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ABSTRACT 

All programs possess a certain degree of irregularity in their control flow and memory ac-

cess patterns. The more irregular a program is, the harder it tends to be to parallelize and 

port to accelerators such as Graphics Processing Units (GPUs). Additionally, efficient ac-

celerator-based computing devices are rapidly spreading since they provide more perfor-

mance and better energy efficiency than conventional computers. Multi-accelerator sys-

tems are already on the horizon and will likely be commonplace in the near future. 

Hence, it is important to learn how to efficiently run irregular computations on multi-ac-

celerator platforms. I have rewritten four single-GPU programs, each with different 

amounts of irregularity, so that they can exploit multiple GPUs simultaneously. By ana-

lyzing shared variables and data dependencies within the programs, I was able to create a 

general approach for parallelizing programs across multiple accelerators. I then compared 

the performance of these codes against their single-GPU counterparts to determine the 

performance benefit and how irregularity impacts that benefit. My results show that 

mostly regular programs and programs that display control flow irregularity tend to ob-

tain a significant performance boost. However, programs that display memory access ir-

regularity tend not to gain any speedup from multiple GPUs. 
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INTRODUCTION 

Recently, usage of GPUs as general purpose accelerators has sharply increased [15]. 

GPUs are used in high-performance computing because of their high computational abil-

ity and energy efficiency. Computation-heavy algorithms are able to be processed in a 

reasonable amount of time with GPUs, opening up further opportunities to solve im-

portant problems. Because GPUs tend to be more energy efficient than the main proces-

sor [14], they are also becoming more prevalent in both PCs and handheld devices. Addi-

tionally, multi-accelerator systems are starting to be increasingly common as scaling be-

comes simpler with these systems. GPUs can be used to solve many different problems, 

both regular and irregular. A more regular program tends to behave in a statically predict-

able manner, making it easier to program and optimize for performance. For example, 

without knowing any of the inputs of a matrix-vector multiplication algorithm, I can still 

easily predict the program behavior. This is because there will be uniform calculations 

across the data structure regardless of inputs. However, a more irregular algorithm like an 

operation on a binary search tree is very different. The program behavior is largely de-

pendent on the inputs given to it, making it unpredictable and harder to port to an acceler-

ator. Irregular algorithms are very common and include codes that build, traverse, and up-

date irregular data structures such as trees and graphs. Examples of irregular algorithms 

include optimization theory [4], social networks [5], system modeling [6], compilers [7], 

discrete-event simulation [8], and meshing [9]. 

Irregularity can be described by two main measures. The first kind of irregularity depicts 

the control flow of the program. Control Flow Irregularity (CFI) makes an algorithm’s 

behavior statically unpredictable as the results are data dependent. We see CFI in while 
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loops and if statements. That means that, depending on the input, the algorithm may need 

to run more or fewer iterations to find a solution. The amount of CFI in GPU code can be 

calculated by the following equation [1]: 

Control-Flow Irregularity (CFI) = 
divergent_branches

executed_instructions
 

The second kind of irregularity describes the memory accesses of the program. Memory 

Access Irregularity (MAI) also makes the algorithm’s behavior statically unpredictable 

because, again, the results are data dependent and vary from input to input. We see 

Memory Access Irregularity in pointer chasing and other means of accessing memory. 

The amount of MAI can be calculated by the following equation [1]: 

Memory-Access Irregularity (MAI) = 
replayed_instructions

issued_instructions
 

MAI and CFI increase data dependencies and thus require careful analysis to determine 

how to program around these obstacles. Thus, programs that possess these kinds of irreg-

ularity are more difficult to handle with accelerators, and even more so with multiple ac-

celerators. Different programs can possess varying degrees of one or both types of irregu-

larity, so it is important to understand the behavior of the code before mitigating the ef-

fects of irregularity on performance. 

In order to use multi-accelerator systems and obtain good performance from irregular 

codes, I must program around the irregularity obstacles. Since GPUs are high-throughput 

devices, they are built for large numbers of computations with high data reuse [16]. Even 

though GPUs provide performance advantages through computation, sending data be-
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tween the CPU and the GPU and accessing memory on the GPU remain the biggest bot-

tlenecks. By optimizing the code to minimize communication and to use memory as effi-

ciently as possible, it may be possible to obtain good performance on these systems. 

APPROACH 

The first algorithm I used is a fractal algorithm that calculates a picture (bitmap of pix-

els). This fractal code is fairly regular, except for some CFI. The CFI results in the load 

imbalance (when some threads have more work than others) because the darker pixels 

take more computation than the lighter pixels. The second algorithm I picked is the N-

Body algorithm, which calculates the movement of each star in a cluster. For every 

“timestep” (iteration in the loop), I need the current position, mass, velocity, and acceler-

ation of each star in the cluster and then I can calculate where that particular star will 

move next (and update its position) based on the gravitational force of the other stars. 

This algorithm is mostly regular. Next, I used the Maximally Independent Set (MIS) al-

gorithm, which helps, for example, in the parallelization of other codes by determining a 

set of independent tasks that the threads can work on without the need to synchronize 

with other threads. The MIS algorithm has both MAI and CFI. Finally, I have the Con-

nected Component (CC) algorithm, which is used as a pre-processing step for many other 

graph algorithms. The CC algorithm finds all reachable vertices for every vertex. This al-

gorithm also displays irregularity in both dimensions (MAI and CFI). 

For each algorithm, I have a certain input, or group of inputs, that I picked to ensure that 

the GPUs have enough data to be fully loaded. It is important for the GPUs to be fully 

loaded to get the best performance. For the Fractal algorithm, I compute a subset of the 

Mandelbrot set with 39357 by 39357 pixels and 256 levels of gray. I used that particular 
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width because that maximally loads the GPUs I am working on. Additionally, 256 shades 

of gray gives a nice distribution of light and dark pixels for computation. For the N-Body 

algorithm, I use 200,000 bodies (or stars) and 10 time steps. For both the MIS and the CC 

algorithms, I use a USA road map with 23 million vertices and 58 million edges. This in-

put has one connected component with 45% of the vertices in the MIS. I also use a UK 

web domain graph with 18 million vertices and 523 million edges. I determined that this 

input has 1,059 connected components and 56.9% of the nodes are in the MIS. 

Since the GPU is a co-processor and not a standalone processor like the CPU, GPUs can-

not operate by themselves. Instead, they need to interact with the CPU to be given data 

and to send data back. Figure 1 illustrates how a typical multi-GPU system sends data. If 

one of the GPUs of the system needs to send data to the other GPU, it must first go 

through the PCIe bus to get to the CPU. Then the CPU will send the data back through 

the PCIe bus to the other GPU.

 

Fig. 1: A multi-GPU system 

With multiple accelerators, there will be a certain amount of unavoidable communication, 

since data has to be sent from the CPU to the GPU and then from one GPU to another for 
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certain algorithms. Since communication is relatively very time consuming, it is im-

portant to minimize and hide the communication as much as possible. Additionally, send-

ing the data from one GPU to the other is much slower than accessing the data once it is 

there, which increases the need to optimize the codes around it. 

When converting an algorithm 

from single-GPU to multi-GPU, 

there are certain things that must 

be considered. For example, I 

must determine which variables 

need to be shared between the 

GPUs. These variables need to 

be sent from one GPU to the 

other for correctness and there-

fore we will need GPU to GPU 

communication. As I studied the 

shared variables within the pro-

grams, I determined if they were 

read-only, write-only, or read/write variables. Depending on what kind of shared variable 

it is, I handle it differently. For example, a shared variable that is read-only will need to 

be handled differently than a variable that is read/write and might require synchroniza-

tion, etc. In Figure 2, I show a detailed diagram of my implementation for parallelizing 

the MIS code on multiple GPUs. Let k be equal to the number of nodes in the input graph 

Fig. 2: Detailed depiction of the implementation 

to parallelize the MIS code on multiple GPUs. In 

this case, there are 2 GPUs with the first getting 

80% of the work and the second getting 20%. 

n * k 

k k 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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and let n be the number of GPUs I am working with. Then, to correctly parallelize the 

MIS code, I implemented the following steps as outlined in Figure 2: 

1. Allocate an array on the CPU with k * n elements. However, each GPU just gets 

an array that is k elements long. 

2. Initialize the data for all k nodes. 

3. Send the initialized data to each GPU. 

4. Each GPU runs a kernel to calculate its own portion of the data. In this example, 

one GPU processes 80% of the data and the other processes 20%. 

5. Each GPU sends its entire array to the CPU. 

6. The CPU merges the data. In the merge, the CPU compares all the values sent 

from one GPU to the values from the other GPU, looking to see if any GPU deter-

mined a node to be “in” or “out” of the set. 

7. The consolidated data of k elements in size are then sent back to each GPU for the 

next round of kernel calls. This process repeats until no more updates are made. 

I similarly created implementation models for the remaining codes that I worked with. 

Additionally, there are other considerations when converting to multi-GPUs such as how 

and when to switch between the GPUs and whether or not to use asynchronous operations 

and wait statements. 

RELATED WORK 

Previous work by Burtscher et al. [1] gave a formula to calculate MAI and CFI and was 

the first to show were programs lie in that 2D space. Using this work, I was better able to 

understand the performance of the four algorithms that my research dealt with specifi-
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cally. However, a number of papers study irregularity in GPU codes and suggest optimi-

zations to reduce that irregularity. Wu et al. studied the source of control flow irregularity 

[18]. Zhang et al. proposed techniques to eliminate CFI and MAI [19]. Hetherington et 

al. demonstrates that even with the presence of CFI, algorithms can achieve good perfor-

mance on GPUs [21]. Through my experiments, I found the same to be true on my multi-

GPU codes as well. Additionally, some papers study the hardware improvements that can 

be made to be able to better handle irregularity on GPUs [17, 20, 22, 23]. 

Other works [2, 3] have studied multi-GPU implementations that differ from this ap-

proach in a few key ways. Yang et al. [2] studied a hybrid implementation of a mostly 

regular algorithm, matrix multiplication, by experimenting with using MPI and/or 

OpenMP in addition to the GPU. Zhai et al. [3] studied a non-oscillatory central mesh 

computation using 1 to 3 GPUs and then comparing it to using a CPU with OpenMP. Alt-

hough the implementation is given explicitly in a list, there is no mentioning of source 

code optimizations to get the most out of GPU parallelization. The paper concludes that 

in some experiments the multiple GPU approach was better and in others the CPU ap-

proach was better, but did not explain why. It is clear from previous works that there is 

much work to be done to fully understand multi-GPU behavior. 

Due to the increasing utilization of GPUs to parallelize different algorithms, understand-

ing the implications of irregularity on multi-GPU performance is very important to study. 

In turn, such insights can lead to more scientific knowledge. To the best of my 

knowledge, this is the first in-depth analysis of the effect of irregularity on the multi-GPU 
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performance of different algorithms. I analyze programs with a broad range of irregular-

ity (from mostly regular to very irregular) to understand the resulting impact on perfor-

mance. 

METHODOLOGY 

In order to get a variety of results, I tested on three different machines to obtain our meas-

urements. One machine has two Titan X GPUs [10]. The second machine has two K20 

GPUs [11], and the third has GTX 680 [13] and GTX 480 [12] GPUs. Hence, some of my 

measurements were on two identical GPUs like the two K20s or the two Titan Xs. Other 

measurements were on different GPUs, which I could get from using the GTX 680 and 

GTX 480 or the Titan X and K40 GPUs. I then evaluated various combinations of per-

centages of the workload assigned to each GPU. When using two GPUs, I ran the pro-

grams using 100% and 0%, 99% and 1%, 98% and 2%, etc. to test every possible combi-

nation. The user can determine the percentages (for one, two, or more GPUs, assuming 

the system is appropriately equipped with that particular number of GPUs) simply by 

specifying appropriate command-line parameter. For example, to run the fractal code 

with 39357 width, 256 depth, and 50% on one GPU and 50% on the other, you could run 

it with “./fractal 39357 256 50 50”. In the codes, I have error checks to ensure that the 

percentages add up to 100. 

For every program, I must first determine how to successfully partition the data between 

the GPUs. To do that, I look at shared variables between GPUs and what data must be 

sent from one GPU to the other. Once I have distinguished which variables are read-only, 

write-only, and read-write, I can analyze how much data needs to be sent via these varia-
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bles. In case of the fractal code, since the algorithm is determining pixel values on a bit-

map, no communication between GPUs is required. The shared variable is write-only and 

each thread will write to its own spot in the array. For the N-Body code, since in every 

time step the GPUs need access to all current position data to calculate position values for 

its particular portion of the work, I send the entire position data for all the bodies to each 

GPU. As they calculate updated position values for the bodies, I have to resend all the po-

sition data for the next time step. In the MIS code, the entire node status array – which 

holds information about whether the node is in the maximal independent set or not – is 

given to each GPU since it needs to be able to access that information to calculate up-

dated values. After each GPU has the updated data, it sends the entire node status array to 

the CPU. The CPU then consolidates the array to where it contains all the updated values 

from each GPU. From here the entire updated node status array is sent back to each GPU 

for the next round of computations. Similar to the MIS code, the CC code also must have 

access to all the node status values (for the CC code, the node status array contains infor-

mation about whether or not a particular node is in the connected component or not). 

With each iteration, the GPUs will compute their portion of the data and then send those 

updated values to be merged. If there is still work to be done, the GPUs will receive the 

entire updated node status values for the next iteration of computation. 

EXPERIMENTAL RESULTS 

In the charts below I show results of running the four algorithms with two GPUs. For 

each algorithm, I have a corresponding input. Figure 3 shows the results of running the 

Fractal with 39357 width and 256 depth. Next, in Figure 4, I show the results of running 

the N-Body code with 200,000 bodies and 10 time steps on two GPUs. Again, I choose 
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these numbers because they fully load the GPUs. In Figure 5 and Figure 6, I show the re-

sults of running the MIS code with Figure 5 showing the UK input graph and Figure 6 

showing the USA input graph results. In Figure 7, I show the results of using three GPUs 

to compute the MIS code. In this chart, I use the WEST input, another road map graph 

with 6 million nodes and 15 million edges. Here we see that the multi-GPU codes can 

work for more than just two GPUs, but we still see a similar trend with the results. There 

is no optimal workload distribution as the single GPU implementation is the best. In Fig-

ure 8 and Figure 9, I similarly show the results of running the CC code with Figure 8 dis-

playing the UK input graph and Figure 9 showing the USA input graph. 

Fig. 3: Experimental results of running the Fractal code with 2 GPUs 
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Fig. 4: Results of running N-Body code with 2 GPUs 

 

Fig. 5: Results of running the MIS code with the UK input 
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 Fig. 6: Results of running MIS code with the USA input file  

Fig. 7: Results of running the MIS code with the WEST input, another road map, with 

three GPUs 
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Fig. 8: Results of running the CC code with the UK input 

Fig. 9: Results of running the CC code with the USA input file 
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code, but the optimal distribution for the Fractal is at 44% and 56% or 41% and 59% (de-

pending on which GPU is used). Having an optimal distribution close to 50% and 50% 

with the N-Body makes sense since it is a mostly regular algorithm. However, the reason 

why the distribution is not also closer to 50% and 50% for the Fractal is because of the 

Control Flow Irregularity the code possesses. 

In contrast, we see that there is no clear optimal workload distribution for the MIS and 

CC codes. Additionally, I obtain no speedup for these codes using two GPUs. No matter 

if I am using two GPUs or three, we see the similar behavior that there is no performance 

gain. The Memory Access Irregularity that both of these codes exhibit seems to be too 

much of a burden on performance and, therefore, I do not gain any performance when us-

ing two GPUs. 

Since the Fractal code possesses Control Flow Irregularity but still achieves a considera-

ble speedup, it seems that CFI does not hurt performance that much. However, the CC 

and MIS codes possess both CFI and MAI, and do not show any speedup nor optimal 

workload distribution. Therefore, it appears that MAI has more of an impact on perfor-

mance than CFI because it increases the need for expensive and slow data transfers be-

tween GPUs. 

CONCLUSIONS & FUTURE WORK 

As my results illustrate, the irregularity that a program may or may not possess greatly 

influences the speedup and the best GPU percentage. For example, the N-Body code, 

which is mostly regular, has a best percentage of 49%/51% on two GPUs. The Fractal, 

however, has a best GPU percentage of 44%/56% and 41%/59% because of the Control 

Flow Irregularity present in the code. For both the MIS and the CC codes, the single GPU 
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works best. It can therefore be inferred that Memory Access Irregularity, which both the 

MIS and CC algorithms possess, increases the need for slow data transfers and thus 

makes it difficult to obtain speedup. However, the speedup attained on the regular codes 

is very substantial. On N-Body, I got 1.90 speedup on the Titan X’s and 1.98 on the 

K20’s. For the Fractal, I got 1.89 speedup on the Titan X’s and 1.94 on the K20’s. Again, 

this suggests that Control Flow Irregularity does not impact performance as much as 

Memory Access Irregularity. 

My codes work for any number of GPUs and also for different types of GPUs within the 

same system. Additionally, for big problem sizes, regular codes could definitely benefit, 

as can be seen by the speedups I obtained. However, using multiple GPUs for irregular 

codes may not be worth it because of the effects of Memory Access and Control Flow Ir-

regularity. 

Future work can be done to try to mitigate the effects of communication on those algo-

rithms for speedup. For example, Peer-to-Peer (P2P) direct GPU communication may 

help reduce the impact of communication and MAI. Additionally, using compressed mes-

sages (where I use data compression to send less data), and/or a fixed-point approach 

(where I hold off on communicating until it is absolutely necessary) may also help. This 

future work can serve as a way to better understand how to use these approaches for 

multi-GPU programming – particularly P2P programming, which is a relatively new 

technique. I hope that my findings will help others better understand the behavior of ir-

regular codes when applied to multi-GPU systems. 
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