Electronic Journal of Differential Equations, Vol. 2004(2004), No. 77, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

BLOW-UP OF SOLUTIONS TO A NONLINEAR WAVE EQUATION

SVETLIN GEORGIEV GEORGIEV

ABSTRACT. We study the solutions to the the radial 2-dimensional wave equation

$$\chi_{tt} - \frac{1}{r}\chi_r - \chi_{rr} + \frac{\sinh 2\chi}{2r^2} = g,$$

$$\chi(1, r) = \chi_0 \in \dot{H}_{\mathrm{rad}}^{\gamma}, \quad \chi_t(1, r) = \chi_1 \in \dot{H}_{\mathrm{rad}}^{\gamma - 1},$$

where r=|x| and x in \mathbb{R}^2 . We show that this Cauchy problem, with values into a hyperbolic space, is ill posed in subcritical Sobolev spaces. In particular, we construct a function g(t,r) in the space $L^p([0,1]L^q_{\mathrm{rad}})$, with $\frac{1}{p}+\frac{2}{q}=3-\gamma, 0<\gamma<1, p\geq 1$, and $1< q\leq 2$, for which the solution satisfies $\lim_{t\to 0}\|\bar\chi\|_{\dot H^\gamma_{\mathrm{rad}}}=\infty$. In doing so, we provide a counterexample to estimates in [1].

1. Introduction

In this paper, we study the properties of the solutions to the Cauchy problem

$$\chi_{tt} - \frac{1}{r}\chi_r - \chi_{rr} + \frac{\sinh(2\chi)}{2r^2} = g(t, r),$$
(1.1)

$$\chi(1,r) = \chi_{\circ} \in \dot{H}_{\mathrm{rad}}^{\gamma}, \quad \chi_{t}(1,r) = \chi_{1} \in \dot{H}_{\mathrm{rad}}^{\gamma-1}, \tag{1.2}$$

where $g \in L^p([0,1]L^q_{\mathrm{rad}})$, $\frac{1}{p} + \frac{2}{q} = 3 - \gamma$, $0 < \gamma < 1$, $p \ge 1$, $1 < q \le 2$, r = |x|, $x \in \mathbb{R}^2$, and $t \in [0,1]$.

The homogeneous problem, i.e. (1.1) with $g \equiv 0$, has been investigated by several authors; see for example [1, p. 89-141], [10], [11], and references therein. For the non-homogeneous problem, we construct function g in $L^p([0,1]L^q_{\rm rad})$, and a solution $\bar{\chi}$ to (1.1)–(1.2) such that $\lim_{t\to 0} \|\bar{\chi}\|_{\dot{H}^{\gamma}_{\rm rad}} = \infty$. This implies that (1.1)–(1.2) is an ill posed problem, and provides a counter example to [1, pages 3–4, Eq. (9)].

Equation (1.1) is obtained from the wave map equation with a source term when $x \in \mathbb{R}^2$ and the target is the hyperboloid $\mathcal{H}^2: u_1^2 + u_2^2 - u_3^2 = -1$, $\mathcal{H}^2 \hookrightarrow \mathbb{R}^3$. Let us consider the equation

$$u_{tt} - \Delta u - (|u_t|^2 - |\nabla_x u|^2)u = q(t, x),$$

²⁰⁰⁰ Mathematics Subject Classification. 35L10, 35L50.

Key words and phrases. Wave equation, blow-up, hyperbolic space.

^{©2004} Texas State University - San Marcos.

Submitted March 16, 2004. Published May 26, 2004.

when $x \in \mathbb{R}^2$ and the target is the hyperboloid $\mathcal{H}^2 : u_1^2 + u_2^2 - u_3^2 = -1, \, \mathcal{H}^2 \hookrightarrow \mathbb{R}^3$. Equation (1) is a wave map equation with a source term, where

$$|u_t|^2 = u_{1t}^2 + u_{2t}^2 - u_{3t}^2,$$

$$|\nabla_x u|^2 = |\nabla_{x_1} u|^2 + |\nabla_{x_2} u|^2,$$

$$|\nabla_{x_i} u|^2 = u_{1x_i}^2 + u_{2x_i}^2 - u_{3x_i}^2, \quad i = 1, 2.$$

Let $q = (q_1, q_2, q_3)$, with

$$q_1 = \cosh \chi \cos \phi_1 (\chi_{tt} - \Delta \chi) + \frac{1}{r^2} \sinh \chi \cos \phi_1 + \frac{\sinh^3 \chi \cos \phi_1}{r^2},$$

$$q_2 = \cosh \chi \sin \phi_1 (\chi_{tt} - \Delta \chi) + \frac{1}{r^2} \sinh \chi \sin \phi_1 + \frac{\sinh^3 \chi \sin \phi_1}{r^2},$$

$$q_3 = \sinh \chi g.$$

For the hyperboloid \mathcal{H}^2 , we have the parametric representation

$$u = (u_1, u_2, u_3), (1.3)$$

$$u_1 = \sinh \chi \cos \phi_1, \tag{1.4}$$

$$u_2 = \sinh \chi \sin \phi_1, \tag{1.5}$$

$$u_3 = \cosh \chi, \quad \chi \ge 0, \quad \phi_1 \in [0, 2\pi].$$
 (1.6)

Let $x_1 = r \cos \phi_1$, $x_2 = r \sin \phi_1$. Then from (1), we get that χ satisfies (1.1). Our main result is as follows.

Theorem 1.1. Let $\frac{1}{p} + \frac{2}{q} = 3 - \gamma$, $p \ge 1$, $1 < q \le 2$, $0 < \gamma < 1$. Then there exist function $g \in L^p([0,1]L^q_{\rm rad})$ and solution $\bar{\chi}$ to (1.1)–(1.2) such that

$$\lim_{t\to 0} \|\bar{\chi}\|_{\dot{H}^{\gamma}_{\mathrm{rad}}} = \infty.$$

Note that the case p=1, q=2 which is the energy case can not be reached by the setting in this theorem.

2. Preliminary results

Let f be a real-valued function satisfying

- (H1) $f \in \mathcal{C}^2[0,\infty)$,
- (H2) f(0) = 0, f(1) = f'(1) = 0.

As an example of a function satisfying (H1)-(H2), we have

$$f(x) = (1 - x)^2 x. (2.1)$$

Certainly $f \in \mathcal{C}^2[0,\infty)$; therefore, (H1) holds. Note that f(0) = 0 and f'(x) = $-2(1-x)x + (1-x)^2$ thus f(1) = f'(1) = 0; therefore, (H2) holds.

In addition, assume that:

- $\begin{array}{ll} \text{(H3)} \ \ \frac{1}{p}+\frac{2}{q}=3-\gamma, \ 0<\gamma<1, \ p\geq 1, \quad q>1 \\ \text{(H4)} \ \ 0<\alpha\leq 2-q, \ \beta>0 \end{array}$
- (H5) Either $\beta > \alpha$ with $\frac{\beta}{\alpha} < \frac{q}{2p(q-1)}$ or $\beta < \alpha$ with $\frac{\beta}{\alpha} > \frac{q(2p-1)}{2p}$.

Note that when (H3) holds, $q \le 2$; because if q > 2 then $3 - \gamma = \frac{1}{n} + \frac{2}{n} < 1 + 1 = 2$, from where $\gamma > 1$ which contradicts $0 < \gamma < 1$.

Let
$$z^{1/\alpha} = \frac{r}{t^{\beta/\alpha}}$$
. Then $z^{2/\alpha} = \frac{r^2}{t^{2\beta/\alpha}}$,
$$\frac{\partial z^{2/\alpha}}{\partial t} = -\frac{2\beta}{\alpha} \frac{1}{t} z^{2/\alpha}, \quad \frac{\partial^2 z^{2/\alpha}}{\partial t^2} = \frac{2\beta(\alpha + 2\beta)}{\alpha^2} \frac{1}{t^2} z^{2/\alpha},$$

$$\frac{\partial z^{2/\alpha}}{\partial r} = \frac{2}{t^{\frac{\beta}{2}}} z^{\frac{1}{\alpha}}, \quad \frac{\partial^2 z^{2/\alpha}}{\partial r^2} = \frac{2}{t^{\frac{2\beta}{2}}}.$$

Let f be a function satisfying (H1)–(H2) and let

$$\chi_{\circ} = \begin{cases} f(r^2) & \text{for } r \leq 1, \\ 0 & \text{for } r \geq 1, \end{cases}$$
 (2.2)

$$\chi_1 = \begin{cases} -\frac{2\beta}{\alpha} r^2 f'(r^2) & \text{for } r \le 1, \\ 0 & \text{for } r \ge 1, \end{cases}$$
 (2.3)

$$B_{1} = \frac{4\beta^{2}}{\alpha^{2}} z^{4/\alpha} f''(z^{2/\alpha}) + \frac{2\beta(\alpha + 2\beta)}{\alpha^{2}} z^{2/\alpha} f'(z^{2/\alpha}), \tag{2.4}$$

$$B_2 = z^{2/\alpha} f''(z^{2/\alpha}) + f'(z^{2/\alpha}), \tag{2.5}$$

$$g = \begin{cases} \frac{B_1}{t^2} - \frac{4}{t^{2\beta/\alpha}} B_2 + \frac{\sinh(2\bar{\chi})}{2r^2} & \text{for } r \le t^{\beta/\alpha}, \\ 0 & \text{for } r \ge t^{\beta/\alpha}, \end{cases}$$
 (2.6)

and let

$$\bar{\chi} = \begin{cases} f(z^{2/\alpha}) & \text{for } r \le t^{\beta/\alpha} \\ 0 & \text{for } r \ge t^{\beta/\alpha}. \end{cases}$$
 (2.7)

Note that $\bar{\chi}$ is a solution of (1.1)–(1.2). Indeed, for $z \leq 1$ we have

$$\bar{\chi}_{t} = -\frac{2\beta}{t\alpha} z^{2/\alpha} f'(z^{2/\alpha}),$$

$$\bar{\chi}_{tt} = \frac{4\beta^{2}}{\alpha^{2}} \frac{1}{t^{2}} z^{\frac{4}{\alpha}} f''(z^{2/\alpha}) + \frac{2\beta(\alpha + 2\beta)}{\alpha^{2}} \frac{z^{2/\alpha}}{t^{2}} f'(z^{2/\alpha}),$$

$$\bar{\chi}_{r} = \frac{2}{t^{\beta/\alpha}} z^{\frac{1}{\alpha}} f'(z^{2/\alpha}),$$

$$\bar{\chi}_{rr} = \frac{4}{t^{\frac{2\beta}{\alpha}}} z^{2/\alpha} f''(z^{2/\alpha}) + \frac{2}{t^{\frac{2\beta}{\alpha}}} f'(z^{2/\alpha}).$$

Then, for $z \leq 1$, we have

$$\bar{\chi}_{tt} - \frac{1}{r}\bar{\chi}_r - \bar{\chi}_{rr} + \frac{\sinh 2\bar{\chi}}{2r^2} = \frac{B_1}{t^2} - \frac{4}{t^{\frac{2\beta}{\beta}}}B_2 + \frac{\sinh(2\bar{\chi})}{2r^2} \equiv g,$$

Lemma 2.1. Under Assumptions (H1)-(H5), the function g defined by (2.6) is in the space $L^p([0,1]L^q_{\rm rad})$.

Proof. Note that

$$||g||_{L_{\text{rad}}^{q}}^{q} = \int_{0}^{t^{\beta/\alpha}} |g|^{q} r \, dr = \int_{0}^{t^{\beta/\alpha}} \left| \frac{B_{1}}{t^{2}} - \frac{4}{t^{\frac{2\beta}{\alpha}}} B_{2} + \frac{\sinh(2\bar{\chi})}{2r^{2}} \right|^{q} r \, dr.$$

By making the change of variable $r = z^{\frac{1}{\alpha}} t^{\beta/\alpha}$,

$$dr = t^{\beta/\alpha} \frac{1}{\alpha} z^{\frac{1}{\alpha} - 1} dz, \quad r dr = t^{\frac{2\beta}{\alpha}} \frac{1}{\alpha} z^{\frac{2}{\alpha} - 1} dz$$

(with t fixed) and

$$\begin{split} \|g\|_{L_{\text{rad}}^{q}}^{q} &= \frac{t^{\frac{2\beta}{\alpha}}}{\alpha} \int_{0}^{1} \left| B_{1} \frac{1}{t^{2}} - \frac{4}{t^{\frac{2\beta}{\alpha}}} B_{2} + \frac{\sinh(2\bar{\chi})}{2t^{\frac{2\beta}{\alpha}} z^{2/\alpha}} \right|^{q} z^{\frac{2}{\alpha} - 1} dz \\ &\leq c_{1} \frac{t^{\frac{2\beta}{\alpha} - 2q}}{\alpha} \int_{0}^{1} |B_{1}|^{q} z^{\frac{2}{\alpha} - 1} dz + c_{2} \frac{t^{\frac{2\beta}{\alpha}(1 - q)}}{\alpha} \int_{0}^{1} |B_{2}|^{q} z^{\frac{2}{\alpha} - 1} dz \\ &+ c_{3} \frac{t^{\frac{2\beta}{\alpha}(1 - q)}}{\alpha} \int_{0}^{1} \left| \frac{\sinh(2\bar{\chi})}{2z^{2/\alpha}} \right|^{q} z^{\frac{2}{\alpha} - 1} dz. \end{split}$$

Let

$$I_1 = \int_0^1 |B_1|^q z^{\frac{2}{\alpha} - 1} dz, \quad I_2 = \int_0^1 |B_2|^q z^{\frac{2}{\alpha} - 1} dz, \quad I_3 = \int_0^1 \left| \frac{\sinh(2\bar{\chi})}{2z^{2/\alpha}} \right|^q z^{\frac{2}{\alpha} - 1} dz.$$

From the definition of B_1 and B_2 and since (H1) and (H4) hold (we note that $\alpha \in (0,1)$ because $1 < q \le 2$), we have $|B_1|^q z^{\frac{2}{\alpha}-1} \in \mathcal{C}[0,1], \ |B_2|^q z^{\frac{2}{\alpha}-1} \in \mathcal{C}[0,1].$ Then $I_1 < \infty, \ I_2 < \infty$. Now we consider I_3 . Let B be constant for which

$$B - 2\cosh(2\bar{\chi})\bar{\chi}' \ge 0.$$

Such a constant B exists because $\bar{\chi}(z^{2/\alpha})$ and $\bar{\chi}'(z^{2/\alpha})$ are bounded functions for $z \in [0,1]$ and supp $\bar{\chi} \subset [0,1]$, supp $\bar{\chi}' \subset [0,1]$. Let

$$p(z) = Bz^{2/\alpha} - \sinh(2\bar{\chi}).$$

Then

$$p'(z) = \frac{2}{\alpha} z^{\frac{2}{\alpha} - 1} (B - 2\cosh(2\bar{\chi})\bar{\chi}') \ge 0 \quad \forall z \in [0, 1].$$

Consequently, p(z) is an increasing function for $z \in [0,1]$. Therefore, $p(z) \ge p(0) = 0$ for all $z \in [0,1]$ or $Bz^{2/\alpha} \ge \sinh(2\bar{\chi})$ for $z \in [0,1]$. Then

$$I_3 \le \int_0^1 \left| \frac{Bz^{2/\alpha}}{2z^{2/\alpha}} \right|^q z^{\frac{2}{\alpha} - 1} dz \equiv \text{const} < \infty.$$

Consequently,

$$||g||_{L_{\text{rad}}^q}^q \le \bar{c}_1 t^{\frac{2\beta}{\alpha} - 2q} + \bar{c}_2 t^{\frac{2\beta}{\alpha}(1-q)}$$

and from here

$$\begin{split} \|g\|_{L^q_{\mathrm{rad}}} &\leq \tilde{c}_1 t^{\frac{2\beta}{\alpha q}-2} + \tilde{c}_2 t^{\frac{2\beta}{\alpha q}-\frac{2\beta}{\alpha}}, \\ \|g\|_{L^p([0,1]L^q_{\mathrm{rad}})}^p &\leq \overline{\overline{c}_1} \int_0^1 t^{\frac{2\beta p}{\alpha q}-2p} dt + \overline{\overline{c}_2} \int_0^1 t^{\frac{2\beta p}{\alpha q}-\frac{2\beta p}{\alpha}} dt < \infty \end{split}$$

because (H5) holds. Here $c_1, c_2, c_3, \bar{c}_1, \bar{c}_2, \tilde{c}_1, \tilde{c}_2, \bar{c}_1, \bar{c}_2$ are positive constants.

As special notation we have

$$\dot{H}^s(\mathbb{R}^n) \equiv \dot{F}^s_{2,2}(\mathbb{R}^n), \quad 0 < s < \infty$$

where (see [1, p. 94, def. 2])

$$\dot{F}_{2,2}^s(\mathbb{R}^n) = \dot{B}_{2,2}^s(\mathbb{R}^n), \quad -\infty < s < \infty.$$

As in [5, p. 30-31], when f(r) is a function with compact support in [0, 1], we have

$$||f||_{\dot{H}_{\mathrm{rad}}^{\gamma}} := \left(\int_{0}^{1} h^{-1-2\gamma} ||\Delta_{h} f||_{L_{\mathrm{rad}}^{2}}^{2} dh \right)^{1/2},$$

where $\Delta_h f = f(r+h) - f(r), 0 < \gamma < 1.$

Lemma 2.2. Under assumptions (H1)-(H5), the function χ_{\circ} defined by (2.2) is in the space $\dot{H}_{\rm rad}^{\gamma}$.

Proof. By definition of the norm,

$$\|\chi_{\circ}\|_{\dot{H}^{\gamma}_{\mathrm{rad}}}^{2} = \int_{0}^{1} h^{-(1+2\gamma)} \int_{0}^{1} |f((r+h)^{2}) - f(r^{2})|^{2} r \, dr \, dh$$

Using the Mean Value Theorem,

$$\|\chi_{\circ}\|_{\dot{H}_{\mathrm{rad}}^{\gamma}}^{2} = \int_{0}^{1} h^{-(1+2\gamma)} \int_{0}^{1} |f'(\xi)|^{2} [(r+h)^{2} - r^{2}]^{2} r \, dr \, dh$$

$$= \int_{0}^{1} h^{-(1+2\gamma)} \int_{0}^{1} |f'(\xi)|^{2} (h^{2} + 2rh)^{2} r \, dr \, dh$$

$$\leq Q_{1} \int_{0}^{1} h^{-(1+2\gamma)} \int_{0}^{1} (h^{4}r + 4r^{2}h^{3} + 4r^{3}h^{2}) \, dr \, dh$$

$$= Q_{1} \int_{0}^{1} h^{-(1+2\gamma)} \left(\frac{h^{4}}{2} + \frac{4}{3}h^{3} + h^{2}\right) dh$$

$$= Q_{1} \frac{1}{2(4-2\gamma)} + \frac{4}{3}Q_{1} \frac{1}{3-2\gamma} + Q_{1} \frac{1}{2-2\gamma},$$

where Q_1 is positive constant. Therefore, $\|\chi_{\circ}\|_{\dot{H}^{\gamma}_{\text{rad}}} \leq Q_2$ for some constant Q_2 and $\chi_{\circ} \in \dot{H}^{\gamma}_{\text{rad}}$.

Lemma 2.3. Under Assumptions (H1)-(H5), the function χ_1 defined by (2.3) is in the space $\dot{H}_{\rm rad}^{\gamma-1}$.

Proof. We have that $L^2_{\mathrm{rad}} \hookrightarrow \dot{H}^{\gamma-1}_{\mathrm{rad}}$. On the other hand

$$\|\chi_1\|_{L_{\text{rad}}^2}^2 = \frac{4\beta^2}{\alpha^2} \int_0^1 r^5 |f'(r^2)|^2 dr = \frac{2\beta^2}{\alpha^2} \int_0^1 r^4 |f'(r^2)|^2 dr^2 < \infty$$

because $f'(r^2) \in \mathcal{C}[0,1]$. Consequently, $\chi_1 \in \dot{H}_{\mathrm{rad}}^{\gamma-1}$.

PROOF OF MAIN RESULT

Let (H1)-(H5) hold. By (2.1), $f(z^{2/\alpha}) = (1-z^{2/\alpha})^2 z^{2/\alpha}$. Let g be defined by (2.6) and $\bar{\chi}$ by (2.7). From Lemma 2.1, $g \in L^p([0,1]L^q_{\rm rad})$. Also, we have $\bar{\chi}(1,r) = \chi_{\rm o}, \ \bar{\chi}_t(1,r) = \chi_1$. From Lemma 2.2, $\bar{\chi}(1,r) \in \dot{H}^{\gamma}_{\rm rad}$, and from Lemma 2.3, $\bar{\chi}_t(1,r) \in \dot{H}^{\gamma-1}_{\rm rad}$. Therefore, $\bar{\chi}$ is solution of (1.1)–(1.2). Let $\theta = t^{\beta/\alpha}$ which is in (0,1]. Then

$$\|\bar{\chi}\|_{\dot{H}_{\text{rad}}^{\gamma}}^{2} = \int_{0}^{1} h^{-(1+2\gamma)} \int_{0}^{\theta} \left| f\left(\left(\frac{r+h}{\theta}\right)^{2}\right) - f\left(\frac{r^{2}}{\theta^{2}}\right) \right|^{2} r \, dr \, dh \right| =: I. \tag{2.8}$$

Then

$$I \ge \int_{(\sqrt{2} - \frac{1}{2})\theta}^{1} h^{-(1+2\gamma)} \int_{\frac{\theta}{2}}^{\frac{\theta}{\sqrt{3}}} \left| f\left(\left(\frac{r+h}{\theta}\right)^{2}\right) - f\left(\frac{r^{2}}{\theta^{2}}\right) \right|^{2} r \, dr \, dh.$$

and

$$\begin{split} f\Big(\Big(\frac{r+h}{\theta}\Big)^2\Big) - f\Big(\frac{r^2}{\theta^2}\Big) &= \Big[1 - \frac{(r+h)^2}{\theta^2}\Big]^2 \frac{(r+h)^2}{\theta^2} - \Big(1 - \frac{r^2}{\theta^2}\Big)^2 \frac{r^2}{\theta^2} \\ &= \frac{[\theta^2 - (r+h)^2]^2 (r+h)^2 - (\theta^2 - r^2)^2 r^2}{\theta^6}. \end{split}$$

Note that the numerator of the above expression is

$$L := [\theta^2 - (r+h)^2]^2 (r+h)^2 - (\theta^2 - r^2)^2 r^2$$

= $(\theta^2 - r^2)(2rh + h^2)(\theta^2 - 3r^2) + (3r^2 - 2\theta^2)(2rh + h^2)^2 + (2rh + h^2)^3$.

For $r \in (\frac{\theta}{2}, \frac{\theta}{\sqrt{3}})$ we have

$$L \ge (3r^2 - 2\theta^2)(2rh + h^2)^2 + (2rh + h^2)^3$$
$$= (2rh + h^2)^2(3r^2 - 2\theta^2 + 2rh + h^2)$$
$$= (2rh + h^2)^2[2r^2 + (r+h)^2 - 2\theta^2].$$

For $h \in ((\sqrt{2} - \frac{1}{2})\theta, 1)$ and $r \in (\frac{\theta}{2}, \frac{\theta}{\sqrt{3}})$,

$$r + h \ge \frac{\theta}{2} + \sqrt{2}\theta - \frac{1}{2}\theta = \sqrt{2}\theta,$$

 $(r + h)^2 \ge 2\theta^2.$

Therefore, for $h \in ((\sqrt{2} - \frac{1}{2})\theta, 1)$ and $r \in (\frac{\theta}{2}, \frac{\theta}{\sqrt{3}})$,

$$L \ge (2rh + h^2)^2 2r^2 \ge h^4 r^2,$$
$$\left| f\left(\left(\frac{r+h}{\theta} \right)^2 \right) - f\left(\frac{r^2}{\theta^2} \right) \right|^2 \ge \frac{h^8 r^4}{\theta^{12}}.$$

Consequently

$$\begin{split} I &\geq \int_{(\sqrt{2} - \frac{1}{2})\theta}^{1} h^{-(1+2\gamma)} \int_{\frac{\theta}{2}}^{\frac{\theta}{\sqrt{3}}} \frac{h^{8}r^{5}}{\theta^{12}} dr dh \\ &= \frac{1}{6\theta^{12}} \int_{(\sqrt{2} - \frac{1}{2})\theta}^{1} h^{7-2\gamma} \Big(\frac{\theta^{6}}{27} - \frac{\theta^{6}}{64} \Big) dh \\ &= \frac{37}{6 \times 27 \times 64\theta^{6}.(8-2\gamma)} \Big[1 - (\sqrt{2} - \frac{1}{2})^{8-2\gamma} \theta^{8-2\gamma} \Big] \\ &= \frac{37}{6 \times 27 \times 64\theta^{6}.(8-2\gamma)} - \frac{37}{6 \times 27 \times 64(8-2\gamma)(\sqrt{2} - \frac{1}{2})^{8-2\gamma}} \theta^{2-2\gamma} \end{split}$$

which approaches zero as $\theta \to 0$. From this statement and (2.8), we obtain

$$\lim_{t\to 0} \|\bar{\chi}\|_{\dot{H}^{\gamma}_{\mathrm{rad}}} = \infty.$$

2.1. Comments. Let (H1)-(H5) hold. By (2.1), $f(z^{2/\alpha}) = (1-z^{2/\alpha})^2 z^{2/\alpha}$. Then the function $\bar{\chi}$ defined by (2.7) is a solution to the Cauchy problem

$$\chi_{tt} - \frac{1}{r} \chi_r - \chi_{rr} = g_1(t, r), \tag{2.9}$$

$$\chi(1,r) = \chi_{\circ} \in \dot{H}_{\mathrm{rad}}^{\gamma}, \quad \chi_{t}(1,r) = \chi_{1} \in \dot{H}_{\mathrm{rad}}^{\gamma-1}, \tag{2.10}$$

where χ_{\circ} and χ_{1} are the functions defined with (2.2) and (2.3),

$$g_1 = \begin{cases} \frac{B_1}{t^2} - \frac{4}{t^{2\beta/\alpha}} B_2 & \text{for } r \le t^{\beta/\alpha} \\ 0 & \text{for } r \ge t^{\beta/\alpha}. \end{cases}$$

Then because of (H5),

$$||g_1||_{L^p([0,1]L^q_{\mathrm{rad}})}^p \le l_1 \int_0^1 t^{\frac{2\beta p}{\alpha q} - 2p} dt + l_2 \int_0^1 t^{\frac{2\beta p}{\alpha q} - \frac{2\beta p}{\alpha}} dt < \infty,$$

where l_1 , l_2 are positive constants. In [2, Corollary 1.3] it is proved that

$$\|\bar{\chi}\|_{\mathcal{C}([0,1]\dot{H}_{\mathrm{rad}}^{\gamma})} \leq \|\chi_{\circ}\|_{\dot{H}_{\mathrm{rad}}^{\gamma}} + \|\chi_{1}\|_{\dot{H}_{\mathrm{rad}}^{\gamma-1}} + \|g_{1}\|_{L^{p}([0,1]L_{\mathrm{rad}}^{q})}.$$

Therefore, $\bar{\chi}$ is in $\mathcal{C}([0,1]\dot{H}_{\rm rad}^{\gamma})$.

References

- [1] Runst, T., W. Sickel; Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations, 1996, New York.
- [2] Keel, M., T. Tao; Endpoint Strichartz estimates, Amer. J. Math. 1998.
- [3] D'Ancona, P., V. Georgiev; On the continuity of the solution operator the wave map system, Preprint.
- [4] D'Ancona, P., V. Georgiev; On Lipshitz continuity of the solution map for two dimensional wave maps, Preprint.
- [5] Shatah, J., M. Struwe; Geometric wave equation, Courant lecture notes in mathematics 2(1998).
- [6] Struwe, M.; Radial symmetric wave maps from 1+2 dimensional Minkowski space to the sphere, preprint 2000.
- [7] Klainerman, S., S. Selberg; Remarks on the optimal regularity of equations of wave maps type, CPDE, 22(1997), 901-918.
- [8] Tatary, D.; Local and global results for wave maps I, CPDE, 23(1998), 1781-1793.
- [9] Bergh, J., J. Lofstrom; Interpolation spaces, New York, 1976(In Russian).
- [10] Grillakis, M.; A priori estimates and regularity for nonlinear waves, Communications at ICM 94, Zurich, 1994.
- [11] Krieger, J.; Null-form estimates and nonlinear waves, Adv. Dif. Eq. 8(2003), no. 10, 1193-1236

University of Sofia, Faculty of Mathematics and Informatics, Department of Differential Equations, Bulgaria

E-mail address: sgg2000bg@yahoo.com