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REMARKS ON A CLASS OF QUASILINEAR ELLIPTIC
SYSTEMS INVOLVING THE (P,Q)-LAPLACIAN

GUOQING ZHANG, XIPING LIU, SANYANG LIU

Abstract. We study the Nehari manifold for a class of quasilinear elliptic

systems involving a pair of (p,q)-Laplacian operators and a parameter. We

prove the existence of a nonnegative nonsemitrivial solution for the systems by
discussing properties of the Nehari manifold, and so global bifurcation results
are obtained. Thanks to Picone’s identity, we also prove a nonexistence result.

1. Introduction

Consider the quasilinear elliptic boundary-value problem

−∆pu = λa(x)|u|p−2u + λb(x)|u|α−1|v|β+1u

+
µ(x)

(α + 1)(δ + 1)
|u|γ−1|v|δ+1u in Ω

−∆qv = λd(x)|v|q−2v + λb(x)|u|α+1|v|β−1v

+
µ(x)

(β + 1)(γ + 1)
|u|γ+1|v|δ−1v in Ω

u = 0, v = 0 on ∂Ω ,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, λ > 0 is a real
parameter, and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p, q <
N .

Recently, many publications have appeared about semilinear and quaslinear sys-
tems which have been used in a great variety of applications. Stavrakakis and
Zographopoulos [8, 9] studied existence and bifurcation results for problem (1.1)
with a(x) = d(x) ≡ 0, using variational approach and global bifurcation theory.
Fleckinger, Manasevich, Stavrakakis and de Thelin [6] and Zographopoulos [11] ob-
tained some properties of the positive principal eigenvalue λ1 for the unperturbed
system

−∆pu = λa(x)|u|p−2u + λb(x)|u|α−1|v|β+1u in Ω

−∆qv = λd(x)|v|q−2v + λb(x)|u|α+1|v|β−1v in Ω
u = 0, v = 0 on ∂Ω

2000 Mathematics Subject Classification. 35B32, 35J20,35J50, 35P15.

Key words and phrases. Nehari manifold; (p,q)-Laplacian; variational methods.
c©2005 Texas State University - San Marcos.

Submitted July 16, 2004. Published February 8, 2005.

1



2 G. ZHANG, X. LIU, S. LIU EJDE-2005/20

Later, under the key condition∫
Ω

µ(x)|u1|γ+1|v1|δ+1dx < 0, (1.2)

where (u1, v1) is the positive normalized eigenfunction corresponding to λ1, Drabek,
Stavrakakis and Zographopoulos in [5] prove that there exists λ∗ > λ1 such that
Problem (1.1) has two nonnegative nonsemitrival solutions wherever λ ∈ (λ1, λ

∗).
i.e. λ = λ1 is a bifurcation point, and bifurcation is to the right when λ > λ1.

In this paper, under the condition∫
Ω

µ(x)|u1|γ+1|v1|δ+1dx > 0, (1.3)

we prove the existence of a nonnegative nonsemitrival solution for Problem (1.1)
when λ < λ1. i.e. the bifurcation is to the left. Combining this with the result of [5],
we obtain global bifurcation results for Problem (1.1), for which the corresponding
bifurcation diagrams are shown in Fig 1. In addition, a nonexistence result is proved
by using Picone’s identity when λ > λ1.

-

6

0 λ1

λ

‖(u, v)‖X

(a)
∫
Ω

µ(x)|u1|γ+1|v1|δ+1 dx > 0

-

6‖(u, v)‖X

0 λ1 λ∗
λ

b)
∫
Ω

µ(x)|u1|γ+1|v1|δ+1 dx < 0

Figure 1. Bifurcation diagrams for Problem (1.1)

This paper is organized as follows. In section 2, we introduce notation, give
some definitions, and state our basic assumptions. Section 3 is devoted to giving a
detailed description of Figure 1 (a). In section 4, we prove a nonexistence result.

1.1. Remarks. (1) Figure 1 shows how the sign of
∫
Ω

µ(x)|u1|γ+1|v1|δ+1dx deter-
mines the direction of bifurcation at the point λ = λ1.
(2) This paper gives a complete bifurcation result for Problem (1.1) using the ar-
guments developed in Allegretto and Huang [1] and by Brown and Zhang [4].

2. Notation and hypotheses

Let W 1,p
0 (Ω) denote the closure of the space C∞0 (Ω) with respect to the norm

‖u‖p = (
∫
Ω
|∇u|pdx)1/p. Let X denote the product space W 1,p

0 (Ω) × W 1,q
0 (Ω)

equipped with the norm

‖(u, v)‖X = ‖u‖p + ‖v‖q.

Now, we state some assumptions used in this paper.



EJDE-2005/20 QUASILINEAR ELLIPTIC SYSTEMS 3

(H1) Assume that α, β, γ, δ satisfy
α + 1

p
+

β + 1
q

= 1 ,

p < γ + 1 or q < δ + 1,
γ + 1

p∗
+

δ + 1
q∗

< 1 ,

1
(α + 1)(δ + 1)

+
1

(β + 1)(γ + 1)
< 1 ,

where p∗ = Np
N−p , q∗ = Np

N−p are the well-known critical exponents.
(H2) Assume a(x), b(x), d(x) are nonnegative smooth functions such that a(x) ∈

L
N
p (Ω) ∩ L∞(Ω), b(x) ∈ Lω1(Ω) ∩ L∞(Ω), d(x) ∈ L

N
q (Ω) ∩ L∞(Ω) and

|Ω+
1 | = |{x ∈ Ω : a(x) > 0}| > 0

|Ω+
2 | = |{x ∈ Ω : d(x) > 0}| > 0 ,

where b(x) 6≡ 0 and ω1 = p∗q∗/[p∗q∗ − (α + 1)q∗ − (β + 1)p∗].
(H3) µ(x) is a given smooth function which many change sign, and µ(x) ∈

Lω2(Ω) ∩ L∞(Ω), where ω2 = p∗q∗/[p∗q∗ − (γ + 1)q∗ − (δ + 1)p∗].

Lemma 2.1 ([1, 10]). There exists a number λ1 > 0 such that
(1)

λ1 = inf
(α+1

p

∫
Ω
|∇u|pdx + β+1

q

∫
Ω
|∇v|qdx)

(α+1
p

∫
Ω

a(x)|u|pdx + β+1
q

∫
Ω

d(x)|v|qdx +
∫
Ω

b(x)|u|α+1|v|β+1dx)
,

where the infimum is taken over (u, v) ∈ X
(2) There exists a positive function (u1, v1) ∈ X ∩ L∞(Ω), which is solution of

the system (1.2)
(3) The eigenvalue λ1 is simple in the sense that the eigenfunctions associated

with it are merely a constant multiple of each other
(4) λ1 is isolated, that is, there exists δ > 0 such that in the interval (λ1, λ1+δ)

there are no other eigenvalues of the system (1.2).

Definition 2.2. We say that (u, v) ∈ X is a weak solution of Problem (1.1) if for
all (ϕ, ξ) ∈ X,∫

Ω

|∇u|p−2∇u∇ϕdx = λ(
∫

Ω

a(x)|u|p−2uϕdx +
∫

Ω

b(x)|u|α−1|v|β+1uϕdx)

+
1

(α + 1)(δ + 1)

∫
Ω

µ(x)|u|γ−1|v|δ+1uϕdx∫
Ω

|∇v|q−2∇v∇ξdx = λ(
∫

Ω

a(x)|v|p−2vξdx +
∫

Ω

b(x)|u|α+1|v|β−1vξdx)

+
1

(β + 1)(γ + 1)

∫
Ω

µ(x)|u|γ+1|v|δ−1vξdx .

3. The case λ < λ1

It is well known that Problem (1.1) has a variational structure. i.e., weak solu-
tions of Problem (1.1) are critical points of the functional

I(u, v) = J(u, v)− λK(u, v)− 1
(γ + 1)(δ + 1)

M(u, v)
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where

J(u, v) =
α + 1

p

∫
Ω

|∇u|pdx +
β + 1

q

∫
Ω

|∇v|qdx,

K(u, v) =
α + 1

p

∫
Ω

a(x)|u|pdx +
β + 1

q

∫
Ω

d(x)|v|qdx +
∫

Ω

b(x)|u|α+1|v|β+1dx,

M(u, v) =
∫

Ω

µ(x)|u|γ+1|v|δ+1dx.

Clearly, I(u, v) ∈ C1(X, R).
Let Λλ be the Nehari manifold associated with Problem (1.1). i.e.,

Λλ = {(u, v) ∈ X : 〈I ′(u, v), (u, v)〉 = 0} (3.1)

It is clear that Λλ is closed in X and all critical points of I(u, v) must lie on Λλ.
So, (u, v) ∈ Λλ if and only if∫

Ω

|∇u|p dx− λ

∫
Ω

a(x)|u|p dx− λ

∫
Ω

b(x)|u|α+1|v|β+1 dx

=
1

(α + 1)(δ + 1)

∫
Ω

µ(x)|u|γ+1|v|δ+1 dx∫
Ω

|∇v|q dx− λ

∫
Ω

d(x)|v|q dx− λ

∫
Ω

b(x)|u|α+1|v|β+1 dx

=
1

(β + 1)(γ + 1)

∫
Ω

µ(x)|u|γ+1|v|δ+1 dx

(3.2)

Hence, for (u, v) ∈ Λλ, using α+1
p + β+1

q = 1, we have

I(u, v) = (
1

p(δ + 1)
+

1
q(γ + 1)

− 1
(γ + 1)(δ + 1)

)
∫

Ω

µ(x)|u|γ+1|v|δ+1 dx (3.3)

Now, we define the following disjoint subsets of Λλ:

Λ+
λ = {(u, v) ∈ Λλ :

∫
Ω

µ(x)|u|λ+1|v|δ+1 dx < 0}

Λ0
λ = {(u, v) ∈ Λλ :

∫
Ω

µ(x)|u|λ+1|v|δ+1 dx = 0}

Λ−λ = {(u, v) ∈ Λλ :
∫

Ω

µ(x)|u|λ+1|v|δ+1 dx > 0}

Let 0 < λ < λ1, and consider the eigenvalue problem

−∆pu− λ(a(x)|u|p + b(x)|u|α+1|v|β+1) = µM |u|p−1u Ω

−∆qv − λ(d(x)|v|q + b(x)|u|α+1|v|β+1) = µM |v|q−1v Ω .
(3.4)

Then, there exists µM > 0 such that∫
Ω

|∇u|p dx− λ

∫
Ω

a(x)|u|p dx− λ

∫
Ω

b(x)|u|α+1|v|β+1 dx ≥ µM

∫
Ω

|u|p dx∫
Ω

|∇v|q dx− λ

∫
Ω

d(x)|v|q dx− λ

∫
Ω

b(x)|u|α+1|v|β+1 dx ≥ µM

∫
Ω

|v|q dx

(3.5)
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for every (u, v) ∈ X. Thus, Λ+
λ is empty, Λ0

λ = {(0, 0)} and Λλ = Λ−λ ∪ {(0, 0)}.
Clearly, I(u, v) > 0 whenever (u, v) ∈ Λ−λ and I(u, v) is bounded below by on Λ−λ .
i.e., inf(u,v)∈Λ−λ

I(u, v) ≥ 0.

Theorem 3.1. Assume (H1)–(H3) and the condition (1.3). Then Problem (1.1)
has a nonnegative nonsemitrivial solution for every λ ∈ (0, λ1).

Proof. Let {(un, vn)} ⊂ Λ−λ be a minimizing sequence; i.e., limn→∞ I(un, vn) =
inf(u,v)∈Λ−λ

I(u, v). Since

I(un, vn) = (
1

p(δ + 1)
+

1
q(γ + 1)

− 1
(γ + 1)(δ + 1)

)
∫

Ω

µ(x)|un|γ+1|vn|δ+1 dx

using (3.2) (3.5) and p < γ + 1 or q < δ + 1, we have

I(un, vn) ≥ µM [(
α + 1

p
− α + 1

γ + 1
)
∫

Ω

|un|p dx + (
β + 1

q
− β + 1

γ + 1
)
∫

Ω

|vn|q dx] .

Then {(un, vn)} is bounded in X, and so we may assume (un, vn) ⇀ (u0, v0) ∈ X
and un → u0 in Lγ+1(Ω), vn → v0 in Lδ+1(Ω).

First we claim that inf(u,v)∈Λ−λ
I(u, v) > 0. Indeed, suppose inf(u,v)∈Λ−λ

I(u, v) =
0. i.e. limn→∞ I(un, vn) = 0, we have∫

Ω

µ(x)|un|γ+1|vn|δ+1 dx → 0

and ∫
Ω

|∇un|p − λa(x)|un|p − λb(x)|un|α+1|vn|β+1 dx

=
1

(α + 1)(δ + 1)

∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx → 0 (3.6)∫
Ω

|∇vn|q − λd(x)|vn|q − λb(x)|un|α+1|vn|β+1 dx

=
1

(β + 1)(γ + 1)

∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx → 0 (3.7)

Moreover, by [5, Lemma 2.1] the compactness of the operators K implies∫
Ω

|∇un|p − λa(x)|un|p − λb(x)|un|α+1|vn|β+1 dx

→
∫

Ω

|∇u0|p − λa(x)|u0|p − λb(x)|u0|α+1|v0|β+1 dx = 0∫
Ω

|∇vn|q − λd(x)|vn|q − λb(x)|un|α+1|vn|β+1 dx

→
∫

Ω

|∇v0|q − λd(x)|v0|q − λb(x)|u0|α+1|v0|β+1 dx = 0

From λ ∈ (0, λ1) and the variational characterization of λ1, we have (un, vn) →
(u0, v0) = (0, 0). Let

ũn =
un

(‖un‖p
p + ‖vn‖q

q)1/p
, ṽn =

vn

(‖un‖p
p + ‖vn‖q

q)
1
q

(3.8)

which are bounded sequences. Indeed, we have

‖ũn‖p
p + ‖ṽn‖q

q = 1 for every n ∈ N
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Thus, we may assume (ũn, ṽn) ⇀ (ũ0, ṽ0). Using that α+1
p + β+1

q = 1, we have∫
Ω

b(x)|ũn|α+1|ṽn|β+1 dx =
∫

Ω

b(x)|un|α+1|vn|β+1 dx
/

(‖un‖p
p + ‖vn‖q

q)

Moreover the range of exponents implies∫
Ω

µ(x)|un|γ+1|vn|δ+1 dx

‖un‖p
p + ‖vn‖q

q
≤
|µ|ω2 |un|γ+1

p∗ |vn|δ+1
q∗

‖un‖p
p + ‖vn‖q

q
→ 0

Using (3.6) and (3.7), we obtain∫
Ω

|∇ũn|p − λa(x)|ũn|p − λb(x)|ũn|α+1|ṽn|β+1 dx → 0 ,∫
Ω

|∇ṽn|q − λd(x)|ṽn|q − λb(x)|ũn|α+1|ṽn|β+1 dx → 0 .

Following the argument used on {(ũn, ṽn)} above, for {(un, vn)} we have∫
Ω

|∇ũn|p − λa(x)|ũn|p − λb(x)|ũn|α+1|ṽn|β+1 dx

→
∫

Ω

|∇ũ0|p − λa(x)|ũ0|p − λb(x)|ũ0|α+1|ṽ0|β+1 dx = 0 ,∫
Ω

|∇ṽn|q − λd(x)|ṽn|q − λb(x)|ũn|α+1|ṽn|β+1 dx

→
∫

Ω

|∇ṽ0|q − λd(x)|ṽ0|q − λb(x)|ũ0|α+1|ṽ0|β+1 dx = 0 ,

and (ũn, ṽn) → (ũ0, ṽ0) = (0, 0) in X, which contradict ‖(ũn, ṽn)‖X = 1, for every
n ∈ N.

Now we show that (un, vn) → (u0, v0) in X. Suppose otherwise, then ‖u0|p <
lim infn→∞ ‖un‖p, ‖v0‖p < lim infn→∞ ‖vn‖q, and∫

Ω

|∇u0|p − λ

∫
Ω

a(x)|u0|p − λ

∫
Ω

b(x)|u0|α+1|v0|β+1 dx

< lim inf
n→∞

∫
Ω

|∇un|p − λa(x)|un|p − λb(x)|un|α+1|vn|β+1 dx = 0∫
Ω

|∇v0|q − λd(x)|v0|q − λb(x)|u0|α+1|v0|β+1 dx

< lim inf
n→∞

∫
Ω

|∇vn|q − λd(x)|vn|q − λb(x)|un|α+1|vn|β+1 dx = 0 .

Since λ ∈ (0, λ1) and (u0, v0) 6≡ (0, 0), we have∫
Ω

|∇u0|p − λa(x)|u0|p − λb(x)|u0|α+1|v0|β+1 dx > 0 ,∫
Ω

|∇v0|q − λd(x)|v0|q − λb(x)|u0|α+1|v0|β+1 dx > 0

which is a contradiction. Hence (un, vn) → (u0, v0) in X. �

From [4, Theorem 2.3], (u0, v0) is a local minimizer on Λ−λ and (u0, v0) 6∈ Λ0
λ =

{(0, 0)}, then (u0, v0) is a critical point of I(u, v). This solution is nonnegative due
to the fact that I(|u|, |v|) = I(u, v), and it is also nonsemitrivial by [5, Lemma 2.5].
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Theorem 3.2. Assume (H1)–(H3) and the condition (1.3), if λn → λ−1 and
(un, vn) is a minimizer of I(un, vn) on Λ−λ , then (un, vn) → (0, 0).

Proof. First we show that {(un, vn)} is bounded in X. Suppose not, then we may
assume without loss of generality that ‖un‖p → ∞, ‖vn‖q → ∞, as n → ∞. Let
(ũn, ṽn) are the sequence introduced by (3.8). The boundedness of (ũn, ṽn) implies
(ũn, ṽn) ⇀ (ũ0, ṽ0) in X. Then∫

Ω

|∇ũn|p − λna(x)|ũn|p − λnb(x)|ũn|α+1|ṽn|β+1 dx

→
∫

Ω

|∇ũ0|p − λ1a(x)|ũ0|p − λ1b(x)|ũ0|α+1|ṽ0|β+1 dx = 0∫
Ω

|∇ṽn|q − λnd(x)|ṽn|q − λnb(x)|ũn|α+1|ṽn|β+1 dx

→
∫

Ω

|∇ṽ0|q − λ1d(x)|ṽ0|q − λ1b(x)|ũ0|α+1|ṽ0|β+1 dx = 0 .

Since (un, vn) is a minimizer of I(un, vn) on Λ−λ , we have

I(un, vn) = (
1

p(δ + 1)
+

1
q(γ + 1)

− 1
(γ + 1)(δ + 1)

)
∫

Ω

µ(x)|un|γ+1|vn|δ+1 dx → 0

Thus, we must have (ũn, ṽn) → (ũ0, ṽ0) 6≡ (0, 0) and ũ0 = kpu1, ṽ = kqv1 for some
positive constant k, it is easy to see

lim
n→∞

(‖un‖p
p + ‖vn‖q

q)(
γ + 1

p
+

δ + 1
q

− 1)
∫

Ω

µ(x)|ũn|γ+1|ṽn|δ+1 dx = 0 .

Hence limn→∞
∫
Ω

µ(x)|ũn|γ+1|ṽn|δ+1 dx =
∫
Ω

µ(x)|ũ0|γ+1|ṽ0|δ+1 dx, it follows that
k = 0. But as ‖ũ0‖p

p + ‖ṽ0‖q
q = 1, that is impossible. Hence {(un, vn)} is bounded.

Thus we may assume (un, vn) ⇀ (u0, v0) in X. Then, using the same argument
on (un, vn) as used on (ũn, ṽv). It follows that (un, vn) → (0, 0), and so the proof
is complete. �

We remark that the two theorems above give a rather detailed description of the
bifurcation diagram in Figure 1(a).

4. The case λ > λ1

In this section, we prove a nonexistence result for Problem (1.1) by using the
Picone identity.

Lemma 4.1 (Picone identity [1]). Let v > 0, u ≥ 0 be differentiable, and let

L(u, v) = |∇u|p + (p− 1)
up

vp
|∇v|p − p

up

vp−1
∇u∇v|∇v|p−2

R(u, v) = |∇u|p −∇(
up

vp−1
)|∇v|p−2∇v

Then L(u, v) = R(u, v) ≥ 0.

Moreover, L(u, v) = 0 a.e. on Ω if and only if ∇(u
v ) = 0 a.e. on Ω. For the next

theorem we will assume
(H3’) u(x) is a nonnegative smooth function, and µ(x) ∈ Lω2(Ω)∩L∞(Ω), where

ω2 = p∗q∗/[p∗q∗ − (γ + 1)q∗ − (δ + 1)p∗]
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Theorem 4.2. Assume (H1), (H2), (H3’) and Condition (1.3). Then Problem
(1.1) has no nonnegative nonsemitrivial solution, for every λ > λ1.

Proof. On the contrary, let un ∈ C∞0 (Ω), vn ∈ C∞0 (Ω). We apply Picone’s identity
to the functions un, u and vn, v, to obtain

0 ≤
∫

Ω

|∇un|p dx +
∫

Ω

up
n

up−1
∆pu dx (4.1)

0 ≤
∫

Ω

|∇vn|q dx +
∫

Ω

vq
n

vq−1
∆qv dx (4.2)

Using that α+1
p + β+1

q = 1, then multiplying (4.1) by α+1
p and (4.2) by β+1

q , and
then adding, we obtain

α + 1
p

∫
Ω

|∇un|p dx +
β + 1

q

∫
Ω

|∇vn|q dx

− α + 1
p

∫
Ω

λa(x)up
n dx− β + 1

q

∫
Ω

λd(x)vq
n dx

≥ α + 1
p

∫
Ω

λb(x)up
nuα+1−pvβ+1 dx +

β + 1
q

∫
Ω

λb(x)vq
n|u|α+1vβ+1−q dx

+
1

p(δ + 1)

∫
Ω

µ(x)up
nuγ+1−pvδ+1 dx +

1
q(γ + 1)

∫
Ω

µ(x)vq
nuγ+1vδ+1−q dx

(4.3)
Now, put θ1 = (α + 1)(β + 1)/q and θ2 = (α + 1)(β + 1)/p, then

uα+1
n vβ+1

n = uα+1
n vβ+1

n

vθ2

uθ1

uθ1

vθ2
≤ α + 1

p
up

nuα+1−pvβ+1 +
β + 1

q
vq

nuα+1vβ+1−q

Since λ > 0 and b(x) ≥ 0, we obtain

λ

∫
Ω

b(x)uα+1
n vβ+1

n dx

≤ α + 1
p

∫
Ω

λb(x)up
nuα+1−pvβ+1 dx +

β + 1
q

∫
Ω

λb(x)vq
nuα+1vβ+1−q dx

(4.4)

Using that α+1
p + β+1

q = 1 and 1
(α+1)(δ+1) + 1

(β+1)(γ+1) < 1, we obtain

γ + 1
p

+
δ + 1

q
> (α + 1)(β + 1) > 1 .

Then

uγ+1
n vδ+1

n <
γ + 1

p
up

nuγ+1−pvδ+1 +
δ + 1

q
vq

nuγ+1vδ+1−q .

Since µ(x) ≥ 0, we have

1
p(δ + 1)

∫
Ω

µ(x)up
nuγ+1−pvδ+1 dx +

1
γ + 1

∫
Ω

µ(x)vq
nuγ+1vδ+1−q dx

=
1

(γ + 1)(δ + 1)

[γ + 1
p

∫
Ω

µ(x)up
nuγ+1−pvδ+1 dx

+
δ + 1

q

∫
Ω

µ(x)vq
nuγ+1vδ+1−q dx

]
≥ 1

(γ + 1)(δ + 1)

∫
Ω

µ(x)uγ+1
n vδ+1

n dx

(4.5)
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Combining (4.3), (4.4) and (4.5), we have

α + 1
p

∫
Ω

|∇un|p dx +
β + 1

q

∫
Ω

|∇vn|q dx− α + 1
p

∫
Ω

λa(x)up
n dx

− β + 1
q

∫
Ω

λd(x)vq
n dx− λ

∫
Ω

b(x)uα+1
n vβ+1

n dx

>
1

(γ + 1)(δ + 1)

∫
Ω

µ(x)uγ+1
n vδ+1

n dx

(4.6)

Let (un, vn) converge to (u1, v1) ∈ X, then

α + 1
p

∫
Ω

|∇un|p dx +
β + 1

q

∫
Ω

|∇vn|q dx− α + 1
p

∫
Ω

λa(x)up
n dx

− β + 1
q

∫
Ω

λd(x)vq
n dx− λ

∫
Ω

b(x)uα+1
n vβ+1

n dx

→ α + 1
p

∫
Ω

|∇u1|p dx +
β + 1

q

∫
Ω

|∇v1|q dx− α + 1
p

∫
Ω

λa(x)up
1 dx

− β + 1
q

∫
Ω

λd(x)vq
1 dx− λ

∫
Ω

b(x)uα+1
1 vβ+1

1 dx ,

1
(γ + 1)(δ + 1)

∫
Ω

µ(x)uγ+1
n vδ+1

n dx → 1
(γ + 1)(δ + 1)

∫
Ω

µ(x)uγ+1
1 vδ+1

1 dx

From the variational characterization of λ1 and λ > λ1, we have

α + 1
p

∫
Ω

|∇u1|p dx +
β + 1

q

∫
Ω

|∇v1|q dx− α + 1
p

∫
Ω

λa(x)up
1 dx

− β + 1
q

∫
Ω

λd(x)vq
1 dx− λ

∫
Ω

b(x)uα+1
1 vβ+1

1 dx < 0 .

Since
∫
Ω

µ(x)uγ+1
1 vδ+1

1 dx > 0, we have 1
(γ+1)(δ+1)

∫
Ω

µ(x)uγ+1
1 vδ+1

1 dx > 0, which
is a contradiction that completes the proof. �
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