
Electronic Journal of Differential Equations, Vol. 2006(2006), No. 62, pp. 1–19.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

BOUNDARY AND INITIAL VALUE PROBLEMS FOR
SECOND-ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATIONS

HOAN HOA LE, THI PHUONG NGOC LE

Abstract. In this paper, we consider the three-point boundary-value problem

for the second order neutral functional differential equation

u′′ + f(t, ut, u
′(t)) = 0, 0 ≤ t ≤ 1,

with the three-point boundary condition u0 = φ, u(1) = u(η). Under suitable

assumptions on the function f we prove the existence, uniqueness and con-

tinuous dependence of solutions. As an application of the methods used, we
study the existence of solutions for the same equation with a “mixed” bound-

ary condition u0 = φ, u(1) = α[u′(η) − u′(0)], or with an initial condition
u0 = φ, u′(0) = 0. For the initial-value problem, the uniqueness and con-

tinuous dependence of solutions are also considered. Furthermore, the paper

shows that the solution set of the initial-value problem is nonempty, compact
and connected. Our approach is based on the fixed point theory.

1. Introduction

Let C = C([−r, 0]; R), with r > 0 is a fixed constant, be the Banach space of
all continuous functions φ : [−r, 0] → R, with the sup-norm ‖φ‖ = sup{|φ(θ)| :
−r ≤ θ ≤ 0}. For any continuous function u : [−r, 1] → R and for any t ∈ [0, 1],
we denote by ut the element of C defined by ut(θ) = u(t + θ), θ ∈ [−r, 0]. In this
paper, we consider the second-order neutral functional differential equation

u′′ + f(t, ut, u
′(t)) = 0, 0 ≤ t ≤ 1, (1.1)

where f : [0, 1] × C × R → R is continuous, with one of the following boundary
conditions

u0 = φ, u(1) = u(η) (1.2)

u0 = φ, u(1) = α[u′(η)− u′(0)], (1.3)

or with the initial conditions

u0 = φ, u′(0) = 0, (1.4)

where φ ∈ C, 0 < η < 1, and α ∈ R.
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The boundary-value problems for ordinary differential equation and for neutral
functional differential equations have been studied by several authors by using the
Leray-Schauder continuation theorem, Leray-Schauder nonlinear alternative, topo-
logical transversality method. We refer the reader for example to [2, 4, 5, 6, 7, 9]
and references therein.

In [5], the author proved the existence of solution for the neutral FDE
d

dt
[x′(t)− g(t, xt)] = f(t, xt, x

′(t)), 0 ≤ t ≤ 1,

x0 = φ, x(1) = η,

where f : [0, 1] × C × Rn → Rn, g : [0, 1] × C → Rn are continuous functions,
φ ∈ C, η ∈ Rn. In [9], the existence, uniqueness and continuous dependence on a
real parameter α of the solution for the following problem were established(

Λ(t)x′(t))′ = f(t, xt, x
′(t)), 0 ≤ t ≤ T,

x0 = φ, Ax(T ) + Bx′(T ) = v,

where Λ(t) is an n × n continuous matrix defined on [0, T ], A and B are n × n
constant matrices, v ∈ Rn, φ ∈ C = C

(
[−r, 0]; Rn

)
.

Recently in [4, 7], the authors studied the boundary-value problem

u′′ + f(t, u) = 0, 0 < t < 1,

where f : [0, 1]×R → R is continuous, with one of the following boundary conditions

u(0) = 0, u(1) = αu(η),

or
u′(0) = 0, u(1) = αu′(η).

In the base of the above papers, we shall consider the problems for FDEs (1.1),
(1.2); (1.1), (1.3) and (1.1), (1.4). This paper is organized as follows. In section
2, we present some preliminaries. By using Leray-Schauder nonlinear alternative,
the existence theorems of boundary-value problem (1.1)-(1.2) are given in section
3. Furthermore, the uniqueness, based on the contraction mapping principle, and
continuous dependence of solution are established. In sections 4; 5, as an application
of the methods which are used in the proofs of section 3, we also study the existence
of solution for the equation (1.1) with a ”mixed” bonundary condition (1.3) or with
an initial condition (1.4). For the initial value problem (1.1)-(1.4), the uniqueness
and continuous dependence of solution are also considered. From the results, based
on the topological degree theory of compact vector fields, the paper shows that the
solution set of the initial value problem is nonempty, compact and connected.

2. Preliminaries

We denote by C[0, 1] and C1[0, 1], respectively, the Banach spaces of continu-
ous real functions and continuously differentiable real functions on [0, 1], with the
norms:

‖u‖0 = sup{|u(t)| : 0 ≤ t ≤ 1},
‖u‖1 = max{‖u‖0, ‖u′‖0},

where ‖u′‖0 = sup{|u′(t)| : 0 ≤ t ≤ 1}, and by L1[0, 1] the space of all real functions
x(t) such that |x(t)| is Lebesgue integrable on [0, 1]. The proofs of our theorems
are based on the following theorems result.
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Theorem 2.1 (Nonlinear Alternative of Leray-Schauder). Let E be a Banach space
and Ω be a bounded open subset of E, 0 ∈ Ω, T : Ω → E be a completely continuous
operator. Then, either there exists x ∈ ∂Ω such that Tx = λx for some λ > 1, or
there exists a fixed point x ∈ Ω.

The proof of the theorem above can be found in [6, Theorem 2.10].

Theorem 2.2 ([3]). Let (E, |·|) be a real Banach space, D be a bounded open subset
of E with boundary ∂D, closure D and T : D → E be a completely continuous
operator. Assume that T satisfies the follows conditions:

(i) T has no fixed points on ∂D and γ(I − T,D) 6= 0.
(ii) For each ε > 0, there is a completely continuous operator Tε such that

|Tε(x) − T (x)| < ε, for all x ∈ D, and such that for each h with |h| < ε,
the equation x = Tε(x) + h has at most one solution in D.

Then the set of fixed points of T is nonempty, compact and connected.

The proof of the theorem above can be found in [3, theorem 48.2]. We remark
that condition (i) is equivalent to the following condition.

(̃i) T has no fixed points on ∂D and deg(I − T,D, 0) 6= 0.
Because of this, if a completely continuous operator T is defined on D and has no
fixed points on ∂D, then the rotation γ(I−T,D) coincides with the Leray-Schauder
degree of I − T on D with respect to the origin, see [3, section 20.2].

Theorem 2.3 ([1]). Let E,F be Banach spaces, D be an open subset of E and
f : D → F be continuous. Then for each ε > 0, there is a mapping fε : D → F
that is locally Lipschitz such that

|f(x)− fε(x)| < ε, ∀x ∈ D,

and fε(D) is a subset of the closed convex hull of f(D).

The proof of the above theorem can be found in [1, p. 53]. We will need the
following lemmas later. The proofs of these lemmas are not difficult and we omit
them.

Lemma 2.4 ([4]). For y ∈ C[0, 1], the problem

u′′ + y(t) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = u(η),

with η ∈ (0, 1), has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds− t

1− η

∫ η

0

(η − s)y(s)ds +
t

1− η

∫ 1

0

(1− s)y(s)ds,

t ∈ [0, 1].

Lemma 2.5. For y ∈ C[0, 1], the “mixed” boundary-value problem

u′′ + y(t) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = α(u′(η)− u′(0)),

with η ∈ (0, 1) and α ∈ R, has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds− αt

∫ η

0

y(s)ds + t

∫ 1

0

(1− s)y(s)ds, t ∈ [0, 1].
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Lemma 2.6. For y ∈ C[0, 1], the initial-value problem

u′′ + y(t) = 0, 0 < t ≤ 1,

u(0) = 0, u′(0) = 0,

has a unique solution

u(t) = −
∫ t

0

(t− s)y(s)ds, t ∈ [0, 1].

3. Main Results

In this section, we present our existence results for the boundary-value problem
(1.1)-(1.2).

Theorem 3.1. Let f : [0, 1]× C × R → R be a continuous function. Assume that
there exist nonnegative functions p, q, r ∈ L1[0, 1] such that

(H1) |f(t, u, v)| ≤ p(t)‖u‖+ q(t)|v|+ r(t), for all (t, u, v) ∈ [0, 1]× C × R
(H2) 2−η

1−η

∫ 1

0
(1− s)p(s)ds + 1

1−η

∫ η

0
(η − s)p(s)ds < 1,

(H3)
∫ 1

0
[p(s)+q(s)]ds+ 1

1−η

∫ 1

0
(1−s)[p(s)+q(s)]ds+ 1

1−η

∫ η

0
(η−s)[p(s)+q(s)]ds <

1.

Then the boundary-value problem (1.1)-(1.2) has at least one solution.

Proof. Step 1. Consider first the case φ(0) = 0. Put

C0 = {u ∈ C1[0, 1] : u(0) = 0}.

Then C0 is the subspace of C1[0, 1]. We note that for all u ∈ C0, u(t) =
∫ t

0
u′(s)ds,

so
‖u‖0 ≤ ‖u′‖0. (3.1)

For a function u ∈ C0, we define the function û : [−r, 1] → R by

û(t) =

{
φ(t), t ∈ [−r, 0],
u(t), t ∈ [0, 1].

We also note that

‖ût‖k ≤ max{‖u‖k
0 , ‖φ‖k} ≤ ‖u‖k

0 + ‖φ‖k,∀t ∈ [0, 1], k ≥ 0. (3.2)

Define the integral operator T : C0 → C1[0, 1] by

Tu(t) =−
∫ t

0

(t− s)f(s, ûs, u
′(s))ds− t

1− η

∫ η

0

(η − s)f(s, ûs, u
′(s))ds

+
t

1− η

∫ 1

0

(1− s)f(s, ûs, u
′(s))ds, t ∈ [0, 1].

(3.3)

By Lemma 2.4, it is obvious that u is a solution of the boundary-value problem
(1.1)-(1.2) if and only if the operator T has a fixed point u ∈ C0, where

u(t) =

{
φ(t), t ∈ [−r, 0],
u(t), t ∈ [0, 1].
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Using (H1) and (3.2), for all u ∈ C0, for all t ∈ [0, 1], we obtain

|Tu(t)| ≤
∫ 1

0

(1− s)[p(s)‖ûs‖+ q(s)|u′(s)|+ r(s)]ds

+
1

1− η

∫ η

0

(η − s)[p(s)‖ûs‖+ q(s)|u′(s)|+ r(s)]ds

+
1

1− η

∫ 1

0

(1− s)[p(s)‖ûs‖+ q(s)|u′(s)|+ r(s)]ds

≤ A1‖u‖0 + B1‖u′‖0 + C1,

where

A1 =
2− η

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds,

B1 =
2− η

1− η

∫ 1

0

(1− s)q(s) +
1

1− η

∫ η

0

(η − s)q(s)ds,

C1 =
(2− η

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds
)
‖φ‖

+
2− η

1− η

∫ 1

0

(1− s)r(s)ds +
1

1− η

∫ η

0

(η − s)r(s)ds.

Hence
‖Tu‖0 ≤ A1‖u‖0 + B1‖u′‖0 + C1, ∀u ∈ C0. (3.4)

On the other hand,

(Tu)′(t) =−
∫ t

0

f(s, ûs, u
′(s))ds− 1

1− η

∫ η

0

(η − s)f(s, ûs, u
′(s))ds

+
1

1− η

∫ 1

0

(1− s)f(s, ûs, u
′(s))ds, t ∈ [0, 1].

(3.5)

Similarly, it follows from (H1) and (3.2) that

‖(Tu)′‖0 ≤ A2‖u‖0 + B2‖u′‖0 + C2, ∀u ∈ C0, (3.6)

where

A2 =
∫ 1

0

p(s)ds +
1

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds,

B2 =
∫ 1

0

q(s)ds +
1

1− η

∫ 1

0

(1− s)q(s) +
1

1− η

∫ η

0

(η − s)q(s)ds,

C2 =
( ∫ 1

0

p(s)ds +
1

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds
)
‖φ‖

+
∫ 1

0

r(s)ds +
1

1− η

∫ 1

0

(1− s)r(s)ds +
1

1− η

∫ η

0

(η − s)r(s)ds.

Put
A = max{A1, A2 + B2}. (3.7)

From (H2)-(H3), it follows that A1 < 1, A2 + B2 < 1, so A < 1. We now choose a
constant B > 0 such that

B ≥ max{ B1C2

1−A2 −B2
+ C1, C2}, (3.8)
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and put

m =
B

1−A
, Ω = {u ∈ C0 : ‖u‖1 < m}. (3.9)

Then Ω be a bounded open subset of C0, 0 ∈ Ω, and ∂Ω = {u ∈ C0 : ‖u‖1 = m}.
We shall show that T : Ω = Ω∪ ∂Ω → C1[0, 1] has a fixed point u ∈ Ω by applying
Theorem 2.1.
(a) First, T is continuous. Indeed, for each u0 ∈ Ω, let {un} be a sequence in Ω
such that limn→∞ un = u0. For all t ∈ [0, 1], from (3.3), we get

Tun(t)− Tu0(t) =−
∫ t

0

(t− s)
[
f(s, (ûn)s, u

′
n(s))− f(s, (û0)s, u

′
0(s))

]
ds

− t

1− η

∫ η

0

(η − s)
[
f(s, (ûn)s, u

′
n(s))− f(s, (û0)s, u

′
0(s))

]
ds

+
t

1− η

∫ 1

0

(1− s)
[
f(s, (ûn)s, u

′
n(s))− f(s, (û0)s, u

′
0(s))

]
ds.

Put D = {(ûn)s : s ∈ [0, 1], n = 0, 1, 2, . . . }, then D is compact in C. Since
f : [0, 1] × C × R → R is continuous, f is uniformly continuous on the compact
subset [0, 1]×D× [−m,m]. This implies that, for all ε > 0, there exists δ > 0 such
that for each (s1, φ1, ν1), (s2, φ2, ν2) ∈ [0, 1]×D × [−m,m],

|s1 − s2| < δ, ‖φ1 − φ2‖ < δ, |ν1 − ν2| < δ

⇒ |f(s1, φ1, ν1)− f(s2, φ2, ν2)| <
ε

2β
,

with β = 1 + 2
1−η > 0. Since limn→∞ un = u0 in Ω, with respect to ‖ · ‖1, there

exists n0 such that for all n ≥ n0,

‖(ûn)s − (û0)s‖ < δ, |u′n(s)− u′0(s)| < δ, ∀s ∈ [0, 1].

On the other hand, for all s ∈ [0, 1],
(
s, (ûn)s, u

′
n(s)

)
,
(
s, (û0)s, u

′
0(s)) ∈ [0, 1]×D×

[−m,m], therefore, for all n ≥ n0,

|Tun(t)− Tu0(t)| ≤ (1 +
2

1− η
)
∫ 1

0

∣∣∣f(s, (ûn)s, u
′
n(s))− f(s, (û0)s, u

′
0(s))

∣∣∣ds

< (1 +
2

1− η
)

ε

2β
=

ε

2
, ∀t ∈ [0, 1].

Similarly

|(Tun)′(t)− (Tu0)′(t)| <
ε

2
, ∀t ∈ [0, 1].

This implies that for all n ≥ n0,

‖Tun − Tu0‖1 = max
{
‖Tun − Tu0‖0, ‖(Tun)′ − (Tu0)′‖0

}
≤ ε

2
< ε.

(b) Next, we show that T (Ω) is relatively compact. Let {Tun} be a bounded
sequence of T (Ω), corresponding {un} ⊂ Ω, we shall show that {Tun} contains a
convergence subsequence in C1[0, 1], with respect to ‖.‖1. The proof of this fact is
obtained as follows. For all n, it follows from (3.4), (3.6), (3.9) that

‖Tun‖0 ≤ A1‖un‖0 + B1‖u′n‖0 + C1 ≤ A1m + B1m + C1,

‖(Tun)′‖0 ≤ A2‖un‖0 + B2‖u′n‖0 + C2 ≤ A2m + B2m + C2.
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Hence, the sequences {Tun}, {(Tun)′} are uniformly bounded. On the other hand,
combining (3.3), (3.5), (3.9) and (H1), for all n, for all t1, t2 ∈ [0, 1], we have

|Tun(t1)− Tun(t2)|

≤
∣∣∣ ∫ t2

t1

(1− s)[(m + ‖φ‖)p(s) + mq(s) + r(s)]ds
∣∣∣

+
1

1− η

( ∫ η

0

(η − s)[(m + ‖φ‖)p(s) + mq(s) + r(s)]ds
)
|t1 − t2|

+
1

1− η

( ∫ 1

0

[(m + ‖φ‖)p(s) + mq(s) + r(s)]ds
)
|t1 − t2|

≤ K1|t1 − t2|,

|(Tun)′(t1)− (Tun)′(t2)| ≤
∣∣∣ ∫ t2

t1

[(m + ‖φ‖)p(s) + mq(s) + r(s)]ds
∣∣∣

≤ K2|t1 − t2|,

where K1, K2 are independent of t1, t2 and n. This implies that the sequences
{Tun}, {(Tun)′} are equi-continuous. By using the Ascoli-Arzela theorem, we have
{Tun}, {(Tun)′} are relatively compact in C[0, 1]. Therefore, there exists a subse-
quence {unk

} ⊂ {un}, such that

Tunk
→ u and (Tunk

)′ → v, as k →∞,

with respect to ‖.‖0. Then u is differentiable and u′ = v, so Tunk
→ u, as k →∞,

in C1[0, 1], with respect to ‖.‖1. Thus T is completely continuous.
(c) Finally, suppose that there exists u∗ ∈ ∂Ω, such that T (u∗) = λu∗, for some
λ > 1. Then, we have the following set is bounded

{u∗ ∈ ∂Ω : T (u∗) = λu∗, λ > 1}.

Indeed, it follows from (3.6) that

‖(u∗)′‖0 =
1
λ
‖(Tu∗)′‖0 ≤ ‖(Tu∗)′‖0 ≤ A2‖u∗‖0 + B2‖(u∗)′‖0 + C2. (3.10)

Combining (3.1), (3.10), we get

(1−A2 −B2)‖(u∗)′‖0 ≤ C2.

Since A2 + B2 < 1, this implies that

‖(u∗)′‖0 ≤ M, (3.11)

where M = C2/(1−A2−B2) is a constant. Thus, combining (3.1), (3.4), (3.6)-(3.8),
(3.10) and (3.11), we obtain

‖Tu∗‖0 ≤ A1‖u∗‖0 + B1‖(u∗)′‖0 + C1

≤ A1‖u∗‖0 + B1M + C1

≤ A‖u∗‖0 + B,

‖(Tu∗)′‖0 ≤ A2|u∗‖1 + B2‖u∗‖1 + C2

≤ A‖u∗‖1 + B.

(3.12)

Consequently
λ‖u∗‖1 = ‖Tu∗‖1 ≤ A‖u∗‖1 + B,
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which implies

λm ≤ Am + B or λ ≤ A +
B

m
, i.e. λ ≤ 1,

this contradicts λ > 1. The proof of step 1 is complete.
Step 2. The case φ(0) 6= 0. By the transformation v = u−φ(0), the boundary-value
problem (1.1)-(1.2) reduces to the boundary-value problem

v′′ + f(t, vt + φ(0), v′(t)) = 0, 0 ≤ t ≤ 1,

v0 = φ− φ(0) ≡ φ̃, v(1) = v(η),

with φ̃ ∈ C and φ̃(0) = 0. By step 1, this boundary-value problem has at least one
solution. Step 2 follows and Theorem 3.1 is proved. �

Theorem 3.2. Let f : [0, 1]× C × R → R be a continuous function. Assume that
there exist nonnegative functions p, q, r ∈ L1[0, 1] and reals constants k, l ∈ [0, 1]
such that (H2) holds and

(H̃1) |f(t, u, v)| ≤ p(t)‖u‖k + q(t)|v|l + r(t), for all (t, u, v) ∈ [0, 1]× C × R,
(H̃3) Q(k)A2 + Q(l)B2 < 1,

where

A2 =
∫ 1

0

p(s)ds +
1

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds,

B2 =
∫ 1

0

q(s)ds +
1

1− η

∫ 1

0

(1− s)q(s) +
1

1− η

∫ η

0

(η − s)q(s)ds,

and

Q(µ) =

{
0, 0 ≤ µ < 1,

1, µ = 1.

Then the boundary-value problem (1.1)− (1.2) has at least one solution.

Proof. It is obvious that the Theorem 3.1 is a special case of this theorem with
k = l = 1. Here, we consider only the case φ(0) = 0 and let the subspace C0, the
function û and the operator T be defined as in Theorem 3.1. Using (H̃1) and (3.2),
for all u ∈ C0 and all t ∈ [0, 1], we have

|Tu(t)| ≤
∫ 1

0

(1− s)[p(s)‖ûs‖k + q(s)|u′(s)|l + r(s)]ds

+
1

1− η

∫ η

0

(η − s)[p(s)‖ûs‖k + q(s)|u′(s)|l + r(s)]ds

+
1

1− η

∫ 1

0

(1− s)[p(s)‖ûs‖k + q(s)|u′(s)|l + r(s)]ds

≤ A1‖u‖k
0 + B1‖u′‖l

0 + C3,

where A1 and B1 as in Theorem 3.1, and

C3 =
(2− η

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds
)
‖φ‖k

+
2− η

1− η

∫ 1

0

(1− s)r(s)ds +
1

1− η

∫ η

0

(η − s)r(s)ds.
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It follows that for all u ∈ C0,

‖Tu‖0 ≤ A1‖u‖k
0 + B1‖u′‖l

0 + C3. (3.13)

Similarly, for all u ∈ C0, we obtain

‖(Tu)′‖0 ≤ A2‖u‖k
0 + B2‖u′‖l

0 + C4

≤ A2‖u′‖k
0 + B2‖u′‖l

0 + C4,
(3.14)

where A2 and B2 are as above and

C4 =
( ∫ 1

0

p(s)ds +
1

1− η

∫ 1

0

(1− s)p(s)ds +
1

1− η

∫ η

0

(η − s)p(s)ds
)
‖φ‖k

+
∫ 1

0

r(s)ds +
1

1− η

∫ 1

0

(1− s)r(s)ds +
1

1− η

∫ η

0

(η − s)r(s)ds.

Clearly, as the proof of the Theorem 3.1, if we show the boundedness of the following
set

{u∗ ∈ ∂Ω : T (u∗) = λu∗, λ > 1}, (3.15)

then, combining the assume (H2), the proof of Theorem 3.2 will be completely.
That is proved as follows.

Suppose that there exists u∗ ∈ ∂Ω such that T (u∗) = λu∗ for some λ > 1. We
consider three cases.
Case 1: 0 ≤ k < 1, 0 ≤ l < 1. If ‖(u∗)′‖0 > 1, then from (3.14), we have

‖(Tu∗)′‖0 ≤ (A2 + B2)‖(u∗)′‖h
0 + C4, (3.16)

where h = max{k, l}. It follows that

‖(u∗)′‖0 =
1
λ
‖(Tu∗)′‖0 ≤ ‖(Tu∗)′‖0 ≤ (A2 + B2)‖(u∗)′‖h

0 + C4. (3.17)

Here, let us note that if K ≥ 0, H > 0, 0 ≤ β < 2 are given constants, then there
exists a constant C > 0 such that

Kxβ ≤ Hx2

2
+ C, ∀x ≥ 0. (3.18)

Hence, with x =
√
‖(u∗)′‖0, K = A2 + B2, β = 2h, H = 1, the inequality (3.18)

implies that

(A2 + B2)‖(u∗)′‖h
0 + C4 ≤

1
2
‖(u∗)′‖0 + C4 + C.

Combining the above inequalities,

‖(u∗)′‖0 ≤
1
2
‖(u∗)′‖0 + C4 + C or ‖(u∗)′‖0 ≤ 2C4 + 2C.

We can choose C such that 2C4 + 2C > 1; therefore,

‖(u∗)′‖0 ≤ 2C4 + 2C,

although ‖(u∗)′‖0 ≤ 1 or ‖(u∗)′‖0 > 1. Thus, in case 1, there exists a positive
constant M̃ = 2C4 + 2C, such that

‖(u∗)′‖0 ≤ M̃. (3.19)

Case 2: k = 1, 0 ≤ l < 1. From (3.14), we have

‖(Tu∗)′‖0 ≤ A2‖(u∗)′‖0 + B2‖(u∗)′‖l
0 + C2,
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where C4 = C2, since k = 1. So we have

(1−A2)‖(u∗)′‖0 ≤ B2‖(u∗)′‖l
0 + C2.

Clearly, from (H̃3), A2 < 1. Using (3.18) again, with x =
√
‖(u∗)′‖0, K = B2,

β = 2l, H = 1−A2, we get

B2‖(u∗)′‖l
0 + C2 ≤

1
2
(1−A2)‖(u∗)′‖0 + C2 + C̃,

and so

(1−A2)‖(u∗)′‖0 ≤
1
2
(1−A2)‖(u∗)′‖0 + C2 + C̃ ⇔ ‖(u∗)′‖0 ≤

2C2 + 2C̃

1−A2
,

where C̃ is a positive constant. We deduce that (3.19) also holds in the second case,
in which M̃ = 2C2+2 eC

1−A2
.

Case 3: 0 ≤ k < 1, l = 1. We conclude from the hypothesis (H̃3) that B2 < 1,
hence that it is similar to the above cases, (3.19) also holds. Therefore, Theorem
3.2 is proved. �

Now, we present the uniqueness of the solution of the boundary-value problem
(1.1)-(1.2).

Theorem 3.3. Let f : [0, 1] × C × R → R be continuous function and satisfy on
[0, 1]× C × R the Lipschitz condition

|f(t, u, v)− f(t, ũ, ṽ)| ≤ θ(‖u− ũ‖+ |v − ṽ|),
for some positive constant θ. If 2(1+ 2

1−η )θ < 1, then there exists a unique solution
of (1.1)-(1.2).

Proof. Let S be the space of continuous functions u : [−r, 1] → R such that u is
continuously differentiable on [0, 1] and u0 = φ. We define

d(u, v) = max
{

max
0≤t≤1

|u(t)− v(t)|, max
0≤t≤1

|u′(t)− v′(t)|
}
. (3.20)

Then S is a completely metrizable space with the distance function d. By Lemma
2.4, for each u ∈ S, the problem

x′′ + f(t, ut, u
′(t)) = 0, 0 ≤ t ≤ 1,

x(0) = φ(0), x(1) = x(η),
(3.21)

has a unique solution on [0, 1] which is defined as

x(t) =φ(0)−
∫ t

0

(t− s)f(s, us, u
′(s))ds− t

1− η

∫ η

0

(η − s)f(s, us, u
′(s))ds

+
t

1− η

∫ 1

0

(1− s)f(s, us, u
′(s))ds, t ∈ [0, 1].

We define ũ ∈ S, by ũ(t) = x(t) on [0, 1] and ũ0 = φ. Therefore, the mapping
P : S → S is defined by

P (u) = ũ, u ∈ S.

For any u, v ∈ S, we put w = ũ− ṽ. Then w satisfies

w′′ + f(t, ut, u
′(t))− f(t, vt, v

′(t)) = 0, 0 ≤ t ≤ 1,

w0 = 0, w(1) = w(η).
(3.22)
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It follows that for all t ∈ [0, 1], we have

|w(t)| ≤
∫ 1

0

|f(s, us, u
′(s))− f(t, vs, v

′(s))|ds

+
1

1− η

∫ η

0

|f(s, us, u
′(s))− f(t, vs, v

′(s))|ds

+
1

1− η

∫ 1

0

|f(s, us, u
′(s))− f(t, vs, v

′(s))|ds

≤ Kθ

∫ 1

0

(
‖us − vs‖+ |u′(s)− v′(s)|

)
ds

≤ Kθ
(

max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

|u′(t)− v′(t)|
)
,

(3.23)

where K = 1 + 2
1−η . Similarly,

|w′(t)| ≤ K

∫ 1

0

|f(s, us, u
′(s))− f(t, vs, v

′(s))|ds

≤ Kθ
(

max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

|u′(t)− v′(t)|
)
.

(3.24)

By the definition of d, we have

d(ũ, ṽ) = max
{

max
0≤t≤1

|ũ(t)− ṽ(t)|, max
0≤t≤1

|ũ′(t)− ṽ′(t)|
}

≤ Kθ
(

max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

|u′(t)− v′(t)|
)

≤ 2Kθd(u, v).

Since 2Kθ = 2(1 + 2
1−η )θ < 1, we deduce that P is the contraction mapping.

Therefore there exists a unique u ∈ S such that P (u) = u. This implies that u is
the unique solution of the boundary-value problem (1.1)-(1.2). Then Theorem 3.3
is proved. �

We remark that Theorem 3.3 remains valid if we consider the boundary-value
problem

u′′ + f(t, ut, u
′(t), λ), 0 ≤ t ≤ 1,

u0 = φ, u(1) = u(η),
(3.25)

where λ is a real parameter and

|f(t, u, v, λ)− f(t, ũ, ṽ, λ)| ≤ θ(‖u− ũ‖+ |v − ṽ|), (3.26)

on [0, 1]× C × R× R for some positive constant θ, with

2(1 +
2

1− η
)θ < 1. (3.27)

In other words, by Theorem 3.3, if (3.26) , (3.27) hold then the boundary-value
problem (3.25) has a unique solution u(t) = u(t, λ) for each λ. We will show that
the solution of (3.25) depends continuously on the parameter λ if

|f(t, u, v, λ1)− f(t, u, v, λ2)| ≤ L|λ1 − λ2|, (3.28)

for some positive constant L, for all λ1, λ2.

Theorem 3.4. Let f : [0, 1]×C ×R×R → R be a continuous function. If (3.26)
-(3.28) hold then the solution of (3.25) depends continuously on λ.
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Proof. Let u(t) = u(t, λ1) and v(t) = v(t, λ2) be solutions of (3.25) with λ = λ1 and
λ = λ2, respectively. It follows from (3.23), (3.24) and (3.28) that for all t ∈ [0, 1],

|u(t)− v(t)| ≤ K

∫ 1

0

|f(s, us, u
′(s), λ1)− f(t, vs, v

′(s), λ2)|ds

≤ K

∫ 1

0

|f(s, us, u
′(s), λ1)− f(t, vs, v

′(s), λ1)|ds

+ K

∫ 1

0

|f(s, vs, v
′(s), λ1)− f(t, vs, v

′(s), λ2)|ds

≤ Kθ
(

max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

|u′(t)− v′(t)|
)

+ KL|λ1 − λ2|,

|u′(t)− v′(t)| ≤ Kθ
(

max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

|u′(t)− v′(t)|
)

+ KL|λ1 − λ2|,

where K = 1 + 2
1−η . Thus, in the completely metrizable space (S, d) which is

defined as above, we have

d(u, v) = max
{

max
0≤t≤1

max|u(t)− v(t)|, max
0≤t≤1

max|u′(t)− v′(t)|
}

≤ Kθ
(

max
0≤t≤1

|u(t)− v(t)|+ max
0≤t≤1

|u′(t)− v′(t)|
)

+ KL|λ1 − λ2|

≤ 2Kθd(u, v) + KL|λ1 − λ2|.
By (3.27), we have 2Kθ < 1, so

d(u, v) ≤ KL

1− 2Kθ
|λ1 − λ2|.

Thus, the solution of (3.25) depends continuously on the parameter λ. The proof
of Theorem 3.4 is complete. �

4. Application for the “mixed” boundary value problem

Now, we present our existence results for the solution to the boundary-value
problem (1.1)-(1.3). Based on lemma 2.5, the proofs for the following theorems are
similar to that of the section 3.

Theorem 4.1. Let f : [0, 1] × C × R → R be a continuous function and assume
there exist nonnegative functions p, q, r ∈ L1[0, 1] such that

(M1) |f(t, u, v)| ≤ p(t)‖u‖+ q(t)|v|+ r(t), for all (t, u, v) ∈ [0, 1]× C × R
(M2) 2

∫ 1

0
(1− s)p(s)ds + |α|

∫ η

0
p(s)ds < 1,

(M3)
∫ 1

0
(2− s)[p(s) + q(s)]ds + |α|

∫ η

0
[p(s) + q(s)]ds < 1.

Then the boundary-value problem (1.1)-(1.3) has at least one solution.

Proof. We first consider the case φ(0) = 0 and let the subspace C0, the functions
û be defined as in Theorem 3.1. Define the integral operator T : C0 → C1[0, 1] by

Tu(t) =−
∫ t

0

(t− s)f(s, ûs, u
′(s))ds− αt

∫ η

0

f(s, ûs, u
′(s))ds

+ t

∫ 1

0

(1− s)f(s, ûs, u
′(s))ds, t ∈ [0, 1].

(4.1)

Using (M1) and (3.2), it follows that

‖Tu‖0 ≤ a1‖u‖0 + b1‖u′‖0 + c1, ∀u ∈ C0, (4.2)
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where

a1 = 2
∫ 1

0

(1− s)p(s)ds + |α|
∫ η

0

p(s)ds,

b1 = 2
∫ 1

0

(1− s)q(s)ds + |α|
∫ η

0

q(s)ds,

c1 =
(
2

∫ 1

0

(1− s)p(s)ds + |α|
∫ η

0

p(s)ds
)
‖φ‖

+ 2
∫ 1

0

(1− s)r(s)ds + |α|
∫ η

0

r(s)ds.

Also using (M1) and (3.2), we obtain

‖(Tu)′‖0 ≤ a2‖u‖0 + b2‖u′‖0 + c2, ∀u ∈ C0, (4.3)

where

a2 =
∫ 1

0

(2− s)p(s)ds + |α|
∫ η

0

p(s)ds,

b2 =
∫ 1

0

(2− s)q(s)ds + |α|
∫ η

0

q(s)ds,

c2 =
( ∫ 1

0

(2− s)p(s)ds + |α|
∫ η

0

p(s)ds
)
‖φ‖

+
∫ 1

0

(2− s)r(s)ds + |α|
∫ η

0

r(s)ds.

As in the proof of the theorems 3.1, 3.2, we conclude from (4.2), (4.1) and (M3)
that the following set is bounded

{u∗ ∈ ∂Ω : T (u∗) = λu∗, λ > 1}. (4.4)

Hence that, combining the assumption (M2) and the continuity of f , T has a fixed
point u ∈ C0. In the case φ(0) 6= 0, by the transformation v = u − φ(0), we can
rewrite the boundary-value problem (1.1)-(1.3) in the form

v′′ + f(t, vt + φ(0), v′(t)) = 0, 0 ≤ t ≤ 1,

v0 = φ− φ(0) ≡ φ̃, v(1) = α[v′(η)− v′(0)]− φ(0),

in which φ̃ ∈ C and φ̃(0) = 0. Here, we also consider the subspace C0 and for a
function v ∈ C0, we define the function v̂ : [−r, 1] → R by

v̂(t) =

{
φ̃(t), t ∈ [−r, 0],
v(t), t ∈ [0, 1].

Consider the operator T̃ : C0 → C1[0, 1] defined by

T̃ v(t) =−
∫ t

0

(t− s)f(s, v̂s + φ(0), v′(s))ds− αt

∫ η

0

f(s, v̂s + φ(0), v′(s))ds

− φ(0)t + t

∫ 1

0

(1− s)f(s, v̂s + φ(0), v′(s))ds, t ∈ [0, 1].

Then, we can prove in a similar manner as above that T̃ has a fixed point v ∈ C0.
This completes the proof of Theorem 4.1. �
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Theorem 4.2. Let f : [0, 1]× C × R → R be a continuous function. Suppose that
there exist nonnegative functions p, q, r ∈ L1[0, 1] and reals constants k, l ∈ [0, 1]
such that (M2) holds and

(M̃1) |f(t, u, v)| ≤ p(t)‖u‖k + q(t)|v|l + r(t), for all (t, u, v) ∈ [0, 1]× C × R
(M̃3) Q(k)a2 + Q(l)b2 < 1,

where

a2 =
∫ 1

0

(2− s)p(s)ds + |α|
∫ η

0

p(s)ds,

b2 =
∫ 1

0

(2− s)q(s)ds + |α|
∫ η

0

q(s)ds,

and the function Q(µ) is defined as in the Theorem 3.2. Then the boundary-value
problem (1.1)-(1.3) has at least one solution.

The proof for the above theorem is similar to that of the Theorem 3.2 and is
omitted.

5. Application for the initial value problem

First, by the same method as in section 3, combining Lemma 2.6, we also estab-
lish the following results for the existence, uniqueness, continuous dependence on a
real parameter of the solution to the IVP (1.1)-(1.4).

Theorem 5.1. Let f : [0, 1] × C × R → R be continuous function and there exist
nonnegative functions p, q, r ∈ L1[0, 1] such that

(I1) |f(t, u, v)| ≤ p(t)‖u‖+ q(t)|v|+ r(t), for all (t, u, v) ∈ [0, 1]× C × R,
(I2)

∫ 1

0
p(s)ds +

∫ 1

0
q(s)ds < 1.

Then the (1.1)-(1.4) has at least one solution.

We remark that the above theorem may be a special case of [5, Corollary 4.2]
which is stated there without proving.

Proof of the Theorem 5.1. Here, we consider only the case φ(0) = 0 and let the
subspace C0, and the function û defined as in Theorem 3.1. Define the integral
operator T : C0 → C1[0, 1] by

Tu(t) = −
∫ t

0

(t− s)f(s, ûs, u
′(s))ds, t ∈ [0, 1]. (5.1)

Using (I1), (3.2) and (5.1), for all u ∈ C0, we obtain

‖Tu‖0 ≤ Ã1‖u‖0 + B̃1‖u′‖0 + C̃1, (5.2)

where

Ã1 =
∫ 1

0

(1− s)p(s)ds, B̃1 =
∫ 1

0

(1− s)q(s)ds,

C̃1 = ‖φ‖
∫ 1

0

(1− s)p(s)ds +
∫ 1

0

(1− s)r(s)ds,

and
‖(Tu)′‖0 ≤ Ã2‖u‖0 + B̃2‖u′‖0 + C̃2, (5.3)
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where

Ã2 =
∫ 1

0

p(s)ds, B̃2 =
∫ 1

0

q(s)ds,

C̃2 = ‖φ‖
∫ 1

0

p(s)ds +
∫ 1

0

r(s)ds.

It is easy to see that

Ã1 ≤ Ã2, B̃1 ≤ B̃2, C̃1 ≤ C̃2.

This implies from (I2) and (5.2), (5.3) that the following set is bounded

{u∗ ∈ ∂Ω : T (u∗) = λu∗, λ > 1}. (5.4)

Choose the constants Ã, B̃, m̃ as follows

Ã = max{Ã1, Ã2 + B̃2} = Ã2 + B̃2, (5.5)

by (I2), we have Ã2 + B̃2 < 1, so Ã < 1,

B̃ > max{ B̃1C̃2

1− Ã
+ C̃1, C̃2}, (5.6)

clearly, B̃ > 0. Put

Ω = {u ∈ C0 : ‖u‖1 < m̃}, with m̃ =
B̃

1− Ã
. (5.7)

Clearly, Ω is a bounded open subset of C0, 0 ∈ Ω, and ∂Ω = {u ∈ C0 : ‖u‖1 = m̃}.
Then, we can prove that the operator T : Ω = Ω ∪ ∂Ω → C1[0, 1] is completely
continuous and there is not u∗ ∈ ∂Ω such that T (u∗) = λu∗, for some λ > 1.
By using theorem 2.1, T has a fixed point u ∈ Ω. The proof of Theorem 5.1 is
complete. �

Theorem 5.2. Let f : [0, 1] × C × R → R be continuous function. Assume that
there exist nonnegative functions p, q, r ∈ L1[0, 1] and reals constants k, l ∈ [0, 1]
such that

(̃I1) |f(t, u, v)| ≤ p(t)‖u‖k + q(t)|v|l + r(t), for all (t, u, v) ∈ [0, 1]× C × R
(̃I2) Q(k)

∫ 1

0
p(s)ds + Q(l)

∫ 1

0
q(s)ds < 1,

where the function Q(µ) is defined as in the Theorem 3.2. Then (1.1)-(1.4) has at
least one solution.

Theorem 5.3. Let f : [0, 1] × C × R → R be continuous function and satisfy on
[0, 1]× C × R the Lipschitz condition

|f(t, u, v)− f(t, ũ, ṽ)| ≤ θ(‖u− ũ‖+ |v − ṽ|),
for some positive constant θ. If 2θ < 1, then there exists a unique solution to
(1.1)-(1.4).

Now, we consider the problem

u′′ + f(t, ut, u
′(t), λ), 0 ≤ t ≤ 1,

u0 = φ, u′(0) = 0,
(5.8)

where λ is a real parameter and

|f(t, u, v, λ)− f(t, ũ, ṽ, λ)| ≤ θ(‖u− ũ‖+ |v − ṽ|), (5.9)
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on [0, 1]× C × R× R for some positive constant θ, with

2θ < 1, (5.10)

|f(t, u, v, λ1)− f(t, u, v, λ2)| ≤ L|λ1 − λ2|, (5.11)

for some positive constant L, for all λ1, λ2.

Theorem 5.4. Let f : [0, 1]×C×R×R → R be continuous function. If (5.9)-(5.11)
hold, then the solution to (5.8) depends continuously on λ.

The proofs of Theorems 5.2–5.4 are similar to that of Theorems 3.2–3.4, respec-
tively, let us omit them.

Next, we shall show that the solution set of (1.1)-(1.4) is nonempty, compact
and connected. To this end, we need the following result.

Proposition 5.5. Let f : [0, 1] × C × R → R be continuous and locally Lipschitz
with respect to C ×R, i.e. for every (t0, u0, v0) ∈ [0, 1]×C ×R, there exist positive
constants δ, ρ, σ and θ ≥ 0 such that

|f(t, u, v)− f(t, ũ, ṽ)| ≤ θ(‖u− ũ‖+ |v − ṽ|),

for some positive constant θ, for all t ∈ [0, 1], (u, v), (ũ, ṽ) ∈ C × R, with

|t− t0| ≤ δ, ‖u− u0‖ ≤ ρ, ‖ũ− u0‖ ≤ ρ, |v − v0| ≤ σ, |ṽ − v0| ≤ σ.

Then (1.1)-(1.4) has at most a solution.

Proof. Suppose that (1.1)-(1.4) have two solutions u(t), v(t) on [−r, 1]. Then

u(t) = v(t), for all t ∈ [−r, 0].

We shall show that u(t) = v(t), for all t ∈ [−r, 1]. Put

b = max
{
τ : u(t) = v(t),∀t ∈ [−r, τ ]

}
. (5.12)

Clearly, b ≥ 0. Thus 0 ≤ b ≤ 1. We suppose by contradiction that b < 1. Since f
is locally lipschitz, for (b, ub, u

′(b)) ∈ [0, 1]×C ×R, there exist real numbers δ, ρ, σ
and θ ≥ 0 such that

|f(t, ũ1, ṽ1)− f(t, ũ2, ṽ2)| ≤ θ
(
‖ũ1 − ũ2‖+ |ṽ1 − ṽ2|

)
,

for all t ∈ [0, 1], (ũ1, ṽ1), (ũ2, ṽ2) ∈ C × R, with |t− b| ≤ δ,

‖ũ1 − ub‖ ≤ ρ, ‖ũ2 − ub‖ ≤ ρ, |ṽ1 − u′(b)| ≤ σ, |ṽ2 − u′(b)| ≤ σ.

Note that ub = vb, u′(b) = v′(b) and b + δ ≤ 1.
For each fixed u ∈ C([−r, 1]; R) which is continuously differentiable on [0, 1],

since the mappings

s 7→ us, s 7→ u′(s) with s ∈ [0, 1],

are continuous, so there exists δ′ > 0 with δ′ < δ and 2θδ′ < 1, such that

‖us − ub‖ ≤ ρ, ‖vs − ub‖ ≤ ρ, |u′(s)− u′(b)| ≤ σ, |v′(s)− u′(b)| ≤ σ,

for all s ∈ [b, b + δ′].
Let Sb be the space of continuous functions x : [−r, b + δ′] → R which are

continuously differentiable on [b, b + δ′] with xb = ub. We define

db(x, y) = max
{

max
b≤t≤b+δ′

|x(t)− y(t)|, max
b≤t≤b+δ′

|x′(t)− y′(t)|
}

.
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Then Sb is a completely metrizable space with the distance function db. It is easy
to see that u = u|[−r,b+δ′] ∈ Sb and v = v|[−r,b+δ′] ∈ Sb. Put w = u − v, then w
satisfies

w′′ + f(t, ut, u
′(t))− f(t, vt, v

′(t)) = 0, b ≤ t ≤ b + δ′,

wb = 0, w′(b) = 0.
(5.13)

It follows that for all t ∈ [b, b + δ′], we have

|w(t)| ≤
∫ t

b

(1− s)|f(s, us, u
′(s))− f(s, vs, v

′(s))|ds

≤ θ

∫ t

b

(
‖us − vs‖+ |u′(s)− v′(s)|

)
ds

≤ θδ′
(

max
b≤t≤b+δ′

|u(t)− v(t)|+ max
b≤t≤b+δ′

|u′(t)− v′(t)|
)
.

Similarly,

|w′(t)| ≤
∫ t

b

|f(s, us, u
′(s))− f(s, vs, v

′(s))|ds

≤ θδ′
(

max
b≤t≤b+δ′

|u(t)− v(t)|+ max
b≤t≤b+δ′

|u′(t)− v′(t)|
)
.

By the definition of the distance db, we have

db(u, v) = max
{

max
b≤t≤b+δ′

|u(t)− v(t)|, max
b≤t≤b+δ′

|u′(t)− v′(t)|
}

≤ θδ′
(

max
b≤t≤b+δ′

|u(t)− v(t)|+ max
b≤t≤b+δ′

|u′(t)− v′(t)|
)

≤ 2θδ′db(u, v).

Since 2θδ′ < 1, we deduce that db(u, v) = 0 i.e. u = v. Therefore,

u(t) = v(t), ∀t ∈ [−r, b + δ′].

This leads to a contradiction with the definition of b in (5.12). Then the proof is
complete. �

From Theorems 5.1, 5.2 and Proposition 5.5, we obtain the following corollary.

Corollary 5.6. Let f : [0, 1] × C × R → R be a continuous function and locally
Lipschitz with respect to C × R. Assume that there exist nonnegative functions p,
q, r ∈ L1[0, 1] and reals constants k, l ∈ [0, 1] such that

(̃I1) |f(t, u, v)| ≤ p(t)‖u‖k + q(t)|v|l + r(t), for all (t, u, v) ∈ [0, 1]× C × R
(̃I2) Q(k)

∫ 1

0
p(s)ds + Q(l)

∫ 1

0
q(s)ds < 1,

where the function Q(µ) is defined as in the Theorem 3.2. Then (1.1)-(1.4) has a
unique solution.

By the above results and applying Theorems 2.2, 2.3, we have the following
theorem.

Theorem 5.7. Let f : [0, 1] × C × R → R be continuous function and satisfy the
conditions (I1)-(I2) or (Ĩ1)-(Ĩ2). Then the solution set of the IVP (1.1)-(1.4) is
nonempty, compact and connected.
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Proof. Step 1. The case φ(0) = 0. We again consider the subspace C0, the
function û and the operator T , which are defined as in Theorem 5.1 As above,
T : Ω = Ω ∪ ∂Ω → C1[0, 1] is completely continuous, where

Ω = {u ∈ C0 : ‖u‖1 < m̃}, m̃ =
B̃

1− Ã
.

According to Theorems 5.1-5.2, it is obvious that the fixed point set of T is
nonempty. Furthermore, it is compact and connected. Indeed, First, for all u ∈ Ω,
it follows from (5.2), (5.3), (5.6) and (5.7), that

‖Tu‖1 ≤ Ã m̃ + C̃2,

m̃ =
B̃

1− Ã
>

C̃2

1− Ã
, i.e. Ãm̃ + C̃2 < m̃.

Therefore, ‖Tu‖1 < m̃. Then we obtain

T (Ω) ⊂ Ω.

On the other hand, Ω is convex, so

deg(I − T,Ω, 0) 6= 0.

Obviously, T has no fixed points on ∂Ω.
Next, the function f : [0, 1]×C×R → R is continuous function, by Theorem 2.3,

for each ε > 0, there is a mapping fε : [0, 1]× C × R → R that is locally Lipschitz
with respect to C × R, such that

|f(t, u, v)− fε(t, u, v)| ≤ ε

2
, ∀(t, u, v) ∈ [0, 1]× C × R. (5.14)

Clearly, fε is continuous. Moreover, by f satisfies the conditions (I1)-(I2) or (̃I1)-
(̃I2), it follows from (5.14) that fε satisfies the conditions (I1)-(I2) or (̃I1)-(̃I2). Let
Tε : Ω → C1[0, 1] be defined by

Tεu(t) = −
∫ t

0

(t− s)fε(s, ûs, u
′(s))ds, t ∈ [0, 1]. (5.15)

It is easy to check that Tε is completely continuous and

‖T (u)− Tε(u)‖1 ≤
ε

2
< ε, ∀u ∈ Ω. (5.16)

Finally, we need prove that for each h ∈ Ω with ‖h‖1 < ε, the equation

u = Tε(u) + h, (5.17)

has at most one solution. Suppose that u1, u2 are two solutions of (5.17). Put

w1 = û1 − ĥ, w2 = û2 − ĥ,

where

ĥ(t) =

{
φ(t), t ∈ [−r, 0],
h(t), t ∈ [0, 1],

ûi(t) =

{
φ(t), t ∈ [−r, 0],
ui(t), t ∈ [0, 1],

i = 1, 2. Then w1, w2 are two solutions of the problem

w′′ + fε

(
t, wt + ĥt, w

′(t) + h′(t)
)

= 0, 0 ≤ t ≤ 1,

w0 = 0, w′(0) = 0.
(5.18)
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This implies from Proposition 5.5 that the problem (5.18) has at most one solution,
so

w1 = w2, i.e. u1 = u2.

It follows that (5.17) has at most one solution.
Applying Theorem 2.2, we have the fixed point set of T is nonempty, compact

and connected. Thus, so is the solution set of (1.1)-(1.4). The step 1 is complete.
Step 2. The case φ(0) 6= 0. By the transformation v = u−φ(0), the IVP (1.1)-(1.4)
can be rewritten in the form

v′′ + f
(
t, vt + φ(0), v′(t)

)
= 0, 0 ≤ t ≤ 1,

v0 = φ− φ(0) ≡ φ̃, v′(0) = 0.
(5.19)

in which φ̃ ∈ C and φ̃(0) = 0. By the step 1, we can prove without difficulty that the
solution set of (5.19) is nonempty, compact and connected. In this proof, when f

satisfies the conditions (̃I1)-(̃I2), the inequality (3.18) is used again. Consequently,
the solution set of (1.1)-(1.4) is nonempty, compact and connected. Theorem 5.7
is proved. �
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