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BLOW-UP OF SOLUTIONS TO A NONLINEAR WAVE
EQUATION

SVETLIN GEORGIEV GEORGIEV

ABSTRACT. We study the solutions to the the radial 2-dimensional wave equa-
tion
sinh 2
2r2
— Y — ry—1
x(1,7) = X0 € Hrad’ xt(l,m) =x1 € Hrad )

where r = |z| and z in R2. We show that this Cauchy problem, with values into
a hyperbolic space, is ill posed in subcritical Sobolev spaces. In particular, we
construct a function g(,r) in the space LP([0, 1]LY ), with %Jr% =3—-7,0<

v <1,p>1,and 1 < g < 2, for which the solution satisfies lim¢ o ||x|| 7+ =
rad

Xtt — —Xr — Xrr =9,
r

00. In doing so, we provide a counterexample to estimates in [I.

1. INTRODUCTION

In this paper, we study the properties of the solutions to the Cauchy problem

1 sinh(2yx)
Xtt TXT XT’I + 27’2 g(ta T)7 ( )
X(L,7) =xo € Hl;, xe(1,7) = x1 € HI', (1.2)

X
where g € LP([0,1]LZ ,), —|—% =3-70<y<L,p>1,1<q¢<2r=|x|
r€R2 and t € [0,1].

The homogeneous problem, i.e. (|1.1)) with ¢ = 0, has been investigated by several
authors; see for example [T p. 89-141], [I0], [11], and references therein. For the

non-homogeneous problem, we construct function g in L?([0, 1]LY, ), and a solution

X to (LI)—(T.2) such that lim,_g ||)’<||Hrwad = 00. This implies that (LI)—(L.2) is an
ill posed problem, and provides a counter example to [Il pages 3-4, Eq. (9)].

Equation is obtained from the wave map equation with a source term when
r € R? and the target is the hyperboloid H? : u? + u3 — u3 = —1, H? — R3. Let
us consider the equation

1
P

upe — D — (Jug|* = |Vau[*)u = g(t, ),
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2 SVETLIN G. GEORGIEV EJDE-2004/77
when z € R? and the target is the hyperboloid H? : u? + u3 — v = —1, H? — R3.
Equation is a wave map equation with a source term, where
2 2 2 2
[ue|® = uy, + uz — ujy,
2 2 2
|v£u| - |VT1U| + ‘vmzu‘ )

2 _ 2 2 2 L
Vo, ul® = ui,, +uy,, —us,, i=1,2.

Let ¢ = (q1, g2, g3), with

1 sinh® y cos
q1 = cosh x cos ¢1 (xet — Ax) + 2 sinh y cos ¢1 + #,
1 . h3 .
go = cosh x sin ¢1(x¢t — Ax) + — sinh x sin ¢ + w
T T
q3 = sinh xg.

For the hyperboloid H?, we have the parametric representation

u = (ur,u2,u3), (1.3)

w1 = sinh x cos ¢1, (1.4)

ug = sinh x sin ¢4, (1.5)

uz =coshyx, x>0, ¢ €][0,2n]. (1.6)

Let 1 = rcos ¢y, zo = rsin¢;. Then from , we get that y satisfies (1.1)).
Our main result is as follows.

Theorem 1.1. Let % + % =3—-7,p>1,1<q<2 0<+vy<1. Then there exist
function g € LP([0,1]LY ,) and solution X to (L.I)—(1.2)) such that

tim 1, = 0.

Note that the case p = 1, ¢ = 2 which is the energy case can not be reached by
the setting in this theorem.

2. PRELIMINARY RESULTS

Let f be a real-valued function satisfying
(H1) f € €?[0,00),
(H2) f(0)=0, f(1) = f'(1) = 0.

As an example of a function satisfying (H1)-(H2), we have

flz) =1 —2z)2x. (2.1)

Certainly f € C2[0,0); therefore, (H1) holds. Note that f(0) = 0 and f'(z) =
—2(1 —2)z + (1 — 2)? thus f(1) = f/(1) = 0; therefore, (H2) holds.

In addition, assume that:

(H3) s +2=3-70<y<lp>1, g¢>1

(H4) 0<a<2-¢,8>0

(H5) Either 8> a with £ < 4 azpl)
Note that when (H3) holds, ¢ < 2; because if ¢ > 2 then 3—~ = %+ % <1+1=2,
from where v > 1 which contradicts 0 < v < 1.

0rﬁ<awith§>
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Let 2'/® = —r—. Then 2%/* = 7#22/(”
2/ _ 7%122/(1 922/ _ 2B(a+2p) iZQ/a
ot at ’ ot2 a? t2 ’
22/ 2 1 22/ 2
= —2za —_— = .
or - or? 12
Let f be a function satisfying (H1)—(H2) and let
f(r?) forr <1,
. 2.2
X {0 forr > 1, (22)
243
= —?T‘Qf,(’l"z) for r <1, (2.3)
0 for r > 1,
4ﬁ2 4/« 2/« 2ﬂ(a+2ﬂ) 2/ 2/
By = Zz/af”(ZQ/a) +fl(22/a)7 (2.5)
g — % - tQé/a B2 + Sin;r(g;() fOr T é tﬁ/av (2 6)
0 for r > tﬁ/", ’
and let
B sz/a forrﬁtﬁ/o‘
0 for r > tP/.

Note that x is a solution of (1.1)—(1.2). Indeed, for z < 1 we have

2
Xt = —£ZQ/Qf/(Z2/a)7

AR s e 28+ 28) 22,
Xt = —g 2o f1(&2 ) + T S (),
- 2 Lo 2/a
X’l'_tﬁ/azaf(z )?

_ 4 a p 2 o
Xrr = t@22/ fI/(Z2/ ) + Tlfl(zw )-

o o

Then, for z < 1, we have

sinh2y By 4 sinh(2Y)
o T EDT T ge SO

Lemma 2.1. Under Assumptions (H1)-(H5), the function g defined by (2.6)) is in
the space LP([0,1]LY ).

rad

_ 1_ _
Xtt — ;Xr — Xrr +

Proof. Note that

q —
lolt:, = |

. . 1
By making the change of variable r = za ¢8/¢,

th/e B 4 sinh(27)

q
rdr.

@

1 1
d?":t'g/o‘—zifldz7 rdr=te 25714y
o

o
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(with ¢ fixed) and
28 1 . _
ta 1 4 sinh(2
ol =" [ [P — s Bas S0’

2% 2/a

a2 +2(1-q)
< /\Bl|qza 1dz+027/ |B2|qza_ 2

ﬁ(l a) sinh( 2X L2-1y
’ 222/ =

2_
zaldz

Let
1 1 1. . _
h(2y) |2
L= [ |Bi|%25 7z, L= [ |Bs|?257'dz, Iy = sinh(2x)
0 0 0 | 2z%/«

From the definition of B; and Bs and since (H1) and (H4) hold (we note that
o € (0,1) because 1 < ¢ < 2), we have |B;|%7za 1 € €[0,1], | By|92a 1 € C[0, 1].
Then I1 < oo, Iy < oo. Now we consider I3. Let B be constant for which

B —2cosh(2y)x’ > 0.

2_
2otz

Such a constant B exists because y(z2/*) and y’(2%/®) are bounded functions for
z € [0,1] and supp ¥ C [0,1], supp X’ C [0, 1]. Let

p(z) = Bz*/* —sinh(2y).
Then 5
p(z) = Ez%_l(B —2cosh(2y)x') >0 Vze[0,1].

Consequently, p(z) is an increasing function for z € [0, 1]. Therefore, p(z) > p(0) =
0 for all z € [0,1] or Bz?/® > sinh(2y) for z € [0,1]. Then

BZZ/a
<
Is _/0 ‘ 222/

= 12— _ 289
||9||%3ad < Gyt 2 4 gyta 179

q 2_1
dz = const < oco.

Consequently,

and from here

gllpe < étsa2 4 atan—w
Lrad

boase (Y e 28
ooz <71 [ 52 [ <o
0 0

because (H5) holds. Here ¢4, ¢2, ¢3, €1, 2, ¢1, C2, C1, C2 are positive constants. [

As special notation we have
H*(R"™) = F;Q(R”), 0<s<oo
where (see [T, p. 94, def. 2])
F54(R™) = B3 ,(R"), —o0o<s< o0.
As in [B, p. 30-31], when f(r) is a function with compact support in [0, 1], we have

1 1/2
1z, o= (22180 s 1 i)
where Apf = f(r+h)— f(r), 0 <~y < 1.
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Lemma 2.2. Under assumptions (H1)-(H5), the function x., defined by (2.2)) is
in the space H] |

Proof. By definition of the norm,

1 1
Pl = [ 070 [ 15 02 = 62 Prar

Using the Mean Value Theorem,
el = | e / NP OR(r+ P — P Prdr
/ h~ <1+27>/ |F (O (h* + 2rh)?r dr dh
< Ql/o p~(+27) /0 (h*r + 4r2h3 + 4r3h?) dr dh

1 4
ht 4
— B2 (2 T3 4 p2yah
Ql/o (2 tghtt )

1 4 1 1
Q1 2 27)—&-5@13_27-&-@12_277
where @1 is positive constant. Therefore, ||xo || A, S Q- for some constant Q3 and
Xo € H;Yad' U

Lemma 2.3. Under Assumptions (H1)-(H5), the function x1 defined by (2.3)) is
in the space H;Y;ll.

Proof. We have that L2, ; — H;g:il. On the other hand
452 52
halls, =25 [ o176 Par = —/ AT < oo

because f(r?) € C[0,1]. Consequently, x; € H

rad :
PROOF OF MAIN RESULT

Let (H1)-(H5) hold. By @.1)), f(2%®) = (1 — 2%/*)22%/*. Let g be defined
by (2.6) and y by (2.7). From Lemma g € LP([0, 1]Lq 4)- Also, we have
(1,7) = Xo, X¢(1,7) = x1. From Lemma [2.2, ¥(1,7) € H.,, and from Lemma
3 xi(l,r) € H;’adl. Therefore, x is solution of . (L2). Let 6 = 8/ which is
in (0,1]. Then

HX\

E

2

i, = [ 70 [ o) frara) =1 e

Then . o . .
e R <o)
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Note that the numerator of the above expression is
=[0% — (r+ h)*P(r + h)* — (6> — r*)*r?
= (0% —r*)(2rh + h*) (6% — 3r%) + (3r* — 20*)(2rh + h*)* + (2rh + h*)®.
For r € (£, %) we have
L > (3r? = 26%)(2rh + h?)* + (2rh + h?)3
= (2rh + h?*)%(3r? — 20% + 2rh + h?)
= (2rh + h?)?[2r® + (r + h)* — 267].

For h e ((V2—3)0,1) and 7 € (3, ),

1
r+h2§+\/§9—§9:\/§9,
(r+h)* > 202
Therefore, for h € ((v/2 — %)0, 1) and r € (g —)

L > (2rh + h?)?2r% > h*r?,
r+h o 2 ‘2>h8r4

() = 1)

- 912 !
Consequently
1 < 18,5
12/ h‘(l“”/ﬁ " i dh
(V2-1)6 g 0
I 0° ¢
= ﬁ/ h7*27(— - —)dh
37 1
= 1— 2 _ 8*2798*27
6 x 27 x 64605.(8 — 2) { (V2-3) }
37 37 .

6 x 27 x 6465.(8 —27) 6 x 27 x 64(8 — 27)(V2Z — 1)8-2
which approcahes zero as § — 0. From this statement and (2.8)), we obtain
lim ¥ = oc.
2.1. Comments. Let (H1)-(H5) hold. By [2.1), f(2%/) = (1 — 2%/®)22%/®. Then
the function y defined by (2.7)) is a solution to the Cauchy problem
1
Xtt — ;XT — Xrr = 91 (t,’/’), (29)

X(1,7) = X0 € Hp\y, xt(lﬂ“) X1 € Hlg', (2.10)

where x, and y; are the functions defined with ( and (| -7

{?21 — fﬁm By forr < tﬁ/a
g1 =

0 for r > th/e.
Then because of (H5),
(220

Uoasp Uoasp_2ep
H91||I£p([0,1]m oS 11/ tod 2pdt+lz/ ez dt < oo,
ra 0 0
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where 11, o are positive constants. In [2| Corollary 1.3] it is proved that

||>Z‘|C([0,1]H]ad) < ||Xc>||1ﬁ1rjad + ||X1||Hgd;1 +llgullzrqoee, -

Therefore, ¥ is in C([0, 1] H_. ;).

rad
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