
 
 

CHIP CHARACTERIZATION:  

MAN-HOUR REDUCTION AND INCREASED FUNCTIONALITY  

TESTING WITH AUTOMATION IMPROVEMENTS 

 
THESIS 

 
 

Presented to the Graduate Council of  
Texas State University-San Marcos 

in Partial Fulfillment  
of the Requirements  

 
 

for the Degree 
 

Master of SCIENCE  
 

by 
 
 

Robert C. Murphy, PhD, M.S., B.S. 
 
 

San Marcos, Texas 
May 2007 

 
 
 
 
 

 



  

CHIP CHARACTERIZATION:  

MAN-HOUR REDUCTION AND INCREASED FUNCTIONALITY 

TESTING WITH AUTOMATION IMPROVEMENTS 

    

 

 Committee Members Approved: 

 

_______________________________ 
Deborah East 

 
 
 

_______________________________ 
Jawad Drissi 

 
 
 

_______________________________ 
Granville Ott 

  
 
 
Approved: 
  
________________________ 
J. Michael Willoughby 
Dean of the Graduate College 
 

 



 
ACKNOWLEDGEMENTS 

I am very thankful to Dr. East, Dr. Otto, and Dr. Drissi for their guidance 

and support.  I would also like to thank the company C.L. for presenting and 

allowing me to work on this problem. It has been a very intense and rewarding 

experience.  I would also like to thanks the engineers for their invaluable 

assistants.   

This manuscript was submitted on March 6, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii 



  

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS.....................................................................................iii 

ABSTRACT .........................................................................................................xii 

CHAPTER 1 ......................................................................................................... 1 

BACKGROUND.................................................................................................... 1 

INTRODUCTION.................................................................................................. 1 

1.1. Project Motivation .......................................................................................... 1 

1.2. Project Description................................................................................ 4 

1.3. Software Platform Used to Implement System...................................... 7 

1.4. Summary of Interview / Knowledge Acquisition .................................... 7 

1.5. Additional Existing Documents, Synonyms, etc. ................................. 10 

1.6 Organization of Thesis ......................................................................... 10 

1.7. Background......................................................................................... 11 

1.7.1 Resolution..................................................................................... 13 

1.7.2 Range ........................................................................................... 15 

1.7.3 Amplification ................................................................................. 16 

1.7.4 Code Width ................................................................................... 17 

1.7.5 Conversion Errors......................................................................... 20 

CHAPTER 2 ....................................................................................................... 29 

PERFORMANCE METRICS FOR ADC ............................................................. 29 

INTRODUCTION................................................................................................ 29 

2.1 Static Performance .............................................................................. 30 

iv 



  

2.1.1 Histogram Analysis ....................................................................... 30 

2.1.2 Gaussian ...................................................................................... 31 

2.1.3 DNL Affect on Histogram .............................................................. 35 

2.1.4 Averaging ..................................................................................... 36 

2.1.5 Flicker Free Bits............................................................................ 37 

2.4 Dynamic Performance.......................................................................... 39 

2.4.1 Windowing .................................................................................... 40 

2.4.2 Signal Analysis Statistics .............................................................. 46 

CHAPTER 3 ....................................................................................................... 48 

ANALYSIS APPLICATION ................................................................................. 48 

CHAPTER 4 ....................................................................................................... 57 

UML.................................................................................................................... 57 

INTRODUCTION................................................................................................ 57 

4.1 General Description for ADC Family .................................................... 58 

4.1.1 UML Class Model ......................................................................... 64 

4.1.2 UML State Model .......................................................................... 65 

4.2 Microcontroller ..................................................................................... 84 

4.3 Bench Test Environment...................................................................... 91 

4.3.1 Class Model .................................................................................. 92 

4.3.2 State Model................................................................................... 93 

4.3.3 Interaction Model .......................................................................... 95 

4.4 Automation Test Environment............................................................ 106 

4.4.1 Class Model ................................................................................ 107 

4.4.2 State Model................................................................................. 109 

v 



  

4.4.3 Interaction Model ........................................................................ 115 

CHAPTER 5 ..................................................................................................... 116 

IMPLEMENTATION.......................................................................................... 116 

INTRODUCTION.............................................................................................. 116 

5.1 PROTOCOLS .................................................................................... 117 

5.1.1 SPI.............................................................................................. 117 

5.1.2 GPIB ........................................................................................... 118 

5.1.3 RS485......................................................................................... 119 

5.1.4 Peripherals Interfacing................................................................ 119 

5.2 User Interface .................................................................................... 134 

CHAPTER 6 ..................................................................................................... 163 

CONCLUSION.................................................................................................. 163 

BIBLIOGRAPHY............................................................................................... 164 
 
 
 

vi 



  

LIST OF TABLES 
 
TABLE 1 CALCULATED LSB VALUES FOR DIFFERENT RESOLUTIONS...... 19 
TABLE 2 IDEAL RESOLUTION.......................................................................... 19 
TABLE 3 IDEAL SIGNAL-TO-NOISE ................................................................. 20 
TABLE 4 WINDOWS METRICS......................................................................... 45 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vii 



  

LIST OF FIGURES 

FIGURE 1 OVERALL PROJECT LAYOUT .......................................................... 4 
FIGURE 2 INPUT SIGNAL SINE WAVE 100 HZ................................................ 14 
FIGURE 3 ADC 3 BIT CONVERSION OF SINE WAVE ..................................... 14 
FIGURE 4 ADC 16 BITS CONVERSION OF 100 HZ SINE WAVE.................... 15 
FIGURE 5 RANGE (0-10)V AND (-10 TO +10)V................................................ 16 
FIGURE 6 ADC 3-BITS CODE WIDTH AND TRANSITIONS............................. 18 
FIGURE 7 DIFFERENTIAL NONLINEARITY ..................................................... 22 
FIGURE 8 INTEGRAL NONLINEARITY............................................................. 23 
FIGURE 9 OFFSET ERROR.............................................................................. 24 
FIGURE 10 GAIN ERRORS............................................................................... 25 
FIGURE 11 ALIAS TIME DOMAIN SIGNAL....................................................... 26 
FIGURE 12 ALIASING IN THE FREQUENCY DOMAIN .................................... 28 
FIGURE 13 NON-IDEAL ADC HISTOGRAM ..................................................... 31 
FIGURE 14 GAUSSIAN NOISE AND PDF......................................................... 32 
FIGURE 15 HIGH DNL AFFECT ON HISTOGRAM........................................... 35 
FIGURE 16  PERIODIC AND NON-PERIODIC ANALOG SIGNALS ................. 40 
FIGURE 17  FFT PERIODIC AND NON-PERIODIC SIGNAL ............................ 41 
FIGURE 18 SINE WAVE WINDOWED WITH HAMMING .................................. 42 
FIGURE 19 MAINLOBE AND SIDELOBE OF WINDOWS ................................. 43 
FIGURE 20 FREQUENCIES BLEARING FROM WINDOWING......................... 44 
FIGURE 21  WINDOWS SINE WAVE PLOT...................................................... 46 
FIGURE 22 BASIC DYNAMIC PERFORMANCES............................................. 49 
FIGURE 23 POWER SPECTRUM OF SIGNAL ................................................. 50 
FIGURE 24  SNR FLOW CHART....................................................................... 51 
FIGURE 25 SDR DIAGRAM............................................................................... 52 
FIGURE 26 SDR FLOWCHART......................................................................... 53 
FIGURE 27 SIGNAL TO PEAK NOISE MAPPING............................................. 54 
FIGURE 28 SPN PSEUDO-CODE..................................................................... 55 
FIGURE 29 PSEUDO-CODE FOR SINAD......................................................... 56 
FIGURE 30 CS5530 ADC INTERNAL................................................................ 59 
FIGURE 31 FRONT END CONFIGURATION .................................................... 59 
FIGURE 32 CS5530 REGISTERS ..................................................................... 60 
FIGURE 33 CS5531/32/33/34 ADC INTERNAL................................................. 61 
FIGURE 34 CS5531-34 FRONT END ................................................................ 62 

viii 



  

FIGURE 35 CS5531/32/33/34 REGISTER DIAGRAM ....................................... 63 
FIGURE 36 CLASS DIAGRAM OF DUT ............................................................ 65 
FIGURE 37 SYSTEM INITIALIZATION .............................................................. 67 
FIGURE 38 ADC RESET STATE MODEL ......................................................... 68 
FIGURE 39 READ, WRITE, AND DATA CONVERSION TIMING DIAGRAMS.. 69 
FIGURE 40 WRITE CYCLE................................................................................ 70 
FIGURE 41 READ CYCLE STATE MODEL....................................................... 71 
FIGURE 42 SINGLE DATA CONVERSION ....................................................... 72 
FIGURE 43 LOAD COMMAND SUB-STATE OF DATA CONVERSION............ 73 
FIGURE 44 CONFIGURATION REGISTER PIN OUT ....................................... 74 
FIGURE 45 READ REGISTER STATE MODEL................................................. 75 
FIGURE 46 WRITE REGISTER STATE MODEL............................................... 76 
FIGURE 47 SELF CALIBRATION STATE MODEL CS5531-5534 ..................... 78 
FIGURE 48 SYSTEM CALIBRATION STATE MODEL FOR CS553X ............... 79 
FIGURE 49 CONVERSION REGISTER DATA OUTPUT DESCRIPTIONS....... 80 
FIGURE 50 CS5530 CONVERSION DATA OUTPUT DESCRIPTIONS ............ 81 
FIGURE 51 SINGLE DATA CONVERSION STATE MODEL ............................. 82 
FIGURE 52 CONTINUOUS CONVERSION STATE MODEL............................. 83 
FIGURE 53  BOARD LAYOUT........................................................................... 84 
FIGURE 54 C8051F320 MICROCONTROLLER INTERNAL LAYOUT .............. 87 
FIGURE 55 C8051F320 BLOCK DIAGRAM....................................................... 88 
FIGURE 56 USBXPRESS DATA FLOW ............................................................ 89 
FIGURE 57 EXPRESS API FOR PC AND DUT (DEVICE UNDER TEST) ........ 90 
FIGURE 58 MICROCONTROLLER STATE MODEL ......................................... 91 
FIGURE 59 BENCH TEST CLASS MODEL....................................................... 92 
FIGURE 60 BENCH TEST STATE MODEL ....................................................... 94 
FIGURE 61 USE CASE DIAGRAM FOR POWER SUPPLY ............................ 102 
FIGURE 62 SILICON THERMAL USE CASE DIAGRAM................................. 103 
FIGURE 63 DUT USE CASE DIAGRAM.......................................................... 104 
FIGURE 64 EVALUATION SOFTWARE SEQUENCE “EVAL553X_U.EXE” ... 105 
FIGURE 65 AUTOMATION LAYOUT............................................................... 107 
FIGURE 66 AUTOMATION CLASS MODEL.................................................... 108 
FIGURE 67 AUTOMATION POWER INITIALIZATION STATE MODEL .......... 110 
FIGURE 68 SETTING POWER SUPPLY VOLTAGES AND CURRENT   

VALUES .................................................................................................... 112 
FIGURE 69 SILICON THERMAL TEMPERATURE VALUES........................... 114 

ix 



  

FIGURE 70 TEST ENGINEERS AND TESTERS RELATIONSHIP TO 
AUTOMATIC TEST ENVIRONMENT........................................................ 115 

FIGURE 71 DATA SOURCE SELECTION....................................................... 137 
FIGURE 72 SUCCESSFUL COMMUNICATION.............................................. 138 
FIGURE 73 VERSION IDENTIFICATIONS ...................................................... 139 
FIGURE 74 MENU DRIVEN............................................................................. 140 
FIGURE 75 SETUP PANEL ............................................................................. 141 
FIGURE 76  SINGLE CONVERSION MODE USING SOFTWARE TIMER ..... 143 
FIGURE 77 CALIBRATION .............................................................................. 144 
FIGURE 78 CHANNEL SETUP PANEL ........................................................... 145 
FIGURE 79 DATA COLLECTION WINDOW (ANALYSIS) ............................... 146 
FIGURE 80 CONFIGURATION PANEL (# SAMPLES, AVERAGE, FFT 

WINDOW, HISTOGRAM WIDTHS)........................................................... 147 
FIGURE 81 CONFIGURATION SAMPLE NUMBER DROP DOWN LIST........ 148 
FIGURE 82 TIME DOMAIN 1024 SAMPLES ................................................... 149 
FIGURE 83 FFT OF CONVERTED DATA ....................................................... 150 
FIGURE 84 ZOOM SEGMENT OF THE PLOT ................................................ 151 
FIGURE 85 ERROR MESSAGE WHEN CURSORS ARE OUT OF ORDER... 152 
FIGURE 86 HISTOGRAM OF ZERO VOLT INPUT ......................................... 153 
FIGURE 87 AVERAGE PLOTTED 2 ................................................................ 154 
FIGURE 88 AVERAGE PLOTTED 10 .............................................................. 155 
FIGURE 89 NO CALIBRATION........................................................................ 156 
FIGURE 90  WITH OFFSET AND GAIN CALIBRATIONS ............................... 157 
FIGURE 91 AUTOMATION PANEL ................................................................. 158 
FIGURE 92  CS5530 SETUP PANEL .............................................................. 161 
FIGURE 93 CS5530 DATA COLLECT PANEL ................................................ 162 
 

 
 

 

 

 

x 



  

LIST OF EQUATIONS

EQUATION 1 CODE WIDTH.............................................................................. 17 
EQUATION 2 IDEAL CODE WIDTH CALCULATION ........................................ 19 
EQUATION 3 SIGNAL TO NOISE RATIO.......................................................... 20 
EQUATION 4 ANALOG TO DISCRETE SIGNAL REPRESENTATION............. 26 
EQUATION 5 ALIAS FREQUENCY GENERATED ............................................ 27 
EQUATION 6 GAUSSIAN PROBABILITY DENSITY ......................................... 32 
EQUATION 7 MEAN .......................................................................................... 32 
EQUATION 8 STANDARD DEVIATION OF DIGITIZED SIGNAL ...................... 32 
EQUATION 9 SNR CALCULATION WITH NOISES........................................... 37 
EQUATION 10 WINDOWING FREQUENCY RESOLUTION ............................. 44 
EQUATION 11 SIGNAL-TO-NOISE RATIO ....................................................... 48 
EQUATION 12 SIGNAL-TO-NOISE PLUS DISTORTION.................................. 48 
EQUATION 13 SIGNAL-TO-DISTORTION RATIO ............................................ 48 
EQUATION 14 SIGNAL-TO-PEAK NOISE......................................................... 48 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

xi 



  

 
ABSTRACT 

CHIP CHARACTERIZATION: 

  MAN-HOUR REDUCTION AND INCREASED FUNCTIONALITY TESTING 

WITH AUTOMATION IMPROVEMENTS 
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SUPERVISING PROFESSOR: DEBORAH EAST 

Chip design expansion increases linearly with new products, thus device 

characterization tests have increased exponentially and created a chip design 

bottleneck.  If there is only one function (herein designated as “A”), “A” need only 

test function “A.”  If there are two functions, “A” and “B”, then test sets will be “A,” 

“B,” “AB,” and “BA.” If there are three functions, ”A,” “B,” and “C,” then test sets 

“A,” “B,” “C,” “AB,” “AC”, “BA,” “BC,” “CA,” “CB,” “ABC,” and so forth.   
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The objective of this thesis is to automate manual test procedures so that 

design bottlenecks can be eliminated and device characterization can be 

improved.  In achieving the stated objective, it will be necessary to develop a 

framework that attains and integrates commonality, maintainability, and 

reusability.    
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CHAPTER 1  

BACKGROUND 

INTRODUCTION 

1.1. Project Motivation 

C.L. Corporation (C.L.) is a major producer of industrial chips used in oil 

exploration, residential power consumption and weigh scale application.  C.L. is 

also a leading producer analog to digital converters, (ADC).  Chip design 

expansion increases linearly with new products, thus device characterization 

tests have increased exponentially and created a chip design bottleneck.   If 

there is only one function (herein designated as “A”), “A” need only test function 

“A.”  If there are two functions, “A” and “B”, then test sets will be “A,” “B,” “AB,” 

and “BA.”  If there are three functions, ”A,” “B,” and “C,” then test sets “A,” “B,” 

“C,” “AB,” “AC”, “BA,” “BC,” “CA,” “CB,” “ABC,” and so forth.   

C.L. characterization engineers find it challenging to keep up with the 

demands placed upon them.  Chip validation procedures focus on everything 
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from highly integrated analog and digital tests to system level power 

management and custom “system on” chip tests. 

The objective of this project is to automate C.L.’s manual test procedure 

so that design bottlenecks can be eliminated and device characterization can be 

improved.  In achieving the stated objective, it will be necessary to develop a 

framework that attains and integrates commonality, maintainability, and 

reusability.    

Currently, C.L. device characterization is a highly manual process that 

involves extensive operator intervention and control.  The engineer manually sets 

up the power supplies, device temperature, writes to the DUT (device under test), 

then records multi-meter measurements by hand.   This process is tedious, time 

consuming, and lends itself to errors.  In essence, a typical validation procedure 

requires the use of at least four different instruments which results in the 

necessity of four different protocols to control the instruments.   

Each instrument has its own exclusive control language.  Power meter, 

ADC microchip validation/characterization, and testing procedures utilize RS-

232, RS-485, GPIB (IEEE-488), and USB 2.0 protocols.  Power supplies and 

digital multi-meters use GPIB.  Silicon Thermal DUT temperature set uses RS-

232 and a network version of RS-232 called RS-485.  The (customized) board 

which holds the DUT uses USB 2.0 to communicate with the microcontroller, and 
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the microcontroller then communicates with the chips on the evaluation board.  

The microcontroller uses protocols I2C or SPI for chip communication.  

In this project, I shall integrate source and measurement equipment with 

the customized board to test microchips.   In personal interviews with C.L.’s 

engineers, four crucial criteria emerged as follow:  

• Ease of use 

• Modularity 

• Interchangeability 

• Flexibility 

The key project goal is to improve C.L.’s test methodologies by automating 

testing techniques.  The test project should use easy, flexible, modular, 

interchangeable components. Whenever feasible, the interface screen should 

match as closely as possible to the actual test measurement instruments.  

     The programming language used to set up the aforementioned 

methodologies shall be Labwindows.   
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1.2. Project Description 

 
 

FIGURE 1 OVERALL PROJECT LAYOUT 

Once again, the objective of this project is automating the chip validation 

procedure and developing a technique for testing specific functions of a chip.   To 
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achieve this task I grouped the project into three phases.  Phase 1 is developing 

an application to communicate with the test chips, phase 2 is developing drivers 

to communicate with the test instrument, and phase 3 is integrating phase 1 and 

phase 2 together resulting in the automatic tester.   Figure 1.1 shows the layout 

of this project.      

This application overcomes the human error and speed up the validation 

procedure.  It is design based on the concept of virtual instrument.  Virtual 

instruments describe the combination of programmable instruments with general-

purpose PCs.  Virtual instruments contain a GUI for controlling its functions by 

the PC.   A test engineer can easily set the peripherals for several values that are 

automatically changed by the host computer during a run.  The output consists of 

test output parameters, peripherals values, and chip register values.    

Product Features and Benefits: 
• Automatic so reduction in human error  

• Reduction in man hours for validation  

• Accuracy in test setup and reading  

• Easy to use  

• GUI for each  peripheral  

• User Friendly  

• Product Constraint:  

• Graphical User Interface  
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• Automatic setting of peripherals 

• Automatic setting of Chip register values  

• All register values and peripherals setting store in a file  

• Stand alone operation  

• Monitors: 800x600 minimum resolutions at 256 colors  

• Computer with GPIB card, RS232 port, and USB port  

• I/O: One or two button mouse and standard 101-key board  

• Mhz: PIII 1.0 Ghz 

• Power Supply with GPIB or RS232 port (HP3458) 

• Keithley Digital Multimeter 197A GPIB port  

• Silicon Thermal Temperature controller with RS232 port  

• Power Setting up to 10 values  

Hardware Constraint: 
• Monitors: 800x600 minimum resolutions at 256 colors  

• Computer with GPIB card, RS232 port, and USB port  

• I/O: One or two button mouse and standard 101-key board  

• Mhz: PIII 1.0 Ghz 

• Power Supply with GPIB or RS232 port (HP3461A) 

• Keithley Digital Multimeter 197A GPIB port  

• Silicon Thermal Temperature controller with RS485 port  

Assumptions:  
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• Above instrument are available  

• Tester  and/or Test Engineer knows how to connect GPIB devices  

• Tester and/or Test Engineer comfortable with windows and mouse  

• Tester and/or Engineer knows excel spreadsheet and how to import  

• USB 2.0 communication is bug free  

1.3. Software Platform Used to Implement System 

I used LabWindows/CVI to develop this application.  LabWindows/CVI is a 

test and measurement ANSI C development environment.  It includes a 32-bit 

compiler and linker with advanced editing and debugging tools.[1][2] It is open 

which means one can incorporate other compilers and produce DLLs for other 

environments.  LabWindows/CVI includes a comprehensive suite of libraries 

targeted at instrumentation applications, from instrument control to data analysis 

and graphing.  It also includes CodeBuilder and interactive function panels. [3] 

1.4. Summary of Interview / Knowledge Acquisition 

 
Robert: Hi M S how are you doing today?  
M S: I am doing great.   
 
Robert: How is the new born and has your daughter accepted him yet?  
MS:  New born is fine and no, the daughter has not accepted him.    
  
Robert:  Well, how is work going in the industrial group?  
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MS:  Well, it would be a lot better if we had the test procedure automated.  I have 
several new chips coming in that need to be validated.  
 
Robert:  What is it that you need to automate and how can I help? 
M S:  As you know we have a test board and have a chip that we place on the 
board. The board is connected to the host computer through the USB port.  We 
would like an application to communicate with the chip and write to different 
registers on the chip.   
 
Robert: What type of protocol are you using to communicate with the device 
under test?  
M S:  I think that it is SPI to write to the register and to read information from the 
registers.   
 
Robert: So what are some of the test features that you want to do on the chip?  
M S:  Well, I would like Normal test of the chip and several signal analysis tests 
on the chip.   
 
Robert:  What type of signal analysis test on the chip that you would like?  
M S:  Signal FFT and Noise FFT.  
 
Robert: What else would you like in your output?  
M S:  Well, I would like to see plots Fast Fourier Transforms and magnitude and 
phase of the signal.  
 
Robert:  What else would you like?  
M S: I would like for it to be totally automated.   
 
Robert: Please elaborate.  
M S:   On the test board there are plug-ins for power connection.  I would like to 
adjust the different power supply setting automatically.  Also, there are jumpers 
that come off the board.  Do you know what jumpers are?  
 
Robert: Yes, I understand.   
M S:  These jumper output voltage values on the board that tell what the output 
of the chip is.  I would like to store those values in to a file somehow with the chip 
configuration.   
 
Robert: That wouldn’t be a problem. What format would you like the output to 
be?  
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M S:  I would like to be able to open the output file into an excel spreadsheet.   
The tester should able to do analysis on the output file values. 
 
Robert:  How many power supplies will be used to connect to the testing board 
to power up the chip?  
M S:  There will be only one power supply powering the board and the test chip.  
There also will be two digital multimeters to read the value of the header or 
jumpers.  And there is a thermal controller that needs to be adjusted.  It sets the 
temperature value of the device.   
 
Robert:  What is the interface protocol for these devices?   
M S:  The protocol is RS 232 and GPIB and the board is connected to the host 
computer through the USB bus.  
 
Robert:  If you are using the GPIB, there needs to be a PCI-GPIB card or usb-
GPIB device connected to the computer to communicate to GPIB devices.  Do 
you have a card?  
M S: Well, we probably have one floating around, if not we will order what ever 
you need to interface to the instrument.   
 
Robert:  What programming language do you want to use?  
M S: Well, I would like it to be written in Labwindows and/or Labview.  
 
M S: Do you know Labview or Labwindows?  
Robert: Well, I am a Labview expert but I don’t know Labwindows at the 
moment.  It should not take me long to figure it out though.    
M S: Great.   
 
Robert: Do you mind if I record our interview for my thesis? 
M S:  No problem at all feel free to use it and my name.   
 
Robert: I won’t use your name or the company name directly.  I will just use an 
alias for the company and your name.    
M S: That is okay.  
  
Robert:  Is there anything else you would like to add at this moment.   
M S: No, I   think that I have covered everything so far.  
 
Robert:  Well, thanks for the interview and I will start right away on designing the 
prototype of the interface and other stuff so that you and your engineer can 
overview it.  
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M S: Thanks.  
Robert: No thank you.  This should be a fun project and feel free to contact via 
email or through the phone if you have any last minute suggestions.  

 

1.5. Additional Existing Documents, Synonyms, etc. 

           GPIB- General Purpose Interface Bus, IEEE-488 protocol  
 R232- serial communication protocol TX, R, G 3 wires  
 DAQ- Data Acquisition 
 ADC – Analog to Digital Converter  
 DAC – Digital to Analog Converter  
 I2C   - chip protocol pronounce eye square c  
 SPI   - Serial Port  Interface  
           RS484 – serial communication protocol with addressing capability 
 DUT – Device Under Test 

1.6 Organization of Thesis 

Chapter 1 covers the software requirements and the methodology used to 

attain them.  Also, I discuss hardware limitations and constraints and review 

background information on analog-to-digital parameters.   

In Chapter 2 performance metrics of ADC is discussed.  Both static and 

dynamic performances are reviewed in details.    

In Chapter 3 a review of the analysis application is discuss.  I explain how 

to calculate and define the signal-to-noise ration, signal-to-distortion ratio, signal-

to-noise plus distortion, and signal-to-peak noise.   
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In Chapter 4 a general description of analog-to-digital family of chips are 

presented.  I design a solution to the problem using Unified Model Language 

Methodology.   I discuss the microcontroller code and the different testing 

environment.  

Chapter 5 is the implementation phase of the solution.  I describe the 

development environment for both application and microcontroller code.   I 

describe event driven programming and the data structures used in the solution.  

Graphical User Interfaces of the application are displayed.  Both instructions on 

how to use the application and description of objects on the panel are given.   

1.7. Background 

In the following section, I explain the basic of signal acquisition, how 

analog to digital converter operate, and some fundamental concepts of ADC.   

Signal acquisition is the process of converting a physical phenomenon into data 

that a computer can use. [4] A transducer is used to convert a measurement of a 

physical phenomenon into an electrical signal. [5]  Physical phenomena can be 

temperature, force, sound and light.  Some examples of transducers are 

thermocouples used to measure temperature, photoconductive cells to measure 

light, microphones to measure sound, and load cells to measure force and 
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pressure. [6]  The electrical signal from the transducer can be of two types digital 

or analog.    

Most physical phenomena are analog.  The information provided in an 

analog signal is its level, shape, and frequency.   Measuring the level of analog 

signal is measuring its voltage level.  Measuring the shape of a signal can 

provide information about the peak values, slope or integration.   To extract 

frequency information from an analog signal requires that the signal be Fourier 

Transform into the frequency domain from the time domain. [7]    

A digital signal has only two possible states ON and OFF.   Digital signal is 

TTL (Transistor to Transistor Logic).  There are only two aspects of a digital 

signal measured state and rate.  An example of digital signal is the encoded 

signal of a motor spinning. 

  Doing complex analysis with a computer on a signal requires that the 

signal be digitized.  Digitization is accomplished through an ADC. The ADC 

converts an analog signal into 0s and 1s into a word which is an approximate 

representation of the magnitude of the input signal.  An ADC continuously maps 

the analog signal into discrete steps that are represented by digital codes.  Each 

discrete step represents a fixed value of the voltage reference used.  Some 

common characteristics of ADC are resolution, range, amplification, and code 

width. 
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1.7.1 Resolution 

Resolution is the number of bits used to represent an analog signal. [8]  

One can look at resolution like the markings on a ruler.  The more marks on a 

ruler, the more precise the measurements are.   The higher the resolution (the 

more bits) an ADC has, the greater the number of divisions used to represent a 

range.  Thus, the smaller a detectable change can be converted.  A 3 bit ADC 

divides the range into 23 or eight divisions.   The binary code goes from 000 to 

111 to represent each division.  The ADC converts each measurement of the 

analog signal to one of the eight divisions.  The figure below shows the difference 

between a 3 bit ADC and 16 bit ADC used to convert a 100 Hz sine wave 

sampled at 1 KHz with 1000 samples taken.  A 16 bit ADC has 216 (65536) 

divisions. 16 bit ADC is much more accurate representation of the sine wave. 
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FIGURE 2 INPUT SIGNAL SINE WAVE 100 HZ 

 

FIGURE 3 ADC 3 BIT CONVERSION OF SINE WAVE 
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FIGURE 4 ADC 16 BITS CONVERSION OF 100 HZ SINE WAVE 

 

1.7.2 Range 

Range is the minimum and maximum analog signal that an ADC can 

quantize.  Typical, ranges are 0V to 10V (unipolar) or -10V to 10V (bipolar).  For 

better accuracy the range of the ADC should have the same polarity as the 

signal.  For example, if the input signals to an ADC is a unipolar value between 0 

and 10 volts and the range of the 3 bits ADC is set to 0 to 10 volts. All eight 

binary codes are then used to digitize the signal.  Each division is a multiple of 

1.25 volts.  If the ADC is set to bipolar mode from -10 to 10 volts, there are only 

four divisions used to digitize the positive signal.  Each division is now a multiple 

of 2.5 volts. [9] 
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FIGURE 5 RANGE (0-10)V AND (-10 TO +10)V 
 

1.7.3 Amplification 

Amplification is the act of amplifying the signal.  For the best result the 

signal is amplified before digitization.  By amplifying the signal it effectively 

decreases the input range of an ADC.  This allows the ADC to use the maximum 

number of digital divisions.   For example, if the signal from the transducer is 

between 0 and 5 V.   It is connected to a 3-bit ADC with a range of 0 to 10V.   

With a gain = 1 or no amplification, there are four divisions used to quantize the 

signal out of a possible eight divisions.   Change the gain to 2, and the input 

voltage is now scaled between 0 and 10V.  All eight codes can be used to digitize 

the signal.  In summary, the range, resolution, and amplification determine the 

smallest detectable change that an ADC can quantize.  
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1.7.4 Code Width 

 Code width is the smallest change that a system can detect in a signal.  

The code width is calculated with the following equation:  

bits
ranges

width ionamplificat
voltage

code
2×

=  

EQUATION 1 CODE WIDTH 

Signal representation is directly correlated to code width.  The smaller the code 

width is the more accurate the signal representation.   From Equation 1.1 the 

following axiom can be proven: 

• Larger resolution = smaller code width that results in a more 

accurate representation of the signal  

• Larger amplification = smaller code width that results in a 

more accurate representation of the signal  

• Larger range = larger code width resulting in less accurate 

representation of the signal.  
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FIGURE 6 ADC 3-BITS CODE WIDTH AND TRANSITIONS  

If in Figure 1.6 there is a 12 bit ADC,  the voltage range is between -5 to 

+5 V and gain = 1. [6]  The ideal code width is 2.441 mV.  Any signal between 0 

and 2.441mv will be encoded as 000.  Any signal greater then 2.441 mV but less 

than 4.882 mV will be encoded as 001 and so on.    The plot also shows that 

there are 2N codes and 2N -1 transition.  The transitions are represented by the 

linear line between the steps.  The center of one of the codes is defined as zero, 

which means that a bipolar conversion will have one fewer code on half of the 

transfer function than the other.  This also means that at full-scale, the output 

code is described at least 1 LSB (Least Significant Digit) less than the voltage 

reference because of the zero code.   In Table 1 the actual code width is 
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calculated for different bit size ADC for a full-scale value = ± 3V.  1 count or LSB 

can be looked at as the code width.  

Codes
Volts

N2
6

 

EQUATION 2 IDEAL CODE WIDTH CALCULATION 

 

Table 1 CALCULATED LSB VALUES FOR DIFFERENT RESOLUTIONS 

Analog-to-Digital Quantization of Full Scale ± 3V 

N 12 16 20 24 

1 LSB 1.46mV 91.5µV 5.7µV 0.36µV 

 
Table 2 shows the number of codes calculated from 2N and the resolution is the 

code width equation with the range being 1.  

 

Table 2 IDEAL RESOLUTION 

Ideal ADC Measurement and Resolution 

N Bits # of Codes Resolution 

12 4096 244 ppm 

16 65536 15 ppm 

20 1,048,576 0.95 ppm 

24 16,777,216 0.06 ppm 
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1.7.5 Conversion Errors  

 
An ADC is a quantizing device.   There is always quantization error even 

in an ideal ADC.  When a signal has been digitized, the digital codes 

representing the signal can actual differ by as much ± ½ LSB (code width).   

Figure 6 shows the quantization error being plotted per code width.   The best 

that an ideal ADC can do in representing the signal verses quantization noise is 

calculated by the following equation.  N is the number of ADC bits. [11] 

 

dBNSNR 76.102.6 +=  

EQUATION 3 SIGNAL TO NOISE RATIO 

The signal to noise ratio (SNR) defines the full scale root mean square of the 

sine wave to the root mean square of the quantization noise. [11] 

 

Table 3 IDEAL SIGNAL-TO-NOISE 

Ideal Signal to Noise Ratio

N Bits S/N(dB) 

12 74 

16 98 

20 122 

24 146 
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Table 3 shows the best possible signal that an analog-to-digital converter can 

produce with the given bits of ADC.     

The step-size of a real world ADC can be greater or smaller then the ideal 

quantization step size.  The changes in step size introduce an additional error 

called the differential nonlinearity (DNL). [12]   DNL is the difference between the 

actual sizes of the code versus the ideal.  SNR decreases with an increase in the 

DNL.  The variation in code size is a function of the matching accuracy of the 

elements that compose the converter.   Large mismatches in the ADC electrical 

converting elements can cause short or wide codes or even cause code to be 

missing.  These variations can be caused by random environmental changes or 

parasitic noises in the system itself.  Figure 7 is a plot of the differential 

nonlinearity.  
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FIGURE 7 DIFFERENTIAL NONLINEARITY 

Integral Nonlinearity (INL) is a measure of the linearity of the entire 

transfer function of the ADC.  A straight line is drawn between the codes at each 

end of the transfer function.  Integral nonlinearity is the furthest distance from the 

center point of the line and the code. [13]  Another method of calculating INL is to 

put a full-scale low distortion sine wave into the converter and do an FFT (Fast 

Fourier Transform) to calculate the spectral density characteristics converter. [14]   
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Signal/noise and Signal/(noise plus distortion) can be calculated.  Figure 5 shows 

the integral nonlinearity of the converter.   

 
FIGURE 8 INTEGRAL NONLINEARITY 

Offset error is the shift of the zero point in the code.  This is the code generated 

when the voltage input into the ADC is zero.  It is determined from the mean of 

histogram of codes.  This calculation will be discussed later in this chapter.  

Figure 9 is an example of offset. [15] 
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FIGURE 9 OFFSET ERROR 

The gain error is the change in the slope of the converter transfer function.  

It is the difference between a given code and a line being drawn from the origin 

through the 0 volt code value.  Figure 7 shows the gain error calculation. [11] 
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FIGURE 10 GAIN ERRORS  

 Another cause of conversion error is aliasing.   Aliasing results when the 

sample rate is below the Nyquist Theorem for an incoming signal.   A signal x(t) 

in the time domain is sampled every ∆t seconds.  This time interval is called the 

sampling interval or sample period.  The reciprocal 1/∆t is the sampling 

frequency.   It is in unit samples/second.  Each discrete value (binary code) of 

signal x(t) at time t = 0, ∆t, 2∆t, 3∆t, etc., is a sample. [16]   The signal x(t) is now 

represented by discrete signals.  This is the definition of a digital representation 

of a signal.  
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                                     )(),...,3(),2(),(),0()( tkxtxtxtxxtx ΔΔΔΔ=  
 

EQUATION 4 ANALOG TO DISCRETE SIGNAL REPRESENTATION 
 

The sample rate is the speed at which a measurement device samples an 

incoming signal and generates an output signal, in this case, binary code.  The 

faster the sample rate the better the representation of the original signal.  Nyquist 

Theorem states that to accurately display a continuous signal discretely, one 

must sample at least twice the signal’s highest frequency component.  Figure 11 

below is a graph showing an aliased sample signal.  The ‘x’ represents the 

discrete signal generated by the converter.  The bottom plot shows the ADC plot 

of the signal overlaid on the original signal. [17] 

 

FIGURE 11 ALIAS TIME DOMAIN SIGNAL   
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 In the frequency domain, aliasing appears as non-existing frequencies 

below the Nyquist frequency.   For example, a signal composed of four 

frequencies 25 Hz, 70 Hz, 160 Hz, and 510 Hz.   If the sampling frequency is 100 

Hz, the Nyquist frequency is (fs = 50 Hz).  The signal below the Nyquist 

frequency appears correctly, but the 70 Hz signal appears as 30 Hz signal below 

Nyquist and so on.   Alias frequencies generated are calculated with the following 

formula:  

Alias f = abs(closet integer multiple of sampling frequency – Input 
Frequency). [18] 

EQUATION 5 ALIAS FREQUENCY GENERATED    

Figure 12 shows the alias frequency plotted.   The calculations are:  

• Alias F2 = |100 -70| = 30 Hz , 
• Alias F3 = |(2)*100 -160 | = 40 Hz 
• Alias F4 = |(5) * 100 – 510| = 10 Hz 

There are two ways to get rid of aliasing, filtering and/or increasing sample rate.  

Sample rate increase is the simplest and easiest method.  
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FIGURE 12 ALIASING IN THE FREQUENCY DOMAIN 

 

 



 

CHAPTER 2  

PERFORMANCE METRICS FOR ADC 

 INTRODUCTION 

To measure the quality of an ADC, there are basically three techniques 

applied to the analog signal. First, the time domain signal is plotted into a 

histogram.  Second, the signal is converted from the time domain to the 

frequency domain with Fast Fourier Transforms (FFT).   Third, both histograms 

and FFT are used to analyze the signal.  Histograms are used to quantify the DC 

accuracy or static performance.  They can generate information about offsets 

and the low level noise.  FFT are used to measure the dynamic performance 

characteristics like linearity (INL discussed above) of converter, and synchronous 

noise clock feed (spurious beeps) in a signal. [19]  Both histogram and FFT can 

determine random noise. Information from both techniques can be used in 

troubleshooting since both tests use the same data set. For example, noise can 

be classified as asynchronous or synchronous. [20] 

29 
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2.1 Static Performance 

2.1.1 Histogram Analysis 

Analog signals that do not vary or varies little over time are static signals.   

Some examples of static measurements are weights, pressure, and temperature.   

Static measurements can be low-level signals that require high resolutions.  A 

histogram is the tabulation of frequency occurrence in a signal that is 

represented by rectangles.  The area of a rectangle is proportional to the 

occurrences.  The information from a histogram quantifies the error and noise 

associated with the conversion.   Physically, a static signal is applied to the input 

of the ADC.  Several conversions are done by the ADC on the non-changing 

signal.  If the ADC is ideal, all the samples collected would have the same value 

or code.  Therefore the histogram plot would be one bin, where the x-axis would 

be the code returned and the y-axis would equal the number of samples 

collected.   From previous discussion there is no such thing as an ideal analog-

to-digital converter because there is always quantization error (noise).  With 

noise added to the conversion process, the values collected are going to vary as 

a function of the amount of noise.  The histogram of non-ideal ADC would have 

several codes for a static input value.  Figure 13 shows a non-ideal ADC 

histogram.   The plot to the left is a histogram that is noise free. The plot to the 
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right is a histogram with noise added.  For a given, input the output could be one 

of ten values.    

 

 

 

FIGURE 13 NON-IDEAL ADC HISTOGRAM 
 

2.1.2 Gaussian 

Random electrical noise has been shown to have a Gaussian distribution. 

[20]  The Gaussian’s probability density function (PDF), is represented by a 

normal or bell shaped curve.  It is a continuous curve that is used to determine 
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the mean and the standard deviation.    The Gaussian PDF is described by the 

following equations: 

( ) ( )
222 σ

μ

πσ
−−= Xenxp [21] 

EQUATION 6 GAUSSIAN PROBABILITY DENSITY 

The mean and the standard deviation are given by the following equations 

equation 7 and equation 8 below respectively:[22 ] 
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EQUATION 8 STANDARD DEVIATION OF DIGITIZED SIGNAL 

 
FIGURE 14 GAUSSIAN NOISE AND PDF  
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The information collected from the histogram is used to calculate the 

mean and standard deviation.  In Equation 7 and 8 the Xi value is the value 

outputted from the ADC.  “n” is the number of samples taken.   In Figure 14 the 

probability density function is plotted with the histogram and shows a good 

correlation between the histogram and the PDF curve.  This means that the bell 

curve is a good model of the conversion data collected from the ADC. [23]  By 

using the PDF, the performance of the ADC can be quantified.   The mean, which 

is the average value collected, is the offset of the ADC.   The variance is a 

measure of the uncertainty or noise in the system.  It describes how much the 

value varies from the mean outputted by the ADC.  The square root of the 

variance is the standard deviation.   The standard deviation is the root mean 

square of the noise, also known as the rms noise. [24]  From the rms noise, the 

peak to peak noise can be determined.   For example, if the input to the ADC is 

grounded resulting in a zero value, the expected mean of all the converted value 

would zero.   The offset error is the difference between the expected and actual 

mean calculated. From Figure 13 the mean is not zero.  The error can be caused 

by electrical and quantization noise. From the sample data the rms noise is 

calculated from the standard deviation.  The peak-to- peak noise is the 

confidence interval statistics. [25] The question answered by the peak-to- peak 

noise is:  “How confident are you that the signal is within the sample set?”  To 

use 99.9% of all the values collected from the ADC, the standard deviation is 
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multiplied by 6.06 for a normal distribution.  The more samples collected by the 

ADC and analyze the better the characterization of the ADC’s behavior.    To 

better understand what has been presented, several examples have been 

included.  Figure 13 shows is the plot from a 24 bit ADC with the gain of one.  

The code width is calculated from +/- range / 2N, (N is the number of bits).  The 

count is the bin number.  The count multiplied by the code width gives the 

voltage value. For example, the offset voltage value for -2346 codes is -700 µV.  

Figure 13 is calculated with 1024 samples.   This calculation could be repeated 

with the ADC at full scale to measure the gain error. [26]  The standard deviation 

should remain constant.  The small difference is the result of sampling error.

 How many samples to take?  The number of samples to take is a function 

of the confidence interval, degree of accuracy, and distribution variables. [27]  

Confidence, is basically the degree of certainty that the estimate is within a 

certain range.  The degree of accuracy is how accurate you want to represent the 

real world signal.  For example acquiring 1024 samples is more accurate 

representation of ADC conversion behavior then only 10 samples.    If the 

distribution varies significantly then many samples are necessary to determine 

the ADC behavior.  
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2.1.3 DNL Affect on Histogram 
 

Histogram plots are drawn with the assumption that the uncertainty or 

noise is random.   If the noise is truly random, then the histograms sample set 

models a bell-shaped curve.  When the differential nonlinearity (DNL) is high, it 

distorts the distribution of random noise. [28]   Wide code (code covering several 

voltages greater then the code width), have a higher probability of occurring then 

narrow code.  This error can result in complete bins being absent from the 

histogram, which means that codes are missing.  This can result in unreliable 

statistics.  Figure 15 is example of histogram having large number for the DNL. 

 

FIGURE 15 HIGH DNL AFFECT ON HISTOGRAM 
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2.1.4 Averaging 

Averaging requires that the ADC have a good DNL value.   Averaging is a 

method to increase the bit resolution and decrease the amount of uncertainty 

caused by noise in a signal. [29]  For example, the analog input is set to 1.45 

counts, (voltage = counts * code width).  The digital output from the Analog-to-

Digital Converter (ADC) is the following { 1,2,3, 1,1,2,1,2,1,0,2,1}.  If no noise is 

present, the output for the ADC would be only one value, 1.45.   Since there is 

noise, the count varies between 0 and 3.  If only the first value is taken, the count 

would be 1.  If the first four samples are averaged, the count would be 1.75.   If 

the first nine samples are averaged, the count would be 1.556.   And if all twelve 

samples average, the count is 1.417 which is closer to the actual value of 1.45 

counts.  Averaging increases the precision of the conversion.  The mode for the 

ADC output is one with a frequency of six.   

 How does averaging improve the resolution?  From the previous twelve 

ADC outputs the following statistical characteristics are calculated in counts.  

• Mean = 1.417 
• Variance = 0.629 
• Standard deviation = 0.793 

To attain a 95% occurrence of all converted values the normal distribution states 

that the standard deviation must be multiplied by ±1.96.   If one sample is used, 

then the variation in the actual value would be ± (1.96*0.793) or better yet ±1.554 
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counts.   If the first conversion is used from above with a count value of 1, then 

there is a 95% certainty that the value is between -0.554 and 2.554.  Averaging 

reduces the standard deviation by one over the square root of the number of 

samples used in the averaging data. [29]   For example, the above 12 samples 

were used to average the data. The count was 1.417 and the uncertainty is 

±0.449 counts instead of ±1.554 counts.  

2.1.5 Flicker Free Bits 

Flicker free bits are the number of bits that do not have any flicker. [30]  It 

is the actual resolution of the ADC including system noise, thermal noise, 

quantization noise, and any spurious noises.    The signal-to-noise ratio equals: 

⎟
⎠
⎞⎜

⎝
⎛= inputfullscale
noiseSNR _log20  

EQUATION 9 SNR CALCULATION WITH NOISES 

Also, SNR is given by the following from above: SNR = 6.02N +1.76 for 

quantization noise only.  Using Equation 9, noise is equal to the peak-to-peak 

noise, which is 6.6 x rms noise.  the number 6.6 gives a confidence interval of 

99.9%.  RMS noise is just the standard deviation.    For better understanding, 

here is an example I calculated.   ADC has rms noise equals 1.25 uV.  The 

analog input range is ±2.56 V.  Using Equation 8 with peak-to-peak noise value, 

the SNR = 20 log ((6.6 x 1.25E-6)/(2 x 2.56)) = -115.85db.   
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The peak-to-peak resolution is  

   115.85 = 6.02N +1.76 => N = (115.85-1.76)/6.02 = 19 Bits.  

 

Some companies use the effective resolution rather than the peak-to-peak 

resolution.   The effective resolution is calculated with the rms noise only.   The 

signal to noise ratio would then be   

   20 log ((1.25E-6)/(2*2.56)) = -132.25dB  

This leads to an effective resolution of  

   132.25 = 6.02N + 1.76 => N = (132.25-1.76)/6.02 = 21.7Bits    

Effective resolution has 2.7 more bits then peak-to-peak resolution.   The 

effective resolution does not show the number of bits that flicker.  The peak-to-

peak resolution gives a better indication of true performance since it shows the 

number of bits that do not flicker.    

In summary, a device that has an effective resolution of 22 bits has a 

flicker-free resolution of 22-2.7 = 19.3 bits or 19 bits.  From the above calculation 

if this were a 24 bit ADC, then 19 bits would be noise free in the conversion.  This 

example also shows the importance of averaging.  If the standard deviation is 

reduced by averaging with a factor of ten to 1.25E-7, the number of flicker-free 

bits with a peak-to-peak resolution would be 22 bits instead of 19 bits.      
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2.4 Dynamic Performance 

Dynamic performance is the characterization of how the conversion 

function alters the spectrum of the signal transmitted through the system.  

Spectral analysis is used to decompose the input signal into its frequency 

components.   The time domain signal collected by the ADC is converted into the 

frequency domain using Fourier Transform.  The magnitude of the frequency 

components is used to determine the signal power at a given frequency.   This is 

the power spectrum plot.  The frequency elements also include phase 

information.  For this project, phase information was not needed so it was 

discarded.   The transform process starts at the Analog-to-Digital Converter 

(ADC).  A continuous analog signal is converted to an n-bit binary digital word.   

The ADC output the digital words at a rate set by the sampling frequency (Fs).  

The ADC throughput determines the maximum sampling frequency.  The 

conversion from the time domain is done using Fast Fourier Transform (FFT) 

algorithm.  A sample set of data is collected for the FFT.  The data set size is 

expected to be a power of 2 and periodic.  The data set size is a function of 

computer memory and processing throughput, input signal dynamics, and degree 

of frequency resolution. [31]  If the data set is non-periodic, high frequency 

elements will exist in the frequency domain that do not exist in the input signal.   

Figure 16 shows analog sample sets.  The first sample is periodic and with three 
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sample sets.  The second sample is non-periodic and shows the discontinuity 

that would result in high frequency components.  

 

 

 
FIGURE 16  PERIODIC AND NON-PERIODIC ANALOG SIGNALS 

2.4.1 Windowing 

FFT algorithm requires that the signal cycles be in integer multiples and 

that the number of samples be a power of two.  These requirements are difficult 

to adhere to in a real world signal.  A real signal is usually composed of several 

frequencies making periodicity difficult.  The lack of periodicity results in signal 

discontinuities.   This leads to spectral leakage of the signals fundamental.  

Figure 17 is a graph of the FFT of a perfect sine wave that meets the FFT 

requirements periodicity and non-periodic signal.  The high signal floor around 

the fundamental of non-periodic signal is spectral leakage.  Spectral leakage is 

where the energy of the fundamental is dispersed from the fundamental reducing 

the energy of the signal. [32]  
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FIGURE 17  FFT PERIODIC AND NON-PERIODIC SIGNAL 
 

Windowing is used to reduce the spectral leakage that results from taking 

the FFT of a non-periodic and/or dynamic signal.  Windowing multiplies the time 

domain signal by a function that attenuates the amplitude on the ends.   This 

reduces the discontinuity.   The windowed data set can be combined without 

discontinuity.  Windowed signal energy is spread to several bins instead of just 

one bin in the mainlobe.  The objective of windowing is to keep the fundamental 

energy in the mainlobe with very little leakage to the sidelobes.   Figure 18 is a 
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plot of a sine wave in the time domain windowed.  In the figure, the signal 

endpoints are attenuated by the windowing functions. 

 

FIGURE 18 SINE WAVE WINDOWED WITH HAMMING 
 

One tradeoff with windowing is the smearing of the input signal among 

several bins and the leakage in the sidelobe. [33]   When an input signal is 

multiplied by a window, the signal is spread among several bins, smearing the 

exact frequency.  The wider the mainlobe is which includes most of the input 

signal, the greater the smearing of the frequency.  The amount of spectral 

leakage is directly proportional to the magnitude of the sidelobes.  When the 

sidelobes are greater then the noise floor, the input signal is leaking to 

frequencies outside the mainlobe.  In general, the sidelobes magnitude is 

inversely proportional to the width of the mainlobe as shown in Figure 20.   
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FIGURE 19 MAINLOBE AND SIDELOBE OF WINDOWS 

Also, the ability to distinguish between different frequencies components 

of the input signal is inversely proportional to the width of the mainlobe.  [34]   In 

Figure 21 there is a plot of a sine signal composed of two frequencies.  One 

signal has amplitude of 0.001 and a frequency of 73.92.  The other signal has 

amplitude of 1.00 and a frequency of 66.90.  The signal is windowed with two 

different windowing functions “Exact Blackman” and “Flat Top”.  From the plot, 

the “Exact Blackman” windowed signal shows two frequencies while the “Flat 

Top” windowed signal shows only one frequency.  The mainlobe of the “Flat Top” 
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is larger then the mainlobe of the “Exact Blackman”.   This is an example of 

frequency blearing.    

 

FIGURE 20 FREQUENCIES BLEARING FROM WINDOWING 

The smallest frequency that is detectable from a windowed signal is given 

by the equation below:  

N
F

widthmainlobef s*_=  [35] 

EQUATION 10 WINDOWING FREQUENCY RESOLUTION  

 

“f” is the frequency.  The mainlobe width is given in Table 4 below.  Fs is 

the sampling frequency and N is the number of samples taken.   From Equation 

10, the frequency resolution can be improved by increasing the number of 

samples taken. [36]  
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Table 4 WINDOWS METRICS 

Window Type Mainlobe Width (Bins)
Highest 

Sidelobe Level 
(db) 

Hanning 5 -32 
Blackman 7 -58 

Minimum 4-term Blackman-
Harris 9 -92 

5-term Hody 11 -125 
7-term Hody 15 -175 

 

Table 4 shows the Windowing Metrics for different window type.   The 

Hody window was developed by Mr. Hody at company C.L.   I included both 

Hody windows in the “Analysis” application.  

Figure 21 shows some of the windowing functions that I implemented in 

this program.  The choice of window function depends on the application, the 

system performance, and the information required.  Windowing metrics used to 

determine the window to use is the highest sidelobe level, sidelobe fall-off, the 

equivalent noise band width, the 3db band width, and worst case process loss. 

[36]   
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Figure 21  WINDOWS SINE WAVE PLOT 

2.4.2 Signal Analysis Statistics 

 There are four key performance measurements that are used to 

characterize the linearity of the system and the noise characteristics from the 

power spectrum.   They have been discussed above so they will only be 

mentioned here.   They are:  
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1. Signal-to-Noise Ratio (SNR) 

2. Signal-to-Noise and Distortion (SINAD) 

3. Signal-to-Distortion (SD) 

4. Signal-to-Peak-Noise (SPN) 

 

These are used for benchmarking and troubleshooting performance issues.   I 

used a flow charts diagram for the pseudo-code and for the analysis algorithm in 

following chapter. 

 

 



 

CHAPTER 3  

ANALYSIS APPLICATION 

 The following equations are used to calculate the signal to noise ratios: 

[37]  

⎟
⎠
⎞

⎜
⎝
⎛=

NoisePower
PowerlFundamentaSNR _log10

 

EQUATION 11 SIGNAL-TO-NOISE RATIO 
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EQUATION 12 SIGNAL-TO-NOISE PLUS DISTORTION 
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⎠
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EQUATION 13 SIGNAL-TO-DISTORTION RATIO 
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EQUATION 14 SIGNAL-TO-PEAK NOISE 
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Figure 22 is a flow chart describing the basic steps to calculate the 

dynamic performance statistics.  Each basic state has it own unique flow charting 

and diagram that I used in implementing the analysis program.  

 

 
FIGURE 22 BASIC DYNAMIC PERFORMANCES 

 To calculate the signal noise metrics one must first determine how many 

frequencies are contained in the DC limits of the signal and how many 

frequencies are contained in the fundamental signal. [38]  These questions are a 
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function of the windowing type.  For each window, the following coefficients are 

assigned: ndt, slfund, sldc, and dclim. For example, for the 7-Hody term, ndt is 6, 

slfund = 0, sldc = 7, and dclim = ndt+sldc.   DC power is the sum of the 

frequencies starting at zero on the x-axis of the power spectrum to the dclim.   

The fundamental power is the sum of plus and minus the ndt of the maximum 

signal after the dclim.   This is explained further below.    

 The following is a schematic and flow chart that I developed to write the 

algorithm to calculate the SNR of a signal. [39]  The fundamental energy of the 

signal is in black.   

 

FIGURE 23 POWER SPECTRUM OF SIGNAL 
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FIGURE 24  SNR FLOW CHART 

For each of the frequencies contained in the DC region of the signal, the average 

noise for the signal is used in the sum of noises.  
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The following is used to calculate the SDR (signal to noise plus distortion). [40] 

 
FIGURE 25 SDR DIAGRAM 
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FIGURE 26 SDR FLOWCHART 
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The next calculation is the signal-to-peak noise, SPN. [41]   

Fundamental
Low

Fundamental
High

Peak Noise 
Low Bin

Peak Noise
High Bin

SPN = Fundamental Signal / Peak Noise Signal

Peak Noise = Sum Frequencies(Peak Low to Peak High)

 
 

FIGURE 27 SIGNAL TO PEAK NOISE MAPPING 
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FIGURE 28 SPN PSEUDO-CODE 

 
 

The following is the pseudo-code for calculating the signal to noise plus 

distortion.  The reciprocal of the SINAD is total harmonic distortion, THD.  [42]  
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FIGURE 29 PSEUDO-CODE FOR SINAD 

 



 

CHAPTER 4  

UML 

INTRODUCTION 

The software architecture was designed using Unifying Modeling 

Language 2.0.  I chose this technique to architect the solution because its 

implementation is platform independent, simplification of the problem by 

separating the problem into three views, and ease in modification. [43]  I modeled 

the problem into three distinct views for two different environments.  The first 

environment is for the actual setting registers and reading and writing to the chip 

being characterized.  The second environment is the bench.  It includes 

interfacing to power supplies, digital multimeters, and silicon thermal.  For the 

chip, the class model represents the internal object of the ADC and the 

microcontroller.  These internal objects include registers and analog input 

channels to the chip.  The microcontroller controls the serial communication 

between the chip and the PC.    In this model, I describe the relationship between 

different objects, attributes, and their operations.   In the state model, the 

temporal behaviors of the objects are described.  The events and controls are the 

stimulus used to change or move an object from one state to the next.  The
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second environment is the bench test environment.  The class model represents 

the peripheral used in characterizing the ADC.  The state model is the 

events/controls used in automation.  The interaction model shows how users 

interact with an application, in this case the test engineers and technician. 

4.1 General Description for ADC Family 

The CS5530/31/32/33/34 are highly integrated ΔΣ Analog-to-Digital 

Converters (ADCs) that use charge-balance techniques to achieve 16-bit 

(CS5531/33) and 24-bit (CS5530/32/34) performance.   The ADCs are designed 

for measuring low-level unipolar and bipolar signals in weigh scale, process 

control, scientific, and medical applications.  The ADCs come as either one-

channel (CS5530), two-channel (CS5531/32), or four-channel (CS5533/34) 

devices.   The design includes a very low noise chopper-stabilized programmable 

gain instrumentation amplifier (PGIA) with selectable gains of 1x, 2x, 4x, 8x, 16x, 

32x, and 64x.  The ADCs have a fourth order ΔΣ modulator followed by a digital 

filter which provides twenty selectable output word rates of 6.25, 7.5, 12.5, 15, 

25, 30, 50, 60, 100, 120, 200, 240, 400, 480, 800, 960, 1600, 1920, 3200, and 

3840 samples per second with a master clock rate (MCLK = 4.9152 MHz).  The 

communication between the ADCs and micro-controller is a three-wire serial 

interface which is SPI and Microwire compatible with a Schmitt Trigger input on 
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the serial clock.  Figure 30 is the physical layout of CS5530 ADC.  It is a one 

channel device with only a gain of 64X. 

 

FIGURE 30 CS5530 ADC INTERNAL 

 
  Figure 31 is the front end configuration which that includes a chopper-

stabilizer instrumentation amplifier. [44] 

[45] 

FIGURE 31 FRONT END CONFIGURATION  
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Figure 32 shows the block diagram of the on-chip controller’s internal 

registers.  The controller includes a number of user-accessible registers.  The 

registers hold offset and gain calibration results, chip operating mode 

configuration, hold conversion instructions, and store conversion data words. 

There are two 32 bits registers that holds the offset and gain calibration. These 

registers are read/write, which allows calibration data to be off-loaded into an 

external EEPROM and allows the user ability to manipulate the register contents.  

This converter has a 32-bit configuration register which is used for setting options 

like power down modes, resetting the converter, shorting the analog input, 

enabling logic outputs, and so on.   The CS5530 has a 64x gain not a 

programmable gain like the 31/32/33/34.      

[46] 

 

FIGURE 32 CS5530 REGISTERS  
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  The following general descriptions are for the CS5531/32/33/34 ADCs.  Figure 

33 illustrates the ADC layout for this family of chips.  Like the CS5530 these 

ADCs include a very low noise chipper-stabilized instrumentation amplifier.   

They have a programmable gain amplifier (PGIA) with selectable gains of 1x, 2x, 

4x, 8x, 16x, 32x, 64x, (not in CS5530).        

[47] 

 

FIGURE 33 CS5531/32/33/34 ADC INTERNAL  

Figure 34 illustrates the block diagram of the CS5531/32/33/34.  The front 

end consists of a multiplexer, a unity gain coarse/fine charge input buffer, and a 

programmable gain chopper-stabilized instrumentation amplifier.   The unity gain 

buffer is started with any conversion that has a gain of one.  The PGIA is 

activated with any conversion with a gain of greater then one.    
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[48] 

 

FIGURE 34 CS5531-34 FRONT END  

Figure 35 is a block diagram of the on chip controller registers.   As with 

the CS5530, each converter has 32-bit registers to function as offset and gain 

calibration registers.  Converters with two channels have two offset and two gain 

calibration registers and converters with four channels have four offset and four 

gain calibration registers that holds the calibration results.  These registers are 

read/write.  Also, there is a 32-bit configuration register that is used for setting 

converter options.  There is a 32-bit conversion register that holds the converter 

data.  It is read only register.  There is an 8-bit command register that is write-

only.  There are a maximum of four registers called the Channel Setup Registers.   

They contain preloaded conversion instructions.   Each channel setup register is 

32 bits in length and holds two 16 bit conversion instructions.  The number of 

channel setup is dependent on the number of input channels.  For two channels 
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device there are two channel setup register and for four channels, four channel 

setup register.  CS5530 does not contain a channel setup register.  The channel 

setup register can be initialized during power up by the controller.  The converter 

can be instructed to perform single/multiple conversions or calibrations using the 

mode defined in the channel setup register.   The channel setup registers can set 

the following modes of the chip: channel select, gain, word rate, unipolar/bipolar, 

output latch, delay time, open circuit detect, offset/gain pointer.  

[49] 

 

FIGURE 35 CS5531/32/33/34 REGISTER DIAGRAM  

There are two conversion modes that this family of ADC can be set in.  In 

single conversion mode an 8-bit command word is written to the serial port 

through the SDI input line.  Within the command, there are three bits used as a 

pointer to point to the 16-bit command in the Channel Setup Register which is to 
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be executed.  The 16 bit setups can be programmed to do conversion on any 

input channel and more then one 16 bit setup can be used on an input channel.  

This allows the user to convert the same signal with different word rate, different 

gain range, or any of the channel setup options.   The user also can setup 

different conversion characteristic on different channels.  In continuous 

conversion mode, the ADC can continuously convert referencing only one 16 bit 

Channel Setup Register.  In this mode the converted data is loaded into a shift 

register.  When conversion is complete, the converter sets a flag on the SDO pin. 

 

4.1.1 UML Class Model 

Figure 36 is a diagram of the class model of the ADC.   The super class is 

register.   The register class has the behavior of writing and reading.  This is 

inherited to the subclasses.   As shown in the diagram the subclasses are offset, 

gain, channel setup, configuration, 8-bit command and conversion registers.  

They represent physical objects represented in the DUT.  All the behavior is 

inherited from the super class to all registers except command and conversion 

registers.  The command class inherits only the behavior of writing since it is a 

write-only register.  The conversion register inherits only the behavior of reading 

since it is a read-only register.    
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FIGURE 36 CLASS DIAGRAM OF DUT 
 

4.1.2 UML State Model 

I represented several key behaviors in the ADC and the microcontroller 

using state diagrams.  The microcontroller is the link between the ADC and the 

computer using the universal serial bus.  The first step to preparing the DUT for 

characterizing is to initialize the system.  The initialization sequence comprises of 

initializing the serial port and a chip reset.  Figure 37 shows the initialization 

sequence to place the serial port into command mode and reset the ADC.   At 
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least 15 SYNC1 command bytes, (0xFF hexadecimal,) are transmitted across the 

serial port.  Then a SYNC0 command, (0xFE hexadecimal), is transmitted. [50]  

This establishes synchronization between the serial port clock on the 

microcontroller and the master clock of the device.   The final step is the device 

reset.  Figure 38 illustrates the steps to reset the ADC. The CS5530/31/32/33/34 

serial interface is composed of four lines Chip Select, (CS), Serial Data In, (SDI), 

Serial Data Out, (SDO), Serial Clock, (SCLK).  CS is used when there are 

several ADC connected together.  The microcontroller toggle the CS line of the 

ADC that instructions are addressed too.  Figure 39 is a diagram showing the 

read, write and data conversion cycle.   When the CS pin get tied low the serial 

interface function using three wires.  SDI line is used to transfer commands to the 

converter.  SDO line is used to transfer data from the converter to the 

microcontroller. The serial clock is used in timing the shift of words to and from 

the ADC’s through the serial port.  Figure 40 -43 are state models of the read and 

write cycles.   To validate the serial communication was properly working; I 

connected the chip to a logic analyzer through the header pins.   I compared the 

timing diagram on the scope to that of figure 39.  
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FIGURE 37 SYSTEM INITIALIZATION 

 



68  

 
 

FIGURE 38 ADC RESET STATE MODEL 
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[51] 
FIGURE 39 READ, WRITE, AND DATA CONVERSION TIMING DIAGRAMS  
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FIGURE 40 WRITE CYCLE 
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FIGURE 41 READ CYCLE STATE MODEL 
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FIGURE 42 SINGLE DATA CONVERSION 
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FIGURE 43 LOAD COMMAND SUB-STATE OF DATA CONVERSION 

The write-cycle timing shows that the first 8 clocks cycles are used for 

shifting the command into the ADC’s command register.  The command is a byte 

in size a two digit hexadecimal number like 0xC0.  The next 32 bits is the data.  It 
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takes 32 clocks cycle to shift in 32 bits of data, (one cycle for each bit).   For 

example to write to the configuration register the command would be 0x03 and 

then 4 bytes of data would follow.   Figure 44 shows the bit structure of the 

configuration register.  The Acrobat file referenced in the bibliography contains 

the definitions for the acronyms.  

[52] 
FIGURE 44 CONFIGURATION REGISTER PIN OUT  

The read cycle uses both the SDI and SDO lines.  The command is shifted into 

the command register using eight clock cycles along the SDI line.  The command 

is executed and then the data is shifted out using 32 clocks cycle through the 

SDO lines.  The data conversion cycle is similar to read cycle except on the SDO 

line there is eight clock cycle used to clear the transmit buffer.   Then the data is 

sent to the host or the computer bye the micro-controller.  The data is shifted 

between the converter and the microcontroller in byte size.   The microcontroller 

and the converter handshaking is done through the setting/resetting the SDO 

line.   I will explain this in more detail later.   Figure 45 and 46 illustrates the state 

model for the read and write register.   
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FIGURE 45 READ REGISTER STATE MODEL 

 



76  

 
 

FIGURE 46 WRITE REGISTER STATE MODEL 

Calibration is used to calculate the zero and gain slope of the ADC 

transfer function.  There are two types system and self calibration.  Each input 

channel has a corresponding offset and gain register to store calibration result.  

The registers are 32 bit long.  The offset holes the zero value of the ADC 
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conversion.  The least significant bit (LSB) of 24 bit ADC is 1.835007966 x 2-24 

instead of 1 x 2-24.  This is just an artifact of the chip design.  The 

CS5531/32/33/34 has both self offset and self gain calibration.   The CS5530 

cannot self calibrate.  When the chip self calibrate, it internal shorts the input 

channel to its internal ground.   Figure 47 illustrates the steps to self calibrate.  A 

bit is set to determine whether to read the channel or use the channel pointer 

from the channel setup register.   Self calibration is valid for only 1x amplification.    

 For system calibrations, the user provides the ADC signals which 

represent ground and full scale.   A ground, (zero input), is used to determine the 

offset value.  Full scale voltage like five volts is used to determine the slope of 

the gain.  For both calibrations the word rate should not exceed 120 samples per 

second to reduce the peak to peak noise.  Figure 48 illustrates the steps to 

system calibrate.    
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FIGURE 47 SELF CALIBRATION STATE MODEL CS5531-5534 
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FIGURE 48 SYSTEM CALIBRATION STATE MODEL FOR CS553X 

 
 During conversion the binary word representing voltage across the input 

channel is stored in the chip’s conversion register.  The conversion register is 32 

bit in size.    The actual converted word is either 16,(CS5531/33), or 24, 
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(CS5530/32/34), bit long. During a conversion read, the ADC transmits the value 

stored in the conversion register on the Serial Data Out line to the 

microcontroller. The output is most significant bit, (MSB), first.  Figure 49 shows 

the bit layout for the conversion register for the CS5531/32/33/34 chips with 

acronyms definitions.  Bits D0 and D1 indicate the physical input channel 

converted.  Figure 50 shows the bit layout for the CS5530 chip with its acronyms.  

There are no channel indicator bits because there is only one input channel for 

CS5530.  

[53] 
FIGURE 49 CONVERSION REGISTER DATA OUTPUT DESCRIPTIONS  
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FIGURE 50 CS5530 CONVERSION DATA OUTPUT DESCRIPTIONS 

There are two conversion modes: single and continuous conversion.  In 

single conversion mode a single fully settled conversion is perform at the word 

rate and polarity specified in the configuration or channel setup register.  When 

the command byte is transmitted to do a single conversion, the serial port enters 

data mode where it wait until the conversion is complete.  Completion is single 

when the converter set the SDO flag to logic 0.  Then there are forty serial clock 

cycles needed to read the conversion.  Figure 51 is a state model of the single 

conversion.  In continuous conversion mode, the convert again begin conversion 

at the word rate and polarity set in the configuration or channel setup register.  

After conversion is done, the converter lowers the SDO line.  Again forty serial 

clock cycles are needed to read the data.  To remain in continuous conversion 

mode, during the first 8 serial clocks 0x00 must be transmitted across the SDI 

line.  The microcontroller shifts the information to the host computer based on the 

rise and fall of the SDO line.  It is not necessary to read all the converted data.  
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Missed read conversions are lost.  To exit continuous conversion mode, during 

the first 8 serial clocks (clearing the SDO flag), a 0xFF must be transmitted 

across the SDI line to the converter.  Figure 52 illustrates the continuous 

conversion process.     

 
 

FIGURE 51 SINGLE DATA CONVERSION STATE MODEL 
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FIGURE 52 CONTINUOUS CONVERSION STATE MODEL 
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4.2 Microcontroller  

[54] 

 

FIGURE 53  BOARD LAYOUT  

 
Figure 53 is a layout of the test board that is sold to customers for 

evaluation of the product. The square entitled C8051F320 is the microcontroller.  

There is a bidirectional interface to the right that is the universal serial bus 

connector.  The ADC in this case, CS5534 is to the left of the controller.   The 

interface protocol used by the microcontroller to communicate with the chip, is 
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SPI.  SPI is composed of three wires (SDI, SDO, and SCLK).  The SDI line is 

used to transmit data from the controller to the ADC.  The SDO line is used to 

transmit data from the ADC to the controller.  The CS line is for chip select. The 

microcontroller acts like an interpreter converting USB formatted commands from 

the PC to SPI format to the ADC and vice versa.  For this family of ADC, a 

4.9152 MHz crystal is tied to the oscillator pin of chip, providing the master clock.  

The conversion rates and the internal circuitry of the chip are based on this clock. 

The SCLK is used to synchronize the SPI with the microcontroller.   It is based on 

C8051 24 MHz clocked divided by 2.  The Interface Header composed of five 

pairs of male pins, and I connected the logic analyzer too for examining the 

timing diagram across the SPI interface.  

The controller communicates to the personal computer through the 

universal serial bus, (USB).     The universal serial bus is replacing the RS232 

Ports in desktops and laptops.  There are several benefits in using USB:  [55] 

Low Cost  
Low power consumption 
Plug & Play  
Easy to Use  
Fast  
Reliable 

Low cost is a major reason for this transformation.   It is inexpensive to 

add USB functionality to an existing device because the translator interface 

exists in the operating system.  There is only one interface for many devices, and 

 



86  

the USB port is hot pluggable.  The USB is a reliable way to transfer information 

because it offers lossless data transfers.   As a result, developers do not need to 

implement any type of error correction on the device PC side.  The USB protocol 

and hardware handles this feature.    

The data is transferred through endpoints between the host and the 

device.  Endpoints transfer data unidirectional either in or out except for control 

endpoints which are bidirectional.  Control endpoints are used during the 

enumeration or configuration process.   A pipe is the logical connection or 

association between the endpoint and the host controller’s software.  There are 

four types of USB transfer modes: [56] 

Control  
Bulk  
Interrupt  
Isochronous 

 

In my application the transfer mode used is Bulk.   Bulk transfer has the 

fastest transfer rate.  There is no guarantee of data rate or latency, which means 

the USB host will do its best to transfer the data as fast as possible.  Applications 

such as this are for devices transferring large amounts of data (tens of 

megabytes to gigabytes).   The USB host will allocate all bandwidth on the bus 

for this transfer.   The throughput is dependent on the number of devices 

connected to the bus.  Top speeds are: [57] 
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High Speed – 53.2 Mbytes/sec  
Full Speed – 1.2 Mbytes/sec 
Low Speed – Not Available 

Common applications are printers, scanners, and disk drives (USB thumb 

drives).  

 The microcontroller used in this project was Silicon Lab’s C8051F320/1.  It is a 

programmable USB device that includes an on-chip USB function controller.  The 

function controller is composed of a serial interface engine, a USB transceiver, 

and a 1 Kbyte endpoint space buffer that can hold up to four endpoints.  It is USB 

2.0 compliant and has its own integrated on-chip oscillator with an accuracy of 

1.5% to support USB standards.   The core is C8051.  Figures 54 and 55 are 

diagrams of the C8051F320. 

[58] 

FIGURE 54 C8051F320 MICROCONTROLLER INTERNAL LAYOUT  
 

 



88  

[59] 

FIGURE 55 C8051F320 BLOCK DIAGRAM 

Figure 55 shows 16 interrupts and digital input/output protocols for UART, 

SPI, SMBUS and PCA.  There are 4 timers.  For the microcontroller development 

I used USBXpress, which is the name of the microcontroller USB drivers.  

USBXpress is a package that includes the firmware and PC-side libraries. [60]  

The configuration of USB and the data transfer are completely handled by the 

high-level Application Program Interface (API).  It is freely downloaded from the 

Silicon Laboratories website with freely distributable drivers and no royalties.    

The device drivers have support for Window 98SE, 2000, and XP.  The compiler 

that comes with the free version of USBXpress has a file size limit that was too 
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small for my application.  I used a $3000.00, Keil C51 compiler and interfaced it 

through the Silicon Labs integrated development environment.  I allocated one IN 

endpoint and Out endpoint on the C8051F320.  Figure 56 illustrates the 

USBXpress data flow between the PC and microcontroller.   

[61] 

FIGURE 56 USBXPRESS DATA FLOW  
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[62] 

FIGURE 57 EXPRESS API FOR PC AND DUT (DEVICE UNDER TEST)  

 
A JTAG connects to the header pins associated to the microcontroller to 

comm port of the computer.   The microcontroller code is loaded through this 

connection with the Silicon Lab’s IDE.  USB interrupt 16 is used by the software 

application on the PC to get the microcontroller’s attention for writing or reading 

data from it.  The micro code runs continuously, while(1),  in a thread on the 

microcontroller. The program contains flags that jump to functions.     Figure 58 is 

the state model of the infinite loop program within the microcontroller that I 

programmed.  Let’s say that a USB 16 interrupt occurred and the IDFL = 1, the 

microcontroller jumps to function Gui_version( ) and block writes that value to the 

controller’s USB port that gets uploaded to the PC software.  The flag is reset 

and function returns.  The flags are:  

  IDFL – Identity Flag 
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  RSFL – Reset Flag 
  RDFL – Read Flag  
  WRFL – Write Flag  
  SCFL – Single Conversion Flag  
  CCFL – Continuous Conversion Flag  

 
FIGURE 58 MICROCONTROLLER STATE MODEL 

4.3 Bench Test Environment 

During the characterization and validation of the chip, its supply voltage, 

temperature, and internal configurations are modified to specific conditions to see 

if the chip meets specification requirements.  In bench testing there are several 

objects used: power supplies that supply the range of voltages to the device, 

“Silicon Thermals” that set the device temperature, and a digital multimeter to 
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read output voltages and currents.  Figure 59 is the class model of the bench 

tester and multiplicity.   A power supply can only connect to one evaluation 

board.  The chip requires several voltages settings at each modification.  A 

“Silicon Thermal” can only be connected to one chip during a test.  There can be 

several digital multimeter readings of voltages and currents during a test.  

4.3.1 Class Model 

+read()
+write()

-Cnfiguration
-Offset
-Gain
-CSR

DUT

+SetVoltage()
+ReadVoltage()

-Voltage_Set : double
-Voltage_Read : double

Power Supply

+Set_Range() : double
+Read_Value() : double
+Set_Measurement_Type() : char

-Range : int
-Value : double
-Measurement : char

Digital Multimeter

+Set_Temp_Type() : char
+Set_Temperature() : int
+Read_Temperature() : int
+R485()

-Temp_type_C_F : char = C
-Temp : int = 25
-Read_Temp : int

Silicon Thermal

+GPIB_READ()
+GPIB_Wrtie()

Meter Protocol

+Delay()
+Timer()
+SoakTime()

-Soak_Tiime : double
-Timer_Value : double
-Delay : double

Timing Funciton

*

*

*

-connect to

1

*

-connect to 1

*

*

1

1

 

Figure 59 Bench Test Class Model 
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4.3.2 State Model 

In the state model all peripherals are first warmed up for thirty minutes.  

This prevents the peripheral’s settings from drifting. The “Silicon Thermal” is 

dialed to the desired temperature.  There is a thermal couple placed between the 

metal head of the “Silicon Thermal” cooling and the DUT, (Device Under Test).  

The thermal couple is used to monitor the actual chip temperature.  The silicon 

thermal remains in the ramp test state until it reaches the set temperature.  Next, 

the power supplies are set to necessary voltage.  Each power supply has three 

voltage ranges: 6, 25, and -25 volt setting with current limits set to maximum.  

The test voltages are loaded into power supplies.  The voltage setting is read 

back from the power supply and if the voltage setting is equal to the index value 

then the process moves to the DUT state.  The DUT state has been covered 

above.  The DUT’s calibration, offset, and gain register are loaded.  Every value 

loaded into the DUT registers are read back for validation in a function called 

Decode().   If the values have been loaded correctly, the DUT software 

application is run and the following output values are calculated: SNR, S/D, 

SNAID, S/P, maximum, minimum, mean, standard deviation, and variance.  The 

digital multimeter is read and all the output parameters are stored into a file.  

Figure 61 is the state model for setting up the test and storing device 

characteristics. 
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  For automation, the tester through the bench test panel in the software 

stores setup values in “Struct” data structure.   There are structures for each of 

the classes in the class model.   I will discuss this in more detail in the 

implementation section of this project.     

 

FIGURE 60 BENCH TEST STATE MODEL 
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4.3.3 Interaction Model 

Interaction modeling is the last UML technique used in this project. As a 

quick review, the class model describes the objects in a system and their 

relationships, the state model describes the temporal behavior of these objects, 

and the interaction model describes how the objects interact to produce a 

practical result. [63]  The interaction model can be separated into three 

components [64]:   

• Use Cases describe how the system interacts with outside actors. 

• Sequence Diagram is more detail and show messages exchanged 

between objects. 

• Activity Diagram which can show data and/or control flows to 

implement a process. 

 

The test environment is placed into a default state.  This process is 

achieved by initializing the communication protocol, selecting the type of chip to 

test, resetting the chip, initializing the serial communication, and setting 

peripherals to default value.  This is done both manually and through software.  

In the following section, the Use Description and Use Diagram for all equipment 

and chips are displayed.    

 

Use Case:  Initialize HP3468 Tri-State Power Supply  

Summary: The software is initialized to communicate to the power supply by 
setting the appropriate GPIB address.      
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Actors:    Test Engineer  

Preconditions: The GPIB address has been manual set using the front panel on 
the power supply to be 5.   
 

Description:    Pressing the “Initialize Power Supply Button” place the soft panel 
to initialize power supply.  The GPIB address box should be set to same address 
as the actual power supply in this case 5.  “Start” creates the handle to the 
appropriate GPIB address that is use in all communication to the power supply.  
“Power Setting” will bring back into focus the power supply setting panel.   
 

Exceptions:   If the power supply is not on, the GPIB will display an error that 
there is no device at that address. 
 

Postconditions: The power supply is waiting for communication from the host 
program.  Remote indicator shows on front panel of the power supply.  
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Use Case:   Setup HP3468 Tri-State Power Supply  

Summary:  The power supply sets the voltage and current level to the 
evaluation board that chip is mounted on. There are three different settings for 
each measurement.  There can be a maximum of ten settings for each of the 
three tri-state inputs.    
 

Actors:    Test Engineer  

Preconditions: The GPIB address is already set to 5.  The power supply is on 
and has been soaking in the on state for at least an thirty minutes.   It is now 
waiting for source values.  
 

Description:     The instrument starts in a waiting state that only displays the 
voltage values of 0.00, current value of 0.00, and no remote state.  When the test 
engineer presses the power supply button the setup, the power supply soft panel 
become active.  The test engineer can set up to ten volts and current values for 
6, 25, and -25 volt range.  The test engineer sets output state and tracking off 
and then press “auto-power setup” to enter the values in the data structure.   
 

Exceptions:   If the power supply is not on, the GPIB will display an error that 
there is no device at that address.  Voltage and current out of range will 
automatically be set to the highest possible value.     
 

Postconditions: The power supply is waiting for communication from 
Automation program.  
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Use Case:  Initialize Silicon Thermal  

Summary: The software initializes communication with the “Silicon Thermal”.  
The “Silicon Thermal” adjusts the DUT temperature.  
 

Actors:    Test Engineer  

Preconditions: The Silicon Thermal is turned on and waiting for communication 
to the host computer.  
 

Description:   Sets the address for the RS485 serial port.   Set up the serial port 
for communication between the host and silicon thermal.  Set the Silicon Thermal 
in a known state like Celsius over Fahrenheit and others. Set the Silicon Thermal 
decimal point values.  Check connections.   
 

Exceptions:  Silicon Thermal off error no device at address.  It no write to device 
was established pop-up panel will say “Did not write to device”. 
 

Postconditions:   Silicon thermal is waiting for temperature setting commands.   
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Use Case:   Initialize Chip CDB533x.exe  

Summary:  Places the communication bus and the chip in a known state.  

Actors:    Test Engineer / Tester 

 

Preconditions: The tester board is plugged into the USB port of the computer.  
Power is supplied to the banana plugs on the evaluation board which powers the 
chip and other microchips mounted to the board.   
 

Description:    Highlight the box on the interface panel that corresponds to the 
interface protocol being used, (USB or read from a file).   Select the chip being 
tested.  Press button to initialize the serial port and then press button to reset the 
device.     
 

Exceptions:   Buffer overrun error if the device is not connected to universal 
serial bus or not power up.   If wrong chip selected, reset will not initiate.    
 

Postconditions:  Chip is ready to receive commands from the host.   
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Use Case:   Single Measurement Eval553x.exe 

Summary:  This application sets chip registers, allows for offset to be 
calculated and reads the output from the DAC of the chip.  The output from the 
DAC is plotted in time domain, frequency and/or histogram.  Several important 
test parameters are calculated: maximum and minimum values, S/PN, SINAD, 
S/D, SNR, mean, STD_DEV, and variance.    
 
 
Actors:    Test Engineer / Tester 

Preconditions: The tester board is plugged into USB port of the computer.  
Necessary power is supplied to the testing board to power the components on 
the chip and the board itself.  Power supply is enabled for the device.  
 

Description:  Set the configuration register, (Power Consumption, System Reset 
Sequence, Input Short, Voltage Reference, Offset and Gain Select, and etc.  Run 
calibration and set offset and gain register per channel.   Perform single or 
continuous conversion. Calculate chip electrical characteristic parameters and 
plots.   
 

Exceptions:   Error or buffer overrun from USB port.  Send following message to 
the user to “reset the board by pressing the reset button on the board and 
application.  Also, if this second time, then user should power down the board”.   
 
 
Post conditions:  Board is still powered up and connected to the USB port of 
the computer.  Chip is in command mode and waiting for the next operation.  
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Use Case:   Automation Eval553x.exe  

Summary:  Storage of power supply and “Silicon Thermal” setting in data 
structure.  Storage of chip registers value in data structures.  Run test 
automatically without operator supervision.  
 

Actors:    Test Engineer / Tester 

Preconditions:  Board is power up.  The serial port and chip have been reset.  
The chip is in command mode and waiting.    
 

Description:  Up to ten temperatures and thirty different voltage and current 
settings are first stored.  The DUT register values are stored into data structure.  
The tester presses Automation on the bench test panel and the characterization 
process begins.  All output parameters and settings are stored into a 
spreadsheet file format.   
 

Exceptions:  Each register values written to the device is read back for 
verification.  If the decode value is not correct, the program will attempt to rewrite 
to the register three times.  If a USB error occurs, the serial port and device 
under test is reset and the program continues.    
 

Postconditions:   Board is powered up and the chip is in command mode.  The 
serial port and chip is reinitialized to a known state.   
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Figure 61-63 are the Use Case diagrams for cases above.  There are two 

principal actors: test engineer and tester.  The test engineer designs the test to 

be implemented, which consists of DUT register setting, voltage and current 

values, and device temperatures.  The tester is a technician or some worker that 

only runs the test.    

 
FIGURE 61 USE CASE DIAGRAM FOR POWER SUPPLY 
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FIGURE 62 SILICON THERMAL USE CASE DIAGRAM 
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FIGURE 63 DUT USE CASE DIAGRAM 
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FIGURE 64 EVALUATION SOFTWARE SEQUENCE “EVAL553X_U.EXE” 

Figure 64 is the sequence diagram for the evaluation software that 

customers can download from the website.  There are two versions: engineering 
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and customer.  The object represents different panels that the user sees when 

the application is executed.  The data source configuration panel determines 

whether the data source is collected through the USB or from a file.   The setup 

panel is used to configure different registers and conversion modes for the ADC.  

The test setup register is a panel that is only included in the engineering version.  

The data collection panel runs the analysis and determines the output parameter 

calculated based on the plot being used.    

4.4 Automation Test Environment  

The Automation program is the top level program in the automatic test 

environment.  It controls the power supply, silicon thermal program, digital 

multimeter, and evaluation software.  The Automation program interfaces with 

the lower level program through a panel in the evaluation software.  It is one of 

the menu selections within “Bench Test”.  The user sets the values to the chip 

and the peripherals.   The values are stored in arrays of data structure 

corresponding to the peripherals and chip being used in the test.  Figure 65 is a 

layout diagram of the Automation architecture.    
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FIGURE 65 AUTOMATION LAYOUT 

4.4.1 Class Model 

The Automation class is an abstract class.  Figure 66 is a diagram of the 

class model.  The green represents the object in the chip that is to be configured, 

the light blue represents the peripheral power supply and multimeter, and the 

yellow represents the silicon thermal.  For each class there is an operation called 

storage.  It is the method used to store the values of the chip and peripherals for 

automation.    

 



108  

 

FIGURE 66 AUTOMATION CLASS MODEL 
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4.4.2 State Model 

Automation State model for chip and peripherals is diagramed below.  

Each diagram has a state called “Store Values”.  These state stores fix number 

values in an array.   

press PowerSetting   change interface   PowerSupply setup 
panel 
 

 

State: Initializing Power Supply 

Description: initialize communication between power supply 
 
Event sequence that produces the state: 

press “Power Supply” button Autosetpanel.uir 
press “Initialize Power Supply” Button on Power Supply Setup.uir 
 

Conditions that characterize the state: 
change the “GPIB address” field 
press start to initialize communication 

 
Events accepted in the state: 
event              response    next state 
(Automation) 
buttonPushed(Power Supply)          change “all”    waiting 
enter numeric values           change values    waiting 
press Start 
press PowerSetting panel          change interface  PowerSupply setup 
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FIGURE 67 AUTOMATION POWER INITIALIZATION STATE MODEL 
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State: Setting Power Supply’s voltage and current 

Description: initialize communication between power supply 
 
Event sequence that produces the state: 

Press “Power Supply” button Autosetpanel.uir 
 

Condition that characterize the state: 
Change the voltage and current value by pressing the up and down 
arrow 

Press Auto-power setup to store values in class states. 
 

Events accepted in the state: 
event      response    next state 
(Automation) 
buttonPushed(Power Supply)  power interface popups    waiting 
enter numeric values   change values                           
waiting 
buttonPushed(Auto-Power store values                   waiting 
Setup) 
buttonPushed(Automation  returns to Autosetpanel           waiting 
Main)     interface 
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FIGURE 68 SETTING POWER SUPPLY VOLTAGES AND CURRENT VALUES 
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State: Setting temperature values of device being tested  

Description: initializes communication with the Silicon thermal that set the 
temperature and stores the temperature values in member function of class 
 
Event sequence that produces the state: 

Press “Power Supply” button Autosetpanel.uir   
 

Condition that characterize the state: 
Change the voltage and current value by pressing the up and down arrow  

          Press Auto-power setup to store values in class states.  
 

Events accepted in the state: 
event      response             next state 
(Automation) 
buttonPushed(Power Supply)  power interface popups  waiting 
enter numeric values   change values    
 waiting 
buttonPushed(Auto-Power store values                waiting 
Setup) 
buttonPushed(Automation  returns to Autosetpanel                  waiting 
Main)     interface 
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FIGURE 69 SILICON THERMAL TEMPERATURE VALUES 
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4.4.3 Interaction Model 

In the following section, the interaction model for the automation process 

is diagramed.   The test engineer is the individual that configures the test for chip 

characterization and analysis. The tester job is to run and monitor the test, which 

can take hours or even days.  Figure 70 displays the relationship between the 

test engineers, the testers, and the automatic test environment.   

 
Figure 70 Test Engineers and Testers Relationship to Automatic Test 

Environment

 



 

 
CHAPTER 5  

IMPLEMENTATION 

INTRODUCTION 

I programmed this project using a C-base integrated development 

environment called LabWindows produced by National Instrument.  It is an ANSI 

C based development environment that provides a comprehensive set of 

programming tools for creating test and control applications.  It combines the 

longevity and reusability of ANSI C with engineering-specific functionality for 

instrument control, data acquisition, analysis, and user interface development. 

[64]   The interface is event driven.  Event examples are:  commit (press enter), 

change value, focus, and mouse over object and so on.  I am using LabWindows 

version 8 designed for Windows.  However, there is a Linux kernel version for 

Red Hat WS4, WS3 and others. [65]   The microcontroller code is written using 

Silicon Labs API drivers with their microcontroller development environment 

USBExpress which is used to download and debug code running in the 

microcontroller.  The host (PC) uses several protocols to communicate with chip

116 
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and test environment.  The USB communicates with the microcontroller and it in 

turn, communicates with the chip using SPI interface.   The host uses GPIB and 

RS485 to communicate with the peripherals creating the test environment.          

 
5.1 PROTOCOLS 

5.1.1 SPI 

The SPI bus is a standard developed by Motorola. [66]  It is used to 

communicate with devices like EEPROMs, real-time clock, converters (ADC and 

DAC), and sensors.  SPI bus is made up of four wires for full-duplex serial 

interface.  Three wires are SCK (serial clock), MOSI (master out slave in), and 

MISO (master in slave out).  The fourth wire is CS (chip select). [66]  The 

communication across the SPI uses a system of data exchange. [67]  Whenever 

a bit is written to an SPI device across the MOSI lines, the SPI device 

concurrently returns a bit to the MISO line.   The data is transferred in both 

directions.  It is up to the receiving device to determine whether the receiving 

data is useful or not.   For example, to receive information from the ADC, the 

master (host) must configure the ADC to send n bytes of data.  The host must 

then send n bytes for the exchange of valid data.   These bytes can be anything 

since they are only used to clock the data out of the receiving device.  There are 

two other parameters: clock polarity (CPOL) and clock phase (CPHA).  Because 

the SPI has no acknowledgement mechanism or flow control, the SPI master has 
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no way of knowing whether the slave has received a data byte correctly or even 

whether the bus is connected.  For this reason, I wrote a decode function to 

make sure the registers are configured properly. 

  

5.1.2 GPIB 

Hewlett-Packard originally developed the interface called HP-IB for 

connecting and controlling programmable instruments.  It later became known as 

IEEE-488, a standard interface for communicating between instruments from 

different sources.   This was later called GPIB (General Purpose Interface bus) 

because of its popularity in the computer industry.  Any instrument can use the 

IEEE-488 specification since it defines the interface not the function of the 

instrument itself or the form of the instrument’s data.   The instrument does not 

have complete control of the interface.   The host or active controller of the bus 

tells the interface what to do. [68]   The IEEE-488 interface system consists of 16 

signal lines and 8 ground lines.   The 16 lines are divided into 3 groups (8 data 

lines, 3 handshake lines, and 5 interface management lines).  The IEEE-488 

cable has both a plug and receptacle connector on both ends.  Devices can be 

daisy-chained linearly or in a star configuration.  The maximum number of 

devices in a configuration is 20.  The maximum separation between devices is 4 

meters.   There are two standards: IEEE-488.1 and -488.2.  The differences are 
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that -488.1 do not address data formats, status report, message exchange 

protocols, common configuration commands or device specific commands. [69] 

 
5.1.3 RS485 

RS-485 is a version of RS-232.  RS-232 is a serial port or may be better 

known as the COM port. [70]   RS-232 is a three wire communication setup. One 

wire is used for transmissions, another receives, and another grounds.   With RS-

232 there is a single device-to-device connection.  Only one device can be 

connected through a given com port.  RS-485 is an addressable version of serial 

port, which means that one com port can communicate to several devices.  [71]  

 

5.1.4 Peripherals Interfacing 

In the following section I will explain sample code showing different 

methods of communicating with peripherals and the chip.  

 The power supply used in this project is triple volts DC power Supply, HP 

E3631A.  The communication protocol is GPIB.   The function below performs 

the following initialization actions:  

• Opens a session to the default resource manager and a session to 

specified device using the interface and address specified in the resource 

name control 

• Performs an identification query on the Instrument  
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• Resets the instrument to a known state  

• Sends initialization commands to the instrument turn Headers Off, Short 

Command form, and Data Transfer Binary  

• Returns an instrument handle, which is used to differentiate between 

different sessions of this instrument driver 

• Each time this function is invoked a unique session is opened.   

 

The function prototype is:  

extern ViSession instrumentHandle; 
 
ViStatus hpe363xa_init (ViRsrc Resource_Name,ViBoolean, ID_Query, 
ViBoolean Reset_Device, ViSession *Instrument_Handle); 
 
ViStatus _VI_FUNC hpe363xa_init (ViRsrc resourceName, ViBoolean IDQuery, 
                    ViBoolean resetDev, ViPSession instrSession) 
{ 
    ViStatus hpe363xa_status = VI_SUCCESS; 
    ViSession rmSession = 0; 
    ViUInt32 retCnt = 0; 
    ViByte rdBuffer[BUFFER_SIZE]; 
 
    /*- Check input parameter ranges ----------------------------------------*/ 
    if (hpe363xa_invalidViBooleanRange (IDQuery)) 
        return VI_ERROR_PARAMETER2; 
    if (hpe363xa_invalidViBooleanRange (resetDev)) 
        return VI_ERROR_PARAMETER3; 
 
    /*- Open instrument session ---------------------------------------------*/ 
    if ((hpe363xa_status = viOpenDefaultRM (&rmSession)) < 0) 
        return hpe363xa_status; 
    if ((hpe363xa_status = viOpen (rmSession, resourceName, VI_NULL, 
VI_NULL, instrSession)) < 0) { 
        viClose (rmSession); 
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        return hpe363xa_status; 
    } 
 
    /*- Configure VISA Formatted I/O ----------------------------------------*/ 
    if ((hpe363xa_status = viSetAttribute (*instrSession, VI_ATTR_TMO_VALUE, 
10000)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
    if ((hpe363xa_status = viSetBuf (*instrSession, 
VI_READ_BUF|VI_WRITE_BUF, 4000)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
    if ((hpe363xa_status = viSetAttribute (*instrSession, 
VI_ATTR_WR_BUF_OPER_MODE, 
                            VI_FLUSH_ON_ACCESS)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
    if ((hpe363xa_status = viSetAttribute (*instrSession, 
VI_ATTR_RD_BUF_OPER_MODE, 
                            VI_FLUSH_ON_ACCESS)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
 
    /*- Identification Query ------------------------------------------------*/ 
    if (IDQuery) { 
        if ((hpe363xa_status = viWrite (*instrSession, "*IDN?", 5, &retCnt)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
        if ((hpe363xa_status = viRead (*instrSession, rdBuffer, BUFFER_SIZE, 
&retCnt)) < 0) 
            return hpe363xa_status; 
 
        Scan (rdBuffer, "HEWLETT-PACKARD,E3631A"); 
        if (NumFmtdBytes () != 22){ 
            Scan (rdBuffer, "HEWLETT-PACKARD,E3632A"); 
            if (NumFmtdBytes () != 22) 
                return hpe363xa_initCleanUp (rmSession, instrSession, 
VI_ERROR_FAIL_ID_QUERY); 
        } 
    } 
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    /*- Reset instrument ----------------------------------------------------*/ 
    if (resetDev) { 
        if ((hpe363xa_status = hpe363xa_reset (*instrSession)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
    }        
    else  /*- Send Default Instrument Setup ---------------------------------*/ 
        if ((hpe363xa_status = hpe363xa_defaultInstrSetup (*instrSession)) < 0) 
            return hpe363xa_initCleanUp (rmSession, instrSession, 
hpe363xa_status); 
         
    return hpe363xa_status; 
} 
 

The following function prototype is used to configure the power supply voltage, 

current out, tracking mode, and coupling.       

ViStatus hpe363xa_configOutput3631 (ViSession Instrument_Handle, ViBoolean 

Outputs, ViBoolean Tracking); 

In the following snippet of code, the 6-volt range of the power supply in the 

outer loop.  In the inner loop I am setting plus and minus 25-volt range of the 

power supply.  The plus and minus voltage should be the same value but 

opposite polarity.   

hpe363xa_configOutput3631 (instrumentHandle,plus6Range.outputstate 

,plus6Range.tracking); 

 for(istartThermal = 0; istartThermal < 3; istartThermal++) 

 { 

           SiThermal(istartThermal);  

            for (istart= 0; istart < plus6Range.howmany; istart++) 

            { 
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hpe363xa_configCurrVolt3631 (instrumentHandle, 

0,plus6Range.voltage[istart] ,  plus6Range.current[istart]);   

 Delay(0.15);  

 hpe363xa_configCurrVolt3631 (instrumentHandle, 

1,plus25Range.voltage[istart] , plus25Range.current[istart]);   

  Delay(0.15);  

  hpe363xa_configCurrVolt3631 (instrumentHandle, 

2,minus25Range.voltage[istart] ,minus25Range.current[istart]); 

  Delay(0.15);  

  StartProcess(); 

              } 

     

} 

The output current is set to the maximum for each of the voltage outputs.  

The Keithley 197A is a digital multimeter that reads the voltage value across 

the chip.  The Keithley is configured and read through the GPIB protocol.  The 

following function prototype is use to initialize the Keithley.  The initialization 

process does the following:  

• clears the instrument with a GPIB device clear command 

• sets the instrument to a known state based on factory default settings  

• queries for the ID of the instrument  

• reads the measuring function that is selected on the front panel  

• checks to see if the dB mode is enabled  
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void kei197a_init (int); 

The following function reads the voltage or current value displayed on the 

digital multimeter.     

  

void kei197a_queryMeasurementFunction (function_name, function_code)    

 

 The Silicon Thermal is configured through the RS-485 port.  It is used to 

set the temperature of the chip being tested.   To meet ISO 9000 specifications 

the chip must meet designed specification at different temperatures. The Silicon 

Thermal is initialized with the following function.  The initialization process sets 

the temperature mode (C / F), whether a decimal point is used, and default 

temperature.  The default temperature is first manually dialed into the silicon 

thermal through an interface panel.    

 

int CVICALLBACK initstCB (int panel, int control, int event,void *callbackData, int 

eventData1, int eventData2) 

{ 

  

 /*Initialization Commands */  

 char *LORE = "L32040029"; 

 char *TempCel = "L32025B0001005F"; 

 char *DecimalPoint = "L32025C00010060"; 
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 int stringsize, numBytesWrittenStart,numBytesWrittenEnd; 

   

 switch (event) 

  { 

  case EVENT_COMMIT: 

    OpenComConfig (1, devicename, 9600, 0, 8, 1, 512, 

512); 

    numBytesWrittenStart = ComWrtByte (1, 2); 

    stringsize = StringLength (LORE); 

    if (ComWrt (1, LORE, stringsize) !=stringsize) 

     { 

        MessagePopup ("DID not write", "did not 

serial write"); 

         

     } 

    

    numBytesWrittenEnd = ComWrtByte (1, 3); 

     

     

    /*Set Temperature to Celsius */  

    numBytesWrittenStart = ComWrtByte (1, 2); 

    stringsize = StringLength (TempCel); 

    if (ComWrt (1, TempCel, stringsize) !=stringsize) 

     { 

        MessagePopup ("DID not write", "did not 

serial write"); 

         

     } 
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    numBytesWrittenEnd = ComWrtByte (1, 3); 

     

    /*Set the Decimal Point */  

    numBytesWrittenStart = ComWrtByte (1, 2); 

    stringsize = StringLength (DecimalPoint); 

    if (ComWrt (1, DecimalPoint, stringsize) !=stringsize) 

     { 

        MessagePopup ("DID not write", "did not 

serial write"); 

 

… 

  

The command to set the specific temperature is :  

void SiThermal(int commandindex ) 

{ 

 char *tempcomm[3] = 

{"L3202000400104C","L3202000250004E","L32020009000050"};  

 int numBytesWrittenStart, 

numBytesWrittenEnd,stringsize,inqlen,bytes_read;   

   

   

   

  /*Temperature*/   

   numBytesWrittenStart = ComWrtByte (1, 2); 

   stringsize = StringLength ( tempcomm[commandindex]); 

    if (ComWrt (1,  tempcomm[commandindex], 

stringsize) !=stringsize) 
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     { 

        MessagePopup ("DID not write", "did not 

serial write"); 

         

     } 

… 

 

The silicon thermal command instruction is very complex to program.  The 

command includes a checksum within the temperature value to determine if the 

command is valid.   It sends an error if the checksum does not match correctly.    

 There are two protocols used to configure and retrieve data from the chip.  

The microcontroller is the bridge between the computer and the chip tested.  The 

microcontroller acts as a language interpreter converting USB format commands 

between the computer and microcontroller to SPI format commands used to 

control and read data from the chip.  The following is an example code between 

the computer and the microcontroller using Silicon Labs USB_API interface:   

 

stat = F32x_Write(cyHandle, wBuffer, BytesToWrite, &BytesWritten); 

if  (stat) 

{ 

MessagePopup("Error Message", "USB Error - Unable to send read 

request command."); 

 return stat; 
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} 

 

do  

{ 

   stat =  F32x_CheckRXQueue(cyHandle, &NumBytesInQueue, 

&QueueStatus);            

 if  (stat) 

 { 

  MessagePopup("Error Message", "USB Error - Unable to determine 

queue status."); 

  return stat; 

 } 

 if(count < 1000)  //rm 04-20-06 

 { 

  count++;  

 } 

 else  

 {  

  MessagePopup ("Queue Not Ready", "USB Queue Not ready"); 

  count = 0; 

  break; stat;  
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 } 

      

  Delay (.0001); 

    

} 

while (! (QueueStatus & 0x00000002)); //"RX_COMPLETE" FLAG    

 

F32_Write( ) writes the six byte character to the USB port.   The 

F32x_CheckRXQueue( ) checks the receive queue to see if information has been 

sent from the chip to the microcontroller.  The NumbytesInQueue variable 

contains the number of bytes in the queue.  The QueueStatus variable holds the 

status of the queue.  When the queue has been emptied it returns 0x02.  This 

causes the program to exit from the do_While loop.    

 The microcontroller sends the command across the SPI port to the chip.   

The microcontroller uses USB Interrupt to get the USB port’s attention.   The 

following are snippets of the microcontroller code:  

 

void USB_HAN(void) interrupt 16  //USB INTERRUPT HANDLER 

{ 

 BYTE INTVAL = Get_Interrupt_Source();  //clears ALL USB pending flags 

 if (INTVAL & TX_COMPLETE)  

  { 
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  TXFL = 1; 

  } 

 if (INTVAL & RX_COMPLETE) //Micro has received an entire 

"Out_Packet" from PC  

  {                   

  Block_Read(Out_Packet, 6); //Max Block_Read is 64 bytes, 

PC sends 6-byte packets 

  switch(Out_Packet[0]) 

   { 

   case 0x01: 

   case 0x02: 

   case 0x03: 

   case 0x05: 

   case 0x07: 

   case 0x11: 

   case 0x12: 

   case 0x15: 

   case 0x21: 

   case 0x22: 

   case 0x25: 

   case 0x31: 

   case 0x32: 

   case 0x35: 

   WRFL = 1; 

   break; 

… 
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While(1) 

if(SCFL)   //single convert mode (may require 0.6 seconds) 

   { 

   pac_z = Out_Packet[0]; 

   DUT_CSB = 0;    //lower Chip Select 

   while(TXBMT == 0); //check Tx buffer empty 

   SPIF = 0;   //clear "shift finished" flag 

   SPI0DAT = pac_z;  //shift out 80,88,90,98,A0,A8,B0, or B8 

command 

   while(!SPIF);   //Wait for SPI shift complete 

   while(RDYB); //wait for SDO to drop (P1.2)                  

   SPIF = 0;    

   SPI0DAT = 0x00;   //shift out zero to clear "SDO FLAG" 

   while(!SPIF);    

   SPIF = 0; 

   SPI0DAT = 0xFE;      

   while(!SPIF);     

   In_Packet[3] = SPI0DAT; //Read SPI input buffer MSB 

   SPIF = 0; 

   SPI0DAT = 0xFE;      

   while(!SPIF); 

 

… 
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USB_Han(Void) is the USB interrupt handler.  It uses interrupt 16.  When 

a command is being sent from the host to the chip, or when conversion data is 

ready to be uploaded to the computer this interrupt is enable.  

“while(1)” represents a thread that is run continuously within the microcontroller.  

Each pass through the While statement the following flags are checked:  

• SCFL - single convert mode  

• IDFL  - identify the microcontroller code 

• RSFL - reset the serial port   

• WRFL - write to register  

• RDFL - read register  

• UDFL - read offset or gain or channel setup registers  

• CCFL -  continuous conversion mode  

• CLFL - clear chip  

The chip commands are in hexadecimal code.  When one of these codes 

matches a case statement, a flag is set.   In the While statement, low level 

functions are used to serially transmit the data to and from the chip.   

Out_Packet[0] is the command to be serialized.  It is a byte in size.  DUT_CSB 

selects the chip to write to by lowering the CS line to the chip.   SPIF is the serial 

port shift finished flag. It is set to zero before each shift.  SPIODAT serially shifts 

the command out bit by bit.  The microcontroller sets the SPIF to one when it has 

finished, “while(!SPIF)”,  and moves to the next statement.  When the chip has 
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completed a conversion, the SDO line is set low signaling there is data ready to 

be read by the controller, ”while(RDYB)”.   RDYB is set to zero when this occurs 

and the controller advances to the next statement.   The shift complete flag is set 

to zero and 0x00 is shifted to the chip making sure it is in single conversion 

mode.   Conversion from the chip is shifted into the controller through In_Packet 

array.   SPI0DAT contains eight bits which means that for the controller to read 

those eight bits it must send out eight bits.  SPI0DAT = 0xFE does that. 

 

 Automation is accomplished through the use of For-Loops.   The data 

structures used are arrays, and arrays of structures.  Structures are used instead 

of classes because LabWindows is based on ANSI-C.  The outer For–Loop 

controls the chip temperature by calling the Si_Thermal( ) function that takes an 

array of temperatures as input.  The For-Loop inside controls the 6V range of the 

tri-volts power supply.  The For-loop inside it controls the plus and minus 25V 

range of the tri-volts power supply.   Within that For-loop there is the function that 

controls the device under test. The function is named DUT( ) which itself is 

composed of For-loop corresponding to the physical objects within the chip itself.  

The following is an example of the code being used.   

 

 For (temp = 0, temp < temp_array_size, temp++) 

  Si_Thermal(temp_array[temp]); 
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     For(ps6V = 0, ps6V <ps6V_array_size, ps6V++) 

  Power_Supply(ps6V, ps_plus25V, ps_minus25V);  

                      For(ps25V= 0, ps25V < ps25V_array_size, ps25V++) 

  { 

   Power_Supply(ps6V, ps_plus25V, ps_minus25V);  

   DUT(sChip); 

  }  

5.2 User Interface 

In designing the user interface, my goals were to make it intuitive and 

easy to use.  I followed these criteria:  

1. When possible, the interface was designed to match the 
peripherals being used.  

2. Interfaces were to closely resemble previous applications that 
testers and test engineers have used in the past.  

3. Interface was grouped into blocks that had common physical 
events   

 
Labwindows has a comprehensive suite of libraries and Window-based 

objects to use in developing applications. [72]  For example, LabWindows 

contains Window like objects such as buttons, menus, panels, tables, and much 

more.  Applications developed in LabWindows /CVI operate on the principle of 

event-driven programming.  Event-driven programming executes segments of 

code, called callback functions in response to “event” -- the stimulus that occurs 

on the user interface. [73]  These events can result from the objects on the panel 
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or the panel itself.  With event driven code, links between physical objects on the 

interface, like a command button, to a function are established.  Every time an 

action is performed on the user interface control, an event is generated.  

LabWindows/CVI determines which control generated the event.  The callback 

function associated with that control is invoked. In this section, I demonstrated 

the application interface and explained the design.  In the Automation sections, I 

discussed the data structures used and how they operates.  

 Below is an example code of a callback function associated to interface 

control.  This is the function called when the “Calibration” button is pressed.  The 

event generated is “Event-Commit”.   

 

int CVICALLBACK GO_CAL (int panel, int control, int event, void *callbackData, 
int eventData1, int eventData2) 
{ 

int offset_new[4], gain_new[4]; 
  switch (event) 
  { 
   case EVENT_COMMIT: 
   if(!CS5530) 
   { 

err = Fun_USB(0x49, 0, 0, 0, 0, number_of_bits, 
offset_new); 

    if(err) break;      
     DisplayOffset(panel, offset_new); 

err = Fun_USB(0x4A, 0, 0, 0, 0, 
number_of_bits, gain_new); 

    if(err) break;      
    DisplayGain(panel, gain_new); 
    DisplayPanel(pnl_cal); 
   } 
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   else 
   {  

err = Fun_USB(0x09, 0, 0, 0, 0, number_of_bits, 
offset_new); 

    if(err) break;      
    DisplayOffset(panel, offset_new); 

err = Fun_USB(0x0A, 0, 0, 0, 0, number_of_bits, 
gain_new); 

    if(err) break;      
    DisplayGain(panel, gain_new); 
    DisplayPanel(pnl_cal); 
   } 
     
   break; 
  } 
 return 0; 
} 
   

The all function generated for a user interface device has a tag associated with it 

“CVICALLBACK”.  This is used by the compiler to identify LabWindows/CVI 

functions.  The function arguments are:  

1. int panel – identify the panel where the event occurred  
2. int control – identify the control that created the event  
3. int event – is the event that was generated  
4. void *callbackData – is a generic pointer of data that can passed  

 
The “switch” deciphers the event that occurred and runs the 

corresponding code.   There can more then one type of event per user interface.    
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FIGURE 71 DATA SOURCE SELECTION 
  

The first panel that appears when the application is executed is the “Data 

Source Configuration”.  From this panel a selection is made whether to receive 

data from the “USB” port or from a file.  If “File” is selected as the source, then a 

directory window will pop up.  The user can browse to select the file to be 

imported.   

The ADC chip being characterized is then selected.  When the chip is 

selected, the panels title changes from “CS55xx_U Evaluation Software” to chip 

being selected.  For this example, I selected CS5534.   
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FIGURE 72 SUCCESSFUL COMMUNICATION 

 
 

 
 When “Done” is pressed, the following confirmation appears.    If there is 

a failure, a message box appears saying “USB configuration failure”, “Check to 

USB connection.”    
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FIGURE 73 VERSION IDENTIFICATIONS 

 
 

This panel reads the version of the firmware running on the 

microcontroller.  The panel title in the upper left corner is the name of the chip 

being evaluated.   
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FIGURE 74 MENU DRIVEN 

I designed this application to be menu driven.  This shows the selection of 

panels that can be accessed from the menu.    There is a panel that is not shown 

because what is displayed is the customer version.  I will not display the engineer 

version because it is only used in-house.  It was a requirement that the same 

code be used for the engineering and customer versions which would make the 

application easier to maintain.  I used compiler directives “Engineering” and 

“Customer” to achieve this task.       
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FIGURE 75 SETUP PANEL 

 
 

From the “Setup Panel”, the ADC registers can be configured.  This chip 

contains four types of registers: configuration, offset, gain, and channel setup.  

These physical objects, internal to the chip, represent structures in the actual 

code.  In the configuration group, drop down boxes contain different items that 

can be selected.  When a selection occurs, the event “Event-Commit” is 

generated.  The callback function associated with the control and the event is 

executed.  In this case, four bytes containing changes to the configuration 
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register are written across the USB port to the chip.   Pressing the “Reset Serial 

Port” sends fourteen 0xFF and one 0xFE to the microcontroller.  This allows the 

microcontroller to synchronize the universal serial bus.   Pressing the “Rest Part” 

button sends a reset chip command.  This resets the chip and sets the reset valid 

flag.   Pressing “ Update Regs”  runs the call back function that reads the 

registers on the chip.  The configuration register must be read after every valid 

reset before a command can be executed.  I have written a read-back function 

within every callback for validated the command has been completed and 

decoding it to update the control.   
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FIGURE 76  SINGLE CONVERSION MODE USING SOFTWARE TIMER 

 
 
 

Pressing the “Read Data” button places the chip in single conversion 

mode.   The frequency of the conversion command is sent to the chip based on a 

software timer.  The indicator title “Conversion Data” is the converted data from 

the ADC.  In this case, “Setup 1” is used.  This is the channel setup used for the 

conversion.   
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FIGURE 77 CALIBRATION 

 
Pressing the “Calibration Window” button and the above panel pop ups.  

From this panel, the chip and the system can be calibrated.  Self-offset 

determines the zero offset for the chip.  System offset is when external voltage is 

applied to the system.  This is similar for Gain.  Pressing the “Done” button exits 

the panel.   
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FIGURE 78 CHANNEL SETUP PANEL 

 
From this panel, the channel setup register can be configured.   The 

channel setup register is a 32 bit register configured in 16 bit size.  The number 

of internal registers depends on the chip.  Also, the CS5530 chip has no channel 

setup register.      
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FIGURE 79 DATA COLLECTION WINDOW (ANALYSIS) 

 
The panel above will be presented when selecting from the “Data 

Collection Window” menu.  Pressing the “Collect” button places the ADC in 

continuous conversion mode and starts the collection process of the conversion.   

The drop-down box determines how to plot the data in the time or frequency 

domain, and the histogram.   The data from the ADC is stored in an array.  The 

same data can be plotted in all three selections.  The date time and the average 

number is also displayed.  Averaging is used to reduce the noise floor which 

improves the signal-to-noise ratio.  This concept was discussed in detail in the 

“Analysis” section above.  The “Progress Indicator” shows the progress of the 

execution.  It indicates that the application is running and not halted for any 
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reason.  The “# of FFT Avgs” shows the average number being plotted.   The 

“Setup 1” determines which channels set up register to use during conversions.  

When the “Config” button is pressed the “Configuration” panel displays.   

 

FIGURE 80 CONFIGURATION PANEL (# SAMPLES, AVERAGE, FFT 
WINDOW, HISTOGRAM WIDTHS) 

 
 

From this panel, the number of samples, the histogram bin width, how 

many averages, and the windowing function can be selected.  These numbers 

can be indexed in or selected from a drop down menu like the one shown below.  
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FIGURE 81 CONFIGURATION SAMPLE NUMBER DROP DOWN LIST 

 
The following figures show the different plots available and the analysis 

values.    
 

 



149  

 

FIGURE 82 TIME DOMAIN 1024 SAMPLES 

 
The y-axis displays the converted codes from the ADC.  The x-axis is the 

sample number.  The analog input voltage values for this plot is zero the offset 

value.  Zero is represented between -2340 and -2353, only a 13 code difference, 

(or noise), out of possible a 16.7 millions codes (224 bits).  Selecting “FFT” from the 

dropped down box will do a Fast Fourier Transform on the collected data.   The 

figure below demonstrates this concept.    
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FIGURE 83 FFT OF CONVERTED DATA 

 
The y-axis is in decibel values of the conversions.   The x-axis is the 

frequencies up to the Nyquist range which is half of the maximum input 

frequency.  The numeric indicator title “Frequency” shows the frequency value 

that a crosshair is positioned on.  The magnitude is the y-axis decibel value.  

These values are updated as the crosshairs are repositioned on the plot.  The 

following output are calculated and shown:  

  S/PN    -  signal to peak noise  
  SINAD  - signal to noise plus distortion  
        S/D       - signal to distortion  
  SNR     - signal to noise ratio  
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I have defined and explained how to calculate these values in the “Analysis” 

section above.  Zoom is a feature that was requested by a design engineer.  The 

engineer wanted to be able to expand a segment of the plot.  There are two 

crosshairs.  The Blue Crosshair must be positioned before the Red Cross hair.  

The user presses “Zoom” button.  The graph is zoomed between the crosshairs.  

Also, I display the array index value that the crosshairs are positioned on.   If the 

blue crosshair comes after the red crosshair an error message box pops up.   

 

FIGURE 84 ZOOM SEGMENT OF THE PLOT 

 
 

 



152  

 

FIGURE 85 ERROR MESSAGE WHEN CURSORS ARE OUT OF ORDER 

      

The next figure is a plot of the histogram.  The histogram shows the 

frequency of codes collected.   The y-axis is the number of codes collected and 

the x-axis is the actual code itself.  

 

 



153  

 

FIGURE 86 HISTOGRAM OF ZERO VOLT INPUT 

 
As an example, the number of -2345.00 code collected is 179.  This histogram is 

a nice Guassian curve that would be expected from random noise in the system. 

The following figures show the effect of averaging on the floor noise.   The 

numeric indicator “# of FFT Avgs” displays which average is being plotted.    
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FIGURE 87 AVERAGE PLOTTED 2 
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FIGURE 88 AVERAGE PLOTTED 10 

 
“Average Plotted 2” has a higher noise floor the “Average Plotted 10” that 

is represented by the black line.   The peak label “F” is the fundamental.   Peaks 

label “2”, “3”, “4”, and “5” are the second, third, fourth, and fifth harmonics.  The 

next two figures show how the bell-shape curve is affected by offset and gain 

calibration.   The first histogram plot is without calibration and the second plot is 

with calibration.    
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FIGURE 89 NO CALIBRATION 
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FIGURE 90  WITH OFFSET AND GAIN CALIBRATIONS 

To set up the tri-state HP3631A  power supply, the Silicon Thermal, and 

Keithley multimeter “BenchTest!” is selected from the menu.  The following panel 

is displayed when this is completed.    
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FIGURE 91 AUTOMATION PANEL 

 
The panel is broken into four groups: Initialize, Power Supply, 

Temperature and Chip Setting.  Up to ten different values can be set for latter 

three groups.   The initialize group is used to setup and establish the 

communication protocol to the test instruments.  The initialize group has three 

 



159  

buttons. Each button has an image of the test instrument on it that it represents.  

When a button is pressed a panel pop-ups that will allow the initialization of the 

instrument and a method to check to make sure communication is established.   

For the power supply and temperature group to change a cell value, the cell 

simply needs to be selected and then the new value entered.  The constraints 

are handled through the control properties.  For example, a 6 volt range of the 

power supply cannot have a value greater then 10 volts and source current 

greater then 5 amps.   The control will not allow a voltage value greater then 6 

volts and a current value greater than 5 amps.   The power supply data structure 

is:  

     struct{ 
      int ps6V, 
      int ps6A, 
      int ps25V,  
      int ps25A, 
      int psm25V, 
      int psm25A,  
      int size 
      } PS;  
 

  

  The temperature and power control behave similarly.  The temperature 

data structure is just an array of size ten.  The chip data structure is more 

complex.  When the “Setup Chip” button is pressed the chip setup panel is 

displayed to the front.  All the register settings are just hexadecimal numbers.   
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For example, the configuration register setting is composed of four, two digit 

hexadecimal numbers.  For the configuration and channel setup register, the 

user selects the setting from the controls drop down box and a hexadecimal 

number is generated.  The calibration values are populated automatically when 

the selected calibration is done.  When the “Storage”  button is pressed the 

hexadecimal values populate their corresponding control values on the 

“Automation” panel.  The constraints are up to ten setting and channel setup 

registers, one must be use for conversions.  The data structure for chip setting is:  

     struct{  
      int config_reg; 
      int offset_reg; 
      int gain_reg; 
      int csr1_reg;  
      }DUT; 
 

The CS5530 chip is the exception.  The CS5530 chip does not contain a 

channel setup register.  The configuration register determines the “Word Rate” 

and which channel to convert.  When the CS5530 chip is selected, the channel 

setup register is dimmed out.  The following figures show the “Setup” and “Data 

Collection” windows for this chip.  Notice there is no channel setup register and 

only one offset and gain register appears.  The application interface appearance 

is a function of the chip being selected because of the differences in the internal 

structure of the chips within the CS55xx family.   
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FIGURE 92  CS5530 SETUP PANEL 
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FIGURE 93 CS5530 DATA COLLECT PANEL 
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CONCLUSION 

In this thesis, I have presented company C.L. with a testing environment.   

I have designed the environment so that it would be independent of the chip 

being characterized.  The environment application is modular so that it can be 

reused.  It follows the philosophy that software is the test instrument.  I also 

developed the application to control the family of CS553x ADC and the 

microcontroller code.  In addition, I presented a methodology of architecting 

future applications with Unified Modeling Language. I have also suggested to 

the manager that the chip register bits structure should be the common for all 

future chips.  In other words, the reset bit would be same bit number for all 

chips designed by the industrial group.  This would make future application 

development easier and faster.
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