l=1

lp(l)
∫ h

0

βj(a)ijl(t+ h, a)da

+ 2
n∑
l=1

lp(l)
∣∣∣ ∫ ∞
h

βj(a)ijl(t+ h, a)da−
∫ ∞

0

βj(a)ijl(t, a)da
∣∣∣}

≤ k

〈k〉

{
LYk

β̄j〈k〉h+ 2β̄2
j 〈k2〉h+ 2

n∑
l=1

lp(l)
∣∣∣ ∫ ∞

0

βj(a+ h)ijl(t+ h, a+ h)da
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−
∫ ∞

0

βj(a)ijl(t, a)da
∣∣∣}

=
k

〈k〉

{
LYk

β̄j〈k〉h+ 2β̄2
j 〈k2〉h+ 2

n∑
l=1

lp(l)
∣∣∣ ∫ ∞

0

βj(a+ h)ijl(t, a)
πj(a+ h)
πj(a)

da

−
∫ ∞

0

βj(a)ijl(t, a)da
∣∣∣}

≤ k

〈k〉

{
LYk

β̄j〈k〉h+ 2β̄2
j 〈k2〉h

+ 2
n∑
l=1

lp(l)
∫ ∞

0

βj(a+ h)
∣∣∣πj(a+ h)

πj(a)
− 1
∣∣∣ijl(t, a)da

+ 2
n∑
l=1

lp(l)
∫ ∞

0

|βj(a+ h)− βj(a)|ijl(t, a)da
}

≤ k

〈k〉
(LYk

β̄j〈k〉+ 2β̄2〈k2〉+ 2β̄j γ̄j〈k〉+ 2Lβj
〈k〉)h

=: Lbjk
h, j ∈M, k ∈ Nn,

where we use Assumption 2.1 (ii), Lemma 4.1 (ii) and the facts that

|e−x − e−y| ≤ |x− y|, x, y ∈ R+, 〈k2〉 =
n∑
l=1

l2p(l),

ijk(t+ h, a+ h) = ijk(t, a)
πj(a+ h)
πj(a)

, t, a, h ∈ R+, j ∈M, k ∈ Nn,

Lbjk
=

k

〈k〉
(LYk

β̄j〈k〉+ 2β̄2〈k2〉+ 2β̄j γ̄j〈k〉+ 2Lβj 〈k〉), j ∈M, k ∈ Nn.

This completes the proof. �

Using Lemmas 4.2 and 4.3, we prove the following proposition on the asymptotic
smoothness of semiflow Φ.

Proposition 4.4. Let Φ be the solution semiflow defined by (4.1). Φ is asymptot-
ically smooth.

Proof. It is sufficient to show that the assumptions in Lemma 4.2 hold (see also
[10, Lemma 3.2.3] and [18, Theorem 5.1]). For any r > 0, let us consider X0 ∈ Ω
such that ‖X0‖X ≤ r. Using (3.2), we obtain

‖Φ̂(t,X0)‖X =
m∑
j=1

n∑
k=1

∫ ∞
0

îjk(t, a)da

=
m∑
j=1

n∑
k=1

∫ ∞
t

ijk0(a− t) πj(a)
πj(a− t)

da

≤
m∑
j=1

n∑
k=1

e−γj
t
∫ ∞

0

ijk0(a)da

≤ e−γt‖X0‖X ≤ e−γtr, t > 0,

where γ := minj∈M γ
j
> 0. Hence, Lemma 4.2 (i) holds for θ(t, r) = e−γtr.
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Next, we show Lemma 4.2 (ii). Let C ⊂ Ω be a bounded set such that ‖X‖X ≤ r
for a fixed upper bound r > 0 and for any X ∈ C. It is sufficient to show that
the following four conditions hold for all t > 0, j ∈ M and k ∈ Nn (see also [18,
Theorem 5.2]).

(a) supX0∈C
∫∞

0
ĩjk(t, a)da <∞;

(b) limu→+∞
∫∞
u
ĩjk(t, a)da = 0 uniformly in X0 ∈ C;

(c) limh→0+ |̃ijk(t, a+ h)− ĩk(t, a)|da = 0 uniformly in X0 ∈ C;
(d) limh→0+

∫ h
0
ĩjk(t, a)da = 0 uniformly in X0 ∈ C.

From (3.2), Assumption 2.1 and Lemma 4.1 We have

ĩjk(t, a) ≤

{
β̄jke−γj

a
, t > a,

0, t ≤ a,

for t ≥ 0, a ≥ 0, j ∈ M, and k ∈ Nn. Then, we easily see that conditions (a), (b)
and (d) hold. For any fixed t > 0, let h ∈ (0, t). By Lemma 4.3, we have∫ ∞

0

|̃ijk(t, a+ h)− ĩjk(t, a)|da

≤
∫ t−h

0

|bjk(t− a− h)πj(a+ h)− bjk(t− a)πj(a)|da+
∫ t

t−h
bjk(t− a)πj(a)da

≤
∫ t−h

0

bjk(t− a− h)|πj(a+ h)− πj(a)|da

+
∫ t−h

0

|bjk(t− a− h)− bjk(t− a)|πj(a)da+ β̄jkh

≤ β̄jk
∫ t−h

0

|πj(a+ h)− πj(a)|da+ Lbjk
h

∫ t−h

0

πj(a)da+ β̄jkh

≤ (β̄j γ̄jk(t− h) + Lbjk
(t− h) + β̄jk)h, j ∈M, k ∈ Nn.

Since the right-hand side of this inequality is independent of X0 ∈ C and converges
to zero as h→ 0+, (c) immediately holds. This completes the proof. �

From Lemma 4.1 and Proposition 4.4, we see that Φ is point dissipative, even-
tually bounded and asymptotically smooth. Hence, from [21, Theorem 2.33], we
obtain the following proposition.

Proposition 4.5. There exists a compact attractor A of bounded sets in Ω.

5. Global stability of the disease-free equilibrium for R0 < 1

In this section, we investigate the global asymptotic stability of the disease-
free equilibrium E0 = (0, 0, . . . , 0) ∈ Ω of system (2.6) for R0 < 1. On the local
asymptotic stability of E0 for R0 < 1, we establish the following theorem.

Theorem 5.1. If R0 < 1, then the disease-free equilibrium E0 = (0, 0, . . . , 0) ∈ Ω
is locally asymptotically stable.

Proof. We consider the linearized system (3.1). Substituting ijk(t, a) = yjk(a)eλt,
j ∈M, k ∈ Nn into (3.1) and dividing both sides by eλt, we have

λyjk(a) +
dyjk(a)

da
= −γj(a)yjk(a),

yjk(0) = kΘj(yj(·)),
(5.1)



EJDE-2019/06 COMPETITIVE EXCLUSION IN AN SIS EPIDEMIC MODEL 11

for a ≥ 0, j ∈M, and k ∈ Nn. Here yj(·) = (yj1(·), yj2(·), . . . , yjn(·)) for all j ∈M.
Integrating the first equation in (5.1), we have

yjk(a) = yjk(0)πj(a)e−λa, a ≥ 0, j ∈M, k ∈ Nn. (5.2)

Substituting (5.2) into the second equation in (5.1), we have

yjk(0) =
k

〈k〉

n∑
l=1

lp(l)K̂j(λ)yjl(0), j ∈M, k ∈ Nn, (5.3)

where K̂j(λ), j ∈M denotes the Laplace transform of βj(·)πj(·); that is,

K̂j(λ) =
∫ ∞

0

βj(a)πj(a)e−λada, j ∈M.

Multiplying both sides of (5.3) by kp(k)/〈k〉, and summing on k from 1 to n, we
have

Θ̃(yj(0)) =
〈k2〉
〈k〉

K̂j(λ)Θ̃(yj(0)), j ∈M. (5.4)

If Θ̃(yj(0)) 6= 0 for some j ∈M, we cancel it from both sides of (5.4) and obtain

1 =
〈k2〉
〈k〉

K̂j(λ). (5.5)

We claim that all characteristic roots of (5.5) have negative real parts. By way of
contradiction, we assume that (5.5) has a root λ0 with positive real part. Then, we
have ∣∣ 〈k2〉

〈k〉
K̂j(λ0)

∣∣ ≤ Rj0 < 1,

which contradicts (5.5). Therefore, the claim is true.
If Θ̃(yj(0)) = 0 for all j ∈M, then it follows from (5.2) and (5.3) that yjk(a) ≡ 0

for all j ∈M and k ∈ Nn. This case can be ruled out since ijk(t, a) = yjk(a)eλt ≡ 0
for all j ∈ M and k ∈ Nn, and there is no perturbation from E0. This completes
the proof. �

On the global asymptotic stability of the disease-free equilibrium E0 for R0 < 1,
we establish the following theorem.

Theorem 5.2. If R0 < 1, then the disease-free equilibrium E0 = (0, 0, . . . , 0) ∈ Ω
is globally asymptotically stable in Ω.

Proof. Let us define

αj(a) =
∫ ∞
a

βj(s)
πj(s)
πj(a)

ds, a ≥ 0, j ∈M. (5.6)

Note that under Assumption 2.1, αj(·) is finite on R+ for all j ∈M, and

αj(0) = Kj , α′j(a) = αj(a)γj(a)− βj(a), a ≥ 0, j ∈M.

Let us define a Lyapunov function as follows.

V (t) =
m∑
j=1

n∑
k=1

kp(k)
Kj

∫ ∞
0

αj(a)ijk(t, a)da, t ≥ 0.
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Differentiating V (·) along the solution trajectory of system (2.8), we have

dV (t)
dt

=
m∑
j=1

n∑
k=1

kp(k)
Kj

∫ ∞
0

αj(a)ijk(t, a)da

=
m∑
j=1

n∑
k=1

kp(k)
Kj

∫ ∞
0

αj(a)
∂ijk(t, a)

∂t
da

=
m∑
j=1

n∑
k=1

kp(k)
Kj

∫ ∞
0

αj(a)
[
− ∂ijk(t, a)

∂a
− γj(a)ijk(t, a)

]
da, t ≥ 0.

(5.7)

Calculating the integration by parts, we have∫ ∞
0

αj(a)
[
− ∂ijk(t, a)

∂a
− γj(a)ijk(t, a)

]
da

= −
∫ ∞

0

αj(a)
∂ijk(t, a)

∂a
da−

∫ ∞
0

αj(a)γj(a)ijk(t, a)da

= −αj(a)ijk(t, a)
∣∣∞
0

+
∫ ∞

0

α′j(a)ijk(t, a)da−
∫ ∞

0

αj(a)γj(a)ijk(t, a)da

= αj(0)ijk(t, 0)−
∫ ∞

0

βj(a)ijk(t, a)da

= Kjk
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
]
Θj(ij(t, ·))−

∫ ∞
0

βj(a)ijk(t, a)da

≤ KjkΘj(ij(t, ·))−
∫ ∞

0

βj(a)ijk(t, a)da, t ≥ 0, j ∈M, k ∈ Nn.

(5.8)

From (5.7) and (5.8), we obtain

dV (t)
dt

≤
m∑
j=1

[
〈k2〉Θj(ij(t, ·))−

〈k〉
Kj

Θj(ij(t, ·))
]

=
m∑
j=1

(Rj0 − 1)
〈k〉
Kj

Θj(ij(t, ·)), t ≥ 0.

(5.9)

If R0 < 1, it follows from (5.9) that V ′(t) ≤ 0 with equality holding if and only
if ijk(t, ·) = 0 for all j ∈ M and k ∈ Nn. This implies that the largest positive
invariant subsetM of set {(ijk)(j,k)∈M×Nn

∈ Ω : V ′ = 0} is a singleton {E0}. Since
positive orbit ∪t≥0{Φ(t,X0)} is precompact in Ω by Proposition 4.4, we can apply
the invariance principles stated in [22, Theorem 4.2 in Chapter IV] to conclude that
E0 is globally asymptotically stable in Ω. This completes the proof. �

Theorem 5.2 implies that all strains will die out if none of their reproduction
numbers is greater than or equal to 1.

6. Competitive exclusion for R0 > 1

In this section, we study the occurrence of the competitive exclusion for R0 > 1.
Without loss of generality, we can assume that the reproduction number R10 for
strain 1 is the largest; that is,

R0 = max
j∈M
{Rj0} = max{R10,R20, . . . ,Rm0} = R10.
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We now investigate the existence of an endemic equilibrium of (2.8) in which only
strain 1 persists. Let us consider the system

dijk(a)
da

= −γj(a)ijk(a),

ijk(0) = k
[
1−

m∑
j=1

∫ ∞
0

ijk(a)da
]
Θj(ij(·)),

(6.1)

for a ≥ 0, j ∈ M, and k ∈ Nn. Here ij(·) = (ij1(·), ij2(·), . . . ijn(·)) for all j ∈ M.
Let us denote

E∗1 = (i∗11(·), i∗12(·), . . . , i∗1n(·), 0, . . . , 0) ∈ Ω

the endemic equilibrium in which only strain 1 persists. In what follows, we call E∗1
the strain 1 dominant equilibrium. Since the entries of E∗1 satisfy (6.1), we have

i∗1k(a) = i∗1k(0)π1(a),

i∗1k(0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θ1(i∗1(·)),

(6.2)

for a ≥ 0, and k ∈ Nn; where i∗1(·) = (i∗11(·), i∗12(·), . . . , i∗1n(·)). On the existence of
E∗1 , we have the following theorem.

Theorem 6.1. If R0 = R10 > 1, then system (2.8) has the unique strain 1 domi-
nant equilibrium E∗1 = (i∗11(·), i∗12(·), . . . , i∗1n(·), 0, . . . , 0) ∈ Ω.

Proof. Let us define

Π1 =
∫ ∞

0

π1(a)da and i∗1(0) =
1
〈k〉

n∑
l=1

lp(l)i∗1l(0). (6.3)

Substituting the first equation in (6.2) into the second equation in (6.2), we have

i∗1k(0) = k(1−Π1i
∗
1k(0))K1i

∗
1(0), k ∈ Nn, (6.4)

and hence,

i∗1k(0) =
kK1i

∗
1(0)

1 + kΠ1K1i∗1(0)
, k ∈ Nn. (6.5)

Substituting (6.5) into the second equation in (6.3), we have

i∗1(0) =
1
〈k〉

n∑
l=1

lp(l)
lK1i

∗
1(0)

1 + lΠ1K1i∗1(0)
.

Dividing both side of this equation by i∗1(0), we have

1 =
1
〈k〉

n∑
l=1

l2p(l)K1

1 + lΠ1K1i∗1(0)
.

Let us define

F (x) =
1
〈k〉

n∑
l=1

l2p(l)K1

1 + lΠ1K1x
, x ∈ R.

If there exists a positive root x∗ > 0 such that F (x∗) = 1, then x∗ = i∗1(0) and
hence, it follows from (6.5) and the first equation in (6.2) that the strain 1 dominant
equilibrium E∗1 exists in Ω. Since F (x) is monotone decreasing on x and converges
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to zero as x→ +∞, the positive root x∗ uniquely exists if and only if F (0) > 1. In
fact, we have

F (0) =
1
〈k〉

n∑
l=1

l2p(l)K1 =
〈k2〉
〈k〉

K1 = R10 > 1.

This completes the proof. �

Next, we prove the locally asymptotic stability of the strain 1 dominant equilib-
rium E∗1 for R0 = R10 > 1 and γ1(a) = γ1 > 0.

Theorem 6.2. If R0 = R10 > 1 and γ1(a) = γ1 > 0, then the strain 1 dominant
equilibrium E∗1 = (i∗11(·), i∗12(·), . . . , i∗1n(·), 0, . . . , 0) ∈ Ω is locally asymptotically
stable.

Proof. Let us define the perturbation from the strain 1 dominant equilibrium E∗1
by

y1k(t, a) = i1k(t, a)− i∗1k(a),

yjk(t, a) = ijk(t, a), j ∈M \ {1},

For t ≥ 0, a ≥ 0, and k ∈ Nn. By linearizing system (2.8) around E∗1 , we have, for
all t ≥ 0, a ≥ 0 and k ∈ Nn,

∂y1k(t, a)
∂t

+
∂y1k(t, a)

∂a
= −γ1(a)y1k(t, a),

y1k(t, 0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θ1(y1(t, ·))− kΘ1(i∗1(·))

m∑
j=1

∫ ∞
0

yjk(t, a)da,

∂yjk(t, a)
∂t

+
∂yjk(t, a)

∂a
= −γj(a)yjk(t, a), j ∈M \ {1},

yjk(t, 0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θj(yj(t, ·)), j ∈M \ {1},

(6.6)

where yj(t, ·) = (yj1(t, ·), yj2(t, ·), . . . , yjn(t, ·)) for all j ∈M. Substituting yjk(t, a)
= yjk(a)eλt for all j ∈ M and k ∈ Nn into all equations in (6.6) and dividing both
sides of each equation by eλt, for all a ≥ 0 and k ∈ Nn, we have

dy1k(a)
da

= −(λ+ γ1(a))y1k(a),

y1k(0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θ1(y1(·))− kΘ1(i∗1(·))

m∑
j=1

∫ ∞
0

yjk(a)da,

dyjk(a)
da

= −(λ+ γj(a))yjk(a), j ∈M \ {1},

yjk(0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θj(yj(·)), j ∈M \ {1},

(6.7)

where yj(·) = (yj1(·), yj2(·), . . . , yjn(·)) for all j ∈ M. From the first and third
equations in (6.7), we obtain

yjk(a) = yjk(0)πj(a)e−λa, a ≥ 0, j ∈M, k ∈ Nn. (6.8)

Substituting (6.8) into the last equation in (6.7), we obtain

yjk(0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θ̃(yj(0))K̂j(λ), j ∈M \ {1}, k ∈ Nn. (6.9)
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Multiplying both sides of (6.9) by kp(k)/〈k〉, and summing on k from 1 to n, we
obtain

Θ̃(yj(0)) =
1
〈k〉

n∑
l=1

l2p(l)
[
1−

∫ ∞
0

i∗1l(a)da
]
Θ̃(yj(0))K̂j(λ), j ∈M \ {1}. (6.10)

If Θ̃(yj(0)) 6= 0 for some j ∈ M \ {1}, we cancel it from both sides of (6.10) and
obtain

1 =
1
〈k〉

n∑
l=1

l2p(l)
[
1−

∫ ∞
0

i∗1l(a)da
]
K̂j(λ). (6.11)

Multiplying both sides of the second equation in (6.2) by kp(k)/〈k〉, and dividing
both sides by i∗1(0) after summing on k from 1 to n, we have

1 =
1
〈k〉

n∑
l=1

l2p(l)
[
1−

∫ ∞
0

i∗1l(a)da
]
K1. (6.12)

We claim that all characteristic roots of (6.11) have negative real parts. On the
contrary, we assume that there exists a root λ0 with positive real part. It follows
from (6.11) and (6.12) that

1 =
∣∣∣ 1
〈k〉

n∑
l=1

l2p(l)
[
1−

∫ ∞
0

i∗1l(a)da
]
K̂j(λ0)

∣∣∣
<

1
〈k〉

n∑
l=1

l2p(l)
[
1−

∫ ∞
0

i∗1l(a)da
]
Kj

≤ 1
〈k〉

n∑
l=1

l2p(l)
[
1−

∫ ∞
0

i∗1l(a)da
]
K1 = 1,

which is a contradiction. Therefore, the claim is true.
If Θ̃(yj(0)) = 0 for all j ∈ M \ {1}, then from (6.9) we have that yjk(0) = 0 for

all j ∈M \ {1} and k ∈ Nn. From (6.8), we then have that yjk(a) = 0 for all a ≥ 0,
j ∈M \ {1} and k ∈ Nn. Hence, the second equation in (6.7) can be rewritten as

y1k(0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θ1(y1(·))− kΘ1(i∗1(·))

∫ ∞
0

y1k(a)da, k ∈ Nn.

Substituting (6.8) into the right-hand side of this equation, we have

y1k(0) = k
[
1−

∫ ∞
0

i∗1k(a)da
]
Θ̃(y1(0))K̂1(λ)− kΘ1(i∗1(·))

λ+ γ1
y1k(0), k ∈ Nn.

Hence, we have

y1k(0) =
k
[
1−

∫∞
0
i∗1k(a)da

]
Θ̃(y1(0))K̂1(λ)

1 + kΘ1(i∗1(·))
λ+γ1

, k ∈ Nn. (6.13)

Multiplying both sides of (6.13) by kp(k)/〈k〉, and summing on k from 1 to n, we
have

Θ̃(y1(0)) =
1
〈k〉

n∑
k=1

k2p(k)
[
1−

∫∞
0
i∗1k(a)da

]
K̂1(λ)

1 + kΘ1(i∗1(·))
λ+γ1

Θ̃(y1(0)). (6.14)

If Θ̃(y1(0)) = 0, then from (6.13) we have y1k(0) = 0 for all k ∈ Nn and hence, from
(6.8), y1k(a) = 0 for all a ≥ 0 and k ∈ Nn. We can rule out this case since there
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is no perturbation from E∗1 . Thus, Θ̃(y1(0)) 6= 0. Dividing both sides of (6.14) by
Θ̃(y1(0)), we have

1 =
1
〈k〉

n∑
k=1

k2p(k)
[
1−

∫∞
0
i∗1k(a)da

]
K̂1(λ)

1 + kΘ1(i∗1(·))
λ+γ1

. (6.15)

We claim that all characteristic roots of (6.15) have negative real parts. On the
contrary, suppose that there exists a root λ0 of (6.15) with positive real part. Using
(6.12), we have

1 =
∣∣∣ 1
〈k〉

n∑
k=1

k2p(k)
[
1−

∫∞
0
i∗1k(a)da

]
K̂1(λ0)

1 + kΘ1(i∗1(·))
λ0+γ1

∣∣∣
<

1
〈k〉

n∑
k=1

k2p(k)
[
1−

∫ ∞
0

i∗1k(a)da
]
K1 = 1,

which is a contradiction. Therefore, the claim is true. This completes the proof. �

To construct a Lyapunov function for the proof of the global asymptotic stability
of the strain 1 dominant equilibrium E∗1 , we need to show the uniform persistence of
system (2.8) with respect to a function ρ1 defined below in (6.25), which implies the
force of infection by strain 1. To this end, we first define the function ρ : X→ R+

by

ρ(Φ(t,X0)) =
1
〈k〉

m∑
j=1

n∑
k=1

k2p(k)
∫ ∞

0

ijk(t, a)da.

We easily see that if R0 = R10 > 1, then there exists a nonempty interval (a1, ã1) ⊂
R+ such that β1(a) > 0 for all a ∈ (a1, ã1). Thus, the following set can not be empty
if R0 = R10 > 1,

Ω1 = {X(·) = (i11(·, ·), . . . , imn(·, ·)) ∈ Ω :
∫ ∞

0

β1(a)i1k(·, a)da > 0for some k}.

Following the definition in [21], we call system (2.8) uniformly weakly ρ-persistent
in Ω1 if there exists an ε > 0 such that

lim sup
t→∞

ρ(Φ(t,X0)) = lim sup
t→∞

1
〈k〉

m∑
j=1

n∑
k=1

k2p(k)
∫ ∞

0

ijk(t, a)da > ε, (6.16)

provided X0 ∈ Ω1. Moreover, we call system (2.8) uniformly strongly ρ-persistent
in Ω1 if there exists an ε > 0 such that

lim inf
t→∞

ρ(Φ(t,X0)) = lim inf
t→∞

1
〈k〉

m∑
j=1

n∑
k=1

k2p(k)
∫ ∞

0

ijk(t, a)da > ε,

provided X0 ∈ Ω1. We next prove the uniform weak ρ-persistence of system (2.8)
for R0 = R10 > 1.

Proposition 6.3. If R0 = R10 > 1, then system (2.8) is uniformly weakly ρ-
persistent in Ω1.

Proof. Since R0 = R10 > 1, there exist sufficiently small ε > 0 and λ > 0 such that( 〈k2〉
〈k〉
− ε
)
K̂1(λ) > 1. (6.17)
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For such ε > 0, we prove that inequality (6.16) holds. On the contrary, suppose
that (6.16) does not hold. Then, there exists a sufficiently large t0 > 0 such that

1
〈k〉

m∑
j=1

n∑
k=1

k2p(k)
∫ ∞

0

ijk(t, a)da ≤ ε,

for all t ≥ t0. From the second equation in (2.8), we have

b1k(t)

= i1k(t, 0)

=
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i1l(t, a)da

≥
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] k
〈k〉

n∑
l=1

lp(l)
∫ t

0

β1(a)π1(a)b1l(t− a)da

= k
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] ∫ t

0

β1(a)π1(a)Θ̃(b1(t− a))da, k ∈ Nn,

(6.18)

where b1(·) = (b11(·), b12(·), . . . , b1n(·)). Multiplying both sides by kp(k)/〈k〉, and
summing on k from 1 to n, we have

Θ̃(b1(t))

≥
n∑
k=1

k2p(k)
〈k〉

[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] ∫ t

0

β1(a)π1(a)Θ̃(b1(t− a))da (6.19)

=
[ 〈k2〉
〈k〉
− 1
〈k〉

n∑
k=1

m∑
j=1

k2p(k)
∫ ∞

0

ijk(t, a)da
] ∫ t

0

β1(a)π1(a)Θ̃(b1(t− a))da

=
( 〈k2〉
〈k〉
− ε
)∫ t

0

β1(a)π1(a)Θ̃(b1(t− a))da, ∀t ≥ t0.

Without loss of generality, we can assume that t0 = 0 by taking X(t0) = Φ(t0,X0)
as the new initial value X0. Then, since the boundedness of Θ̃(b1(t)) follows from
Lemma 4.1, we can take the Laplace transform of (6.19) for λ > 0, and obtain

Θ̃(b̂1(λ)) ≥ (
〈k2〉
〈k〉
− ε)K̂1(λ)Θ̃(b̂1(λ)), (6.20)

where

b̂1(λ) = (b̂11(λ), b̂12(λ), . . . , b̂1n(λ)), b̂1k(λ) =
∫ ∞

0

e−λtb1k(t)dt, k ∈ Nn,

Θ̃(b̂1(λ)) =
1
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

e−λtb1l(t)dt.

It is easy to see from the positivity of the solution that Θ̃(b̂1(λ)) > 0 for any
X0 ∈ Ω1. Hence, dividing both sides of (6.20) by Θ̃(b̂1(λ)), we have

1 ≥
( 〈k2〉
〈k〉
− ε
)
K̂1(λ),

which contradicts (6.17). This completes the proof. �
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To prove the uniform strong ρ-persistence of system (2.8) for R0 = R10 > 1,
we will use [21, Theorem 5.2] (see also [18, Section 8]). For this purpose, let us
consider a total trajectory of semiflow Φ, which is a function Y : R→ X such that
Y(t+ s) = Φ(s,Y(t)) for all t ∈ R and s ∈ R+. In the total trajectory, we have

ijk(t, a) = ijk(t− a, 0)πj(a) = bjk(t− a)πj(a), j ∈M, k ∈ Nn, (6.21)

for all t ∈ R and a ∈ R+.

Lemma 6.4. For a total trajectory Y(·), the following inequality holds.

1−
m∑
j=1

∫ ∞
0

ijk(t, a)da ≥
γ

k
∑m
j=1 β̄j + γ

, t ∈ R, k ∈ Nn. (6.22)

Proof. For all t ∈ R, we have

d
dt

[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
]

≥ −k
m∑
j=1

Θj(ij(t, ·))
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
]

+ γ

m∑
j=1

∫ ∞
0

ijk(t, a)da

≥ γ −
(
k

m∑
j=1

β̄j + γ
)[

1−
m∑
j=1

∫ ∞
0

ijk(t, a)da
]
, k ∈ Nn.

Hence, for arbitrary fixed r ∈ R and for all t > r, we have

1−
m∑
j=1

∫ ∞
0

ijk(t, a)da ≥
[
1−

m∑
j=1

∫ ∞
0

ijk(r, a)da
]
e−(k

Pm
j=1 β̄j+γ)(t−r)

+
γ

k
∑m
j=1 β̄j + γ

[1− e−(k
Pm

j=1 β̄j+γ)(t−r)], k ∈ Nn.

Taking r → −∞, we obtain (6.22) for all t ∈ R. This completes the proof. �

Now, we need the following additional assumption.

Assumption 6.5. For all j ∈ M, there exists a nonempty interval (aj , ãj) ⊂ R+

such that βj(a) > 0 for all a ∈ (aj , ãj).

It is easy to see that above assumption holds if Rj0 > 0 for all j ∈ M. Under
Assumption 6.5, we next prove the following lemma (see also [21, Lemma 9.12] and
[18, Proposition 9]).

Lemma 6.6. Suppose that Assumption 6.5 holds. For each fixed j ∈M, bjk(·) for
total trajectory Y(·) is identically zero on R for all k ∈ Nn, or it is strictly positive
on R for all k ∈ Nn.

Proof. Let us fix j ∈ M and let bj(t) = (bj1(t), bj2(t), . . . , bjn(t)). Suppose that
there exists a t1 ∈ R such that Θ̃(bj(t)) = 0 for all t ≤ t1. Then, from the second
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equation in (2.8), we have

bjk(t) = k
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] 1
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

βj(a)bjl(t− a)πj(a)da

= k
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] ∫ ∞

0

βj(a)πj(a)Θ̃(bj(t− a))da

= k
[
1−

m∑
j=1

∫ ∞
0

ijk(t, a)da
] ∫ t−t1

0

βj(a)πj(a)Θ̃(bj(t− a))da

≤ β̄jk
∫ t

0

Θ̃(bj(t− a))da

= β̄jk

∫ t

0

Θ̃(bj(a))da, k ∈ Nn,

(6.23)

for all t > t1. Multiplying both sides by kp(k)/〈k〉, and summing on k from 1 to n,
we have

Θ̃(bj(t)) ≤ β̄j
〈k2〉
〈k〉

∫ t

0

Θ̃(bj(a))da,

for all t > t1. From the Gronwall inequality, we see that Θ̃(bj(t)) = 0 for all t > t1.
Thus, Θ̃(bj(t)) = 0 for all t ∈ R, and this implies that bjk(·) is identically zero on
R for all k ∈ Nn.

Suppose that does not exist t1 ∈ R such that Θ̃(bj(t)) = 0 for all t ≤ t1. Then,
there exists a monotone decreasing sequence {t`}`∈N towards −∞ as `→ +∞ such
that Θ̃(bj(t`)) > 0 for all ` ∈ N. From the second equality in (6.23) and Lemma
6.4, we have

bjk(t) ≥
kγ

k
∑m
j=1 β̄j + γ

∫ ∞
0

βj(a)Θ̃(ij(t, a))da, t ∈ R, k ∈ Nn. (6.24)

Multiplying both sides by kp(k)/〈k〉, and summing on k from 1 to n, we have

Θ̃(bj(t)) ≥
〈k2〉γ

〈k〉(n
∑m
j=1 β̄j + γ)

∫ ∞
0

βj(a)Θ̃(ij(t, a))da

=
〈k2〉γ

〈k〉(n
∑m
j=1 β̄j + γ)

∫ t

0

βj(a)πj(a)Θ̃(bj(t− a))da+ Θ̂(bj(t)), t ∈ R,

where

Θ̂(bj(t)) =
〈k2〉γ

〈k〉(n
∑m
j=1 β̄j + γ)

∫ ∞
t

βj(a)πj(a)Θ̃(bj(t− a))da, t ∈ R.

Let J`(t) = Θ̃(bj(t+ t`)) and Ĵ`(t) = Θ̂(bj(t+ t`)) for t ∈ R and ` ∈ N. From the
above inequality, we have

J`(t) ≥
〈k2〉γ

〈k〉(n
∑m
j=1 β̄j + γ)

∫ t

0

βj(a)πj(a)J`(t− a)da+ Ĵ`(t), t ∈ R, ` ∈ R.

Since Ĵ`(0) = Θ̂(bj(t`)) > 0 and Ĵ`(·) is continuous at 0, it follows from [21,
Corollary B.6] that there exists a c ≥ 0, which does not depend on j, such that
J`(t) = Θ̃(bj(t + t`)) > 0 for all t > c. That is, Θ̃(bj(t)) > 0 for all t > c + t`.
Taking ` → +∞, t` → −∞ and hence, Θ̃(bj(t)) > 0 for all t ∈ R. This implies
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that Θ̃(bj(·)) is strictly positive on R. From (6.24) and Assumption 6.5, we see
that bjk(·) is strictly positive on R for all k ∈ Nn. This completes the proof. �

From Propositions 4.5 and 6.3 and Lemma 6.6, we can apply [21, Theorem 5.2]
to prove the following proposition, which states the uniform strong ρ-persistence of
system (2.8).

Proposition 6.7. If R0 = R10 > 1 and Assumption 6.5 holds, then system (2.8)
is uniformly strongly ρ-persistent in Ω1.

Let us define the function ρ1 : X → R+, which implies the force of infection by
strain 1:

ρ1(Φ(t,X0)) = Θ1(i1(t, ·)) =
1
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i1l(t, a)da, t ∈ R. (6.25)

To construct a Lyapunov function below, we need the uniform strong ρ1-persistence
of system (2.8) in Ω1 for R0 = R10 > 1. To this end, we apply [21, Corollary 4.22]
to prove the following proposition.

Proposition 6.8. If R0 = R10 > 1 and Assumption 6.5 holds, then system (2.8)
is uniformly strongly ρ1-persistent in Ω1.

Proof. Let Y(·) be a total trajectory with precompact range such that

inf
t∈R

ρ(Y(t)) > 0 and Y(0) = X0 ∈ Ω1.

We then have

ρ1(Y(0)) = Θ1(i1(0, ·)) =
1
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i1l(0, a)da > 0.

Hence, from [21, Corollary 4.22], there exists an ε0 > 0 such that

lim inf
t→+∞

ρ1(Φ(t,X0)) ≥ ε0,

provided X0 ∈ Ω1. This implies that system (2.8) is uniformly strongly ρ1-
persistent in Ω1. This completes the proof. �

From [21, Theorem 5.7] (see also [18, Theorem 8.3]), it follows that if R0 =
R10 > 1 and Assumption 6.5 hold, then the compact attractor A (see Proposition
4.5) includes a stable persistent attractor A1. From Lemma 6.4 and Proposition
6.8, we see that for a total trajectory Y(·) in A1, there exists an ε0 > 0 such that

i1k(t, 0) = b1k(t) ≥
kγ

k
∑m
j=1 β̄j + γ

ε0 = ε1 > 0, t ∈ R, k ∈ Nn.

Hence, from Lemma 4.1 and Theorem 6.1, we have

0 <
ε1

i∗1k(0)
≤ i1k(t, a)

i∗1k(a)
=
i1k(t− a, 0)
i∗1k(0)

≤ β̄1k

i∗1k(0)
<∞, (6.26)

for t ∈ R, a ≥ 0, and k ∈ Nn; provided R0 = R10 > 1 and Assumption 6.5 hold.
By (6.26), we can construct the Lyapunov function V1k(·), k ∈ Nn defined below.

To prove the global asymptotic stability of the strain 1 dominant equilibrium
E∗1 , we make the following additional assumption, which implies that the recovery
rate is homogeneous.

Assumption 6.9. γj(a) = γ > 0 for all a ≥ 0 and j ∈M.
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For the sake of simplicity, we now consider the equations of Sk, k ∈ Nn in (2.6).
Under Assumption 6.9, the equations of Sk, k ∈ Nn can be simplified as follows.

dSk(t)
dt

= γ −
[
k

m∑
j=1

Θj(ij(t, ·)) + γ
]
Sk(t), k ∈ Nn. (6.27)

Let S∗k = 1−
∫∞

0
i∗1k(a)da for all k ∈ Nn. Then, under Assumption 6.9, it satisfies

the equation

0 = γ − [kΘ1(i∗1(·)) + γ]S∗k , k ∈ Nn. (6.28)

We finally establish the following theorem on the global asymptotic stability of the
strain 1 dominant equilibrium E∗1 for R0 = R10 > 1.

Theorem 6.10. Suppose that Assumptions 6.5 and 6.9 hold. If R0 = R10 > 1
and R10 > Rj0 for all j ∈ M \ {1}, then the strain 1 dominant equilibrium E∗1 =
(i∗11(·), i∗12(·), . . . , i∗1n(·), 0, . . . 0) ∈ Ω is globally asymptotically stable in Ω1.

Proof. Let Y(·) be a total trajectory in A1 and Sk(·) = 1 −
∑m
j=1

∫∞
0
ijk(·, a)da,

k ∈ Nn, which satisfies (6.27). In what follows, for simplicity, we write Sk(t) as Sk
and ijk(t, a) as ijk for all j ∈M and k ∈ Nn. We construct the Lyapunov function

V1k(t) = S∗kg(
Sk
S∗k

) + k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

α1l(a)g
( i1l
i∗1l(a)

)
da, t ∈ R, k ∈ Nn,

where α1l(a) =
∫∞
a
β1(σ)i∗1l(σ)dσ, a ≥ 0, l ∈ Nn. By Lemma 6.4 and (6.26), V1k(t)

is bounded for all t ∈ R and k ∈ Nn. Using (6.27)-(6.28), the derivative of V1k(t)
along the solution trajectory is calculated as

dV1k

dt
=
(

1− S∗k
Sk

)dSk
dt

+ k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

α1l(a)
( 1
i∗1l(a)

− 1
i1l

)∂i1l
∂t

da

=
(

1− S∗k
Sk

)[
γ − (k

m∑
j=1

Θj(ij(t, ·)) + γ)Sk
]

+ k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

α1l(a)(
1

i∗1l(a)
− 1
i1l

)
[
− ∂i1l

∂a
− γi1l

]
da

=
(

1− S∗k
Sk

)
γ(S∗k − Sk) + (1− S∗k

Sk
)k
[
Θ1(i∗1(·))S∗k −

m∑
j=1

Θj(ij(t, ·))Sk
]

+ k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

α1l(a)
[
− ∂

∂a
g
( i1l
i∗1l(a)

)]
da (6.29)

= γS∗k

(
2− S∗k

Sk
− Sk
S∗k

)
+ k(S∗k − Sk)

m∑
j=2

Θj(ij(t, ·))

+ k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
1− S∗k

Sk
− Ski1l
S∗ki
∗
1l(a)

+
i1l

i∗1l(a)
]
da

+ k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
g
( i1l(t, 0)
i∗1l(0)

)
− g
( i1l
i∗1l(a)

)]
da
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= γS∗k

(
2− S∗k

Sk
− Sk
S∗k

)
+ k(S∗k − Sk)

m∑
j=2

Θj(ij(t, ·)) (6.30)

+ k
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
1− S∗k

Sk
− Ski1l
S∗ki
∗
1l(a)

+
i1l(t, 0)
i∗1l(0)

+ ln
i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)

]
da, k ∈ Nn. (6.31)

Note that from (6.3) and (6.4),
n∑
k=1

k2p(k)
S∗k
〈k〉

K1 = 1 (6.32)

and hence,
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
i1l(t, 0)
i∗1l(0)

da

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)K1i1l(t, 0)

=
n∑
l=1

lp(l)i1l(t, 0) =
n∑
k=1

kp(k)i1k(t, 0)

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
Ski1l

S∗ki
∗
1l(a)

da.

(6.33)

Let

V1(t) =
n∑
k=1

kp(k)V1k(t).

Then, from (6.31) and (6.33), we have

dV1

dt

= γ

n∑
k=1

kp(k)S∗k
(

2− S∗k
Sk
− Sk
S∗k

)
+

n∑
k=1

k2p(k)(S∗k − Sk)
m∑
j=2

Θj(ij(t, ·))

+
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
1− S∗k

Sk
+ ln

i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)
]
da.

(6.34)

For the last term in the right-hand side of (6.34), we have again from (6.32) that
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
1− S∗k

Sk
+ ln

i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)
]
da

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
2− i∗1l(0)

i∗1l(0)
− S∗k
Sk

+ ln
i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)
]
da

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
2− S∗k

Sk
+ ln

i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)
]
da
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−
n∑
l=1

lp(l)i∗1l(0)

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
2− S∗k

Sk
+ ln

i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)
]
da

−
n∑
k=1

kp(k)i1k(t, 0)
i∗1k(0)
i1k(t, 0)

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
2− S∗k

Sk
− Ski

∗
1k(0)i1l

S∗ki1k(t, 0)i∗1l(a)

+ ln
i1li
∗
1l(0)

i1l(t, 0)i∗1l(a)

]
da

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
− g(

S∗k
Sk

)− g(
Ski
∗
1k(0)i1l

S∗ki1k(t, 0)i∗1l(a)
)

+ ln
i1k(t, 0)
i∗1k(0)

i∗1l(0)
i1l(t, 0)

]
da

=
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
− g(

S∗k
Sk

)− g(
Ski
∗
1k(0)i1l

S∗ki1k(t, 0)i∗1l(a)
)
]
da

+
n∑
k=1

n∑
l=1

k2p(k)
S∗k
〈k〉

lp(l)K1i
∗
1l(0)

(
ln
i1k(t, 0)
i∗1k(0)

− ln
i1l(t, 0)
i∗1l(0)

)
. (6.35)

For the last term in the right-hand side of (6.35), we have
n∑
k=1

n∑
l=1

k2p(k)
S∗k
〈k〉

lp(l)K1i
∗
1l(0)

(
ln
i1k(t, 0)
i∗1k(0)

− ln
i1l(t, 0)
i∗1l(0)

)
=

n∑
k=1

n∑
l=1

k2p(k)
S∗k
〈k〉

lp(l)K1l
S∗l
〈k〉

n∑
r=1

rp(r)K1i
∗
1r(0)

(
ln
i1k(t, 0)
i∗1k(0)

− ln
i1l(t, 0)
i∗1l(0)

)
=

n∑
k=1

n∑
l=1

vkl

(
ln
i1k(t, 0)
i∗1k(0)

− ln
i1l(t, 0)
i∗1l(0)

)
, (6.36)

where

vkl = k2l2p(k)p(l)
S∗kS

∗
l

〈k〉2
K2

1

n∑
r=1

rp(r)i∗1r(0), k, l ∈ Nn.

Since vkl, k, l ∈ Nn is symmetric, the right-hand side of (6.36) is equal to zero.
Hence, combining (6.34) and (6.35), we obtain

dV1

dt
= γ

n∑
k=1

kp(k)S∗k
(

2− S∗k
Sk
− Sk
S∗k

)
+

n∑
k=1

k2p(k)(S∗k − Sk)
m∑
j=2

Θj(ij(t, ·))

+
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
− g
(S∗k
Sk

)
− g
( Ski

∗
1k(0)i1l

S∗ki1k(t, 0)i∗1l(a)

)]
da.

(6.37)
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It is easy to see from the arithmetic-geometric mean and the positivity of g(·)
that the first and third terms in the right-hand side of (6.37) are nonpositive. To
evaluate the second term, we define the following Lyapunov functions for strain
j ∈M \ {1}.

Vj(t) =
1
Kj

n∑
l=1

kp(k)
∫ ∞

0

αj(a)ijk(t, a)da, j ∈M \ {1},

where αj(a) is defined as in (5.6). Based on the proof of Theorem 5.2, we obtain

dVj
dt

=
n∑
k=1

k2p(k)SkΘj(ij(t, ·))−
〈k〉
Kj

Θj(ij(t, ·)), j ∈M \ {1}. (6.38)

Hence, from (6.32) and (6.37), we obtain the derivative of the Lyapunov function
V (t) =

∑m
j=1 Vj(t) as follows,

dV
dt

=
m∑
j=1

dVj
dt

= γ

n∑
k=1

kp(k)S∗k
(

2− S∗k
Sk
− Sk
S∗k

)
−

m∑
j=2

〈k〉
Kj

Θj(ij(t, ·))

+
n∑
k=1

k2p(k)(S∗k − Sk)
m∑
j=2

Θj(ij(t, ·)) +
m∑
j=2

n∑
k=1

k2p(k)SkΘj(ij(t, ·))

+
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
− g
(S∗k
Sk

)
− g
( Ski

∗
1k(0)i1l

S∗ki1k(t, 0)i∗1l(a)

)]
da

= γ

n∑
k=1

kp(k)S∗k(2− S∗k
Sk
− Sk
S∗k

) + 〈k〉
m∑
j=2

(
1
K1
− 1
Kj

)Θj(ij(t, ·))

+
n∑
k=1

k2p(k)
S∗k
〈k〉

n∑
l=1

lp(l)
∫ ∞

0

β1(a)i∗1l(a)
[
− g
(S∗k
Sk

)
− g
( Ski

∗
1k(0)i1l

S∗ki1k(t, 0)i∗1l(a)

)]
da.

Since R10 > Rj0 for all j ∈ M \ {1}, we have K1 > Kj for all j ∈ M \ {1}. Hence,
we see that V ′ ≤ 0, and thus, the alpha limit set of Y(·) must be contained in
M̃, which is the largest invariant subset of {(ijk)(j,k)∈M×Nn

∈ Ω1 : V ′ = 0}. The
equality V ′ = 0 holds if and only if

Sk(t) = S∗k ∀k ∈ Nn,
i1l(t, a)
i∗1l(a)

=
i1l(t− a, 0)
i∗1l(0)

=
i1k(t, 0)
i∗1k(0)

∀k, l ∈ Nn,

ijk(t, a) = 0 ∀j ∈M \ {1}, k ∈ Nn.

(6.39)

Thus, we can conclude that M̃ = {E∗1}. Since V (·) is non-increasing, 0 ≤ V (Y(t))
≤ V (E∗1 ) = 0 for all t ∈ R. This implies that A1 = {E∗1}, and therefore, the strain
1 dominant equilibrium E∗1 is globally asymptotically stable. This completes the
proof. �
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Note that the discussion in this section still holds even if we assume that the
reproduction number Rj0 for any strain j ∈ M \ {1} is the largest. In conclusion,
Theorem 6.10 implies that the competitive exclusion can occur in our general model
on complex networks in a sense that only one strain with the largest reproduction
number survives.

7. Numerical simulation

7.1. Two-strain case. In this section, we perform numerical simulation to il-
lustrate our theoretical results. We first consider the two-strain case, that is,
M = {1, 2}. We assume that the maximum degree of the network is 15, that
is, Nn = N15 = {1, 2, . . . , 15}. In this case, p(k) = Nk/N = 1/15. We fix the
following parameters.

γ1(a) = γ2(a) = γ = 2, β1(a) = β1(1 + sin a), β2(a) = β2e−a, a ≥ 0, (7.1)

where β1 and β2 are positive constants. Note that these parameters satisfy Assump-
tions 2.1, 6.5 and 6.9. In the numerical simulation, we assume that there exists a
maximum age a† = 10. This choice seems reasonable as the survival probability at
a† is almost zero (e−γa† = e−20 ≈ 2.0612 × 10−9). Let us define the total number
of nodes infected by strain 1 and 2 by

I1k(t) =
∫ a†

0

i1k(t, a)da, I2k(t) =
∫ a†

0

i2k(t, a)da, t ≥ 0, k ∈ N15, (7.2)

respectively. The initial condition is chosen as, for a ∈ [0, a†],

I1k(0) =
X

2
, I2k(0) =

X

2
, i1k(0, a) =

I1k(0)
a†

, i2k(0, a) =
I2k(0)
a†

, k ∈ N15,

where X ∈ (0, 1) denotes the uniform random variable.
First, we set β1 = 0.13 and β2 = 0.27. In this case, we have R10 ≈ 0.9403 < 1

and R20 ≈ 0.9299 < 1, and hence, R0 = R10 < 1. We see from Theorem 5.2 that
the disease-free equilibrium E0 is globally asymptotically stable. In fact, Figure 1
(a) shows that both of the numbers of nodes infected by strain 1 (I1k(t), k ∈ N15)
and strain 2 (I2k(t), k ∈ N15) converge to zero as time evolves.

Second, we set β1 = 0.17 and β2 = 0.34. In this case, we have R10 ≈ 1.2296 > 1
and R20 ≈ 1.1709 > 1, and hence, R0 = R10 > 1. We see from Theorem 6.10
that the strain 1 dominant equilibrium E∗1 is globally asymptotically stable. In
fact, Figure 1 (b) shows that the numbers of nodes infected by strain 1 converge to
positive values as time evolves, whereas the numbers of nodes infected by strain 2
converge to zero as time evolves.

Finally, we set β1 = 0.16 and β2 = 0.36. In this case, we have R10 ≈ 1.1573 > 1
and R20 ≈ 1.2398 > 1, and hence, R0 = R20 > 1. From Theorem 6.10 and the last
argument in Section 6, we see that the strain 2 dominant equilibrium is globally
asymptotically stable in this case. In fact, Figure 1 (c) shows that the numbers of
nodes infected by strain 1 converge to zero as time evolves, whereas the numbers
of nodes infected by strain 2 converge to positive values as time evolves.

In conclusion, all examples in Figure 1 illustrate our theoretical results, and the
competitive exclusion occurs in Figure 1 (b)-(c).
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Figure 1. Time variation of I1k(t) (red) and I2k(t) (blue), k ∈
N15. (a) β1 = 0.13 and β2 = 0.27 (R0 = R10 ≈ 0.9403 < 1). (b)
β1 = 0.17 and β2 = 0.34 (R0 = R10 ≈ 1.2296 > R20 ≈ 1.1709 >
1). (c) β1 = 0.16 and β2 = 0.36 (R0 = R20 ≈ 1.2398 > R10 ≈
1.1573 > 1).

7.2. Three-strain case. We next consider the three-strain case; that is, M =
{1, 2, 3}. We assume that the maximum degree of the network is 10, that is, Nn =
N10 = {1, 2, . . . , 10}. In this case, p(k) = Nk/N = 1/10. In addition to (7.1) and
(7.2), we fix the following parameters.

γ3(a) = γ = 2, β3(a) = β3
a

1 + a
, a ≥ 0,

I3k(t) :=
∫ a†

0

i3k(t, a)da, t ≥ 0, k ∈ N10,

where β3 is a positive constant, and a† is fixed to be 10 as in Section 7.1. Note
that γ3(a) and β3(a) satisfy Assumptions 2.1, 6.5 and 6.9. The initial condition is
chosen as follows.

I1k(0) =
X

3
, I2k(0) =

X

3
, I3k(0) =

X

3
, k ∈ N10,

i1k(0, a) =
I1k(0)
a†

, i2k(0, a) =
I2k(0)
a†

, i3k(0, a) =
I3k(0)
a†

, a ∈ [0, a†], k ∈ N10.

First, we set β1 = 0.2, β2 = 0.41 and β3 = 0.97. In this case, we have
R10 ≈ 0.9799 < 1, R20 ≈ 0.9565 < 1 and R30 ≈ 0.9416 < 1, and hence,
R0 = R10 < 1. From Theorem 5.2, we see that the disease-free equilibrium E0
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is globally asymptotically stable in this case. In fact, Figure 2 (a) shows that all of
the numbers of infected nodes converge to zero as time evolves.
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Figure 2. Time variation of I1k(t) (red), I2k(t) (blue) and I3k(t)
(green), k ∈ N10. (a) β1 = 0.2, β2 = 0.41 and β3 = 0.97 (R0 =
R10 ≈ 0.9799 < 1). (b) β1 = 0.25, β2 = 0.5 and β3 = 1.2 (R0 =
R10 ≈ 1.2249 > R20 ≈ 1.1665 > R30 ≈ 1.1648 > 1). (c) β1 =
0.24, β2 = 0.52 and β3 = 1.2 (R0 = R20 ≈ 1.2132 > R10 ≈
1.1759 > R30 ≈ 1.1648 > 1). (d) β1 = 0.24, β2 = 0.5 and β3 = 1.3
(R0 = R30 ≈ 1.2619 > R10 ≈ 1.1759 > R20 ≈ 1.1165 > 1).

Second, we set β1 = 0.25, β2 = 0.5 and β3 = 1.2. In this case, we have R10 ≈
1.2249 > 1, R20 ≈ 1.1665 > 1 and R30 ≈ 1.1648 > 1, and hence, R0 = R10 > 1.
From Theorem 6.10, we see that the strain 1 dominant equilibrium E∗1 is globally
asymptotically stable in this case. In fact, Figure 2 (b) shows that the numbers of
nodes infected by strain 1 converges to positive values as time evolves, whereas the
numbers of nodes infected by other strains converge to zero as time evolves.

Third, we set β1 = 0.24, β2 = 0.52 and β3 = 1.2. In this case, we have R10 ≈
1.1759 > 1, R20 ≈ 1.2132 > 1 and R30 ≈ 1.1648 > 1, and hence, R0 = R20 > 1.
From Theorem 6.10 and the last argument in Section 6, we see that the strain 2
dominant equilibrium is globally asymptotically stable in this case. In fact, Figure 2
(c) shows that the numbers of nodes infected by strain 2 converge to positive values
as time evolves, whereas the numbers of nodes infected by other strains converge
to zero as time evolves.

Finally, we set β1 = 0.24, β2 = 0.5 and β3 = 1.3. In this case, we have R10 ≈
1.1759 > 1, R20 ≈ 1.1665 > 1 and R30 ≈ 1.2619 > 1, and hence, R0 = R30 > 1.
From Theorem 6.10 and the last argument in Section 6, we see that the strain 3
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dominant equilibrium is globally asymptotically stable in this case. In fact, Figure
2 (d) shows that the numbers of nodes infected by strain 3 converge to positive
values as time evolves, whereas the numbers of nodes infected by other strains
converge to zero as time evolves. In conclusion, all examples in Figure 2 illustrate
our theoretical results, and the competitive exclusion occurs in Figure 2 (b)-(d).

8. Discussion

In this paper, we have constructed an infection age-structured multi-strain SIS
epidemic model (2.6) on complex networks. We have defined the reproduction num-
bers Rj0 for each strain j ∈ M by using the classical theory of renewal equations,
and defined the basic reproduction number R0 for the whole system by the max-
imum R0 = max{Rj0}j∈M = max{R10,R20, . . . ,Rm0} of them. We have proved
the asymptotic smoothness of solution semiflow Φ (see Proposition 4.4) and the
existence of a compact attractor A (see Proposition 4.5), which are needed for
the global stability analysis in Sections 5 and 6. We have proved that if R0 < 1,
then the disease-free equilibrium E0 = (0, 0, . . . , 0) ∈ Ω of system (2.8) is glob-
ally asymptotically stable (see Theorem 5.2), whereas if R0 = R10 > 1, then the
strain 1 dominant equilibrium E∗1 = (i∗11(·), i∗12(·), . . . , i∗1n(·), 0, . . . , 0) ∈ Ω exists
(see Theorem 6.1). Moreover, under the additional assumption that the recovery
rate is homogeneous (see Assumption 6.9), we have proved that if R0 = R10 > 1,
then the strain 1 dominant equilibrium E∗1 is globally asymptotically stable (see
Theorem 6.10). For the proof, we have constructed the Lyapunov function V1k(·),
k ∈ Nn, which is bounded by virtue of the uniform ρ1-persistence of system (2.8)
(see Proposition 6.8).

Since the discussion in Section 6 still holds even if we assume that R0 = Rj0 > 1
for any strain j ∈ M \ {1}, our theoretical results imply that the competitive
exclusion can occur in our model in the sense that only one strain with the largest
reproduction number survives. Numerical examples in Section 7 have supported
this statement for the cases of two-strain (see Figure 1) and three strain (see Figure
2). From our theoretical results, we can conjecture that the complex network
structure and the infection age structure may not essentially affect the occurrence
of the competitive exclusion in multi-strain epidemic models. However, we have
needed the additional assumption to prove Theorem 6.10 that the recovery rate is
homogeneous, and it will be left as an open problem that whether the competitive
exclusion can still occur even when the recovery rate is given by general function
γj(a) for all a ≥ 0 and j ∈M.

From previous studies, we can conjecture that mechanisms such as mutation [24],
reinfection [17] and superinfection [26, 11] can lead to the coexistence of multiple
strains in our model. As they will make the model more difficult to analyze, these
topics will also be left as open problems, which are important from both of the
mathematical and biological points of view.
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