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SOLUTION ESTIMATES AND STABILITY TESTS FOR

NONLINEAR DELAY INTEGRO-DIFFERENTIAL EQUATIONS

SANDRA PINELAS, OSMAN TUNÇ

Abstract. In this article, we examine various qualitative features of solutions

of a nonlinear delay integro-differential equation. We prove three new theorems

which include sufficient conditions on asymptotic stability (AS), integrability,
and boundedness of solutions, using a suitable Lyapunov-Krasovskii functional.

We present examples that show applications of our results.

1. Introduction

According to the literature, Volterra’s work [39] on elasticity was a starting
point of theory on delay integro-differential equations (DIDEs). It was found that
for some substances, the magnetic or electric polarization depends not only on the
electromagnetic field at that moment, but also on the electromagnetic state of the
matter at earlier instants. This and other scientific and engineering problems been
modeled with DIDEs. For example, population dynamics, biological applications,
genetics, noise term phenomenon, competition between tumor cells and immune
system, artificial neural networks. and RLC circuits have been modeled as IDEs in
[4, 6, 5, 10, 18, 19, 20, 22, 25, 39, 42].

In the previous five decades, qualitative properties of solutions of first order
IDEs and functional DEs have been discussed, see for example the references in
this article. However, there are only a few works on second order IDEs, see [1, 7,
9, 15, 16, 29, 30, 33, 45].

In this work, we consider the second order DIDE

ẍ+

m∑
i=1

fi(t, x, ẋ) +

n∑
i=1

gi(x(t− τi)) + g(x, ẋ) + h(x)

= p(t, x, ẋ) +

l∑
i=1

∫ t

t−τi
Ci(t, s)qi(s, ẋ(s)) ds .

(1.1)
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As a next step, we transform (1.1) into the system

dx

dt
= y,

dy

dt
= −

m∑
i=1

fi(t, x, y)−
n∑
i=1

gi(x)− g(x, y)− h(x)

+

n∑
i=1

∫ t

t−τi
g′i(x(s))y(s) ds+ p(t, x, y) +

l∑
i=1

∫ t

t−τi
Ci(t, s)qi(s, y(s)) ds,

(1.2)

where x ∈ R, t ∈ [−τ,∞), τi > 0 are constant delays, τ = max{τ1, . . ., τn}, l ≤ n,
l, m,n ∈ N, fi, p ∈ C(R+ × R2,R), fi(t, x, 0) = 0, g ∈ C(R2,R), g(x, 0) = 0,
gi ∈ C1(R,R), gi(0) = 0, h ∈ C(R,R), h(0) = 0, Ci ∈ C([−τ,∞) × [−τ,∞),R),
qi ∈ C([−τ,∞) × R,R) and qi(s, 0) = 0, (i = 1, . . . , l). This continuity condition
allows the existence of solutions to (1.1). In addition, through this paper, it is

assumed the existence and continuity of the derivatives g′i(x) = dgi
dx , i = 1, 2, . . . , n.

Throughout this article x and y denote x(t) and y(t), respectively.
It is seen that nonlinear system (1.2) has multiple kernels and delays. In par-

ticular, the mathematical models given as (1.1) and its modified version are useful
for researchers working on ecology problems, population dynamics, artificial neural
networks, and so forth.

Berezansky et al. [9] studied the following qualitative properties of solutions to
second order functional differential equations (FDEs): existence of solutions, oscil-
lation and non-oscillation, exponential stability, and instability. These equations in-
clude delay differential equations, integro-differential equations and equations with
distributed delay. In particular, Berezansky et al. [9] considered the following linear
FDEs with variable delays:

ẍ(t) +

2m∑
i=1

pi(t)x(t− τi(t)) = f(t),

ẍ(t) +

2m∑
i=1

pi(t)x(t− τi(t)) +

n∑
j=1

qj(t)x(t− θj(t)) = f(t),

ẍ(t) +

m∑
i=1

ai(t)x(t− τi(t))−
m∑
i=1

bi(t)x(t− θi(t)) = f(t).

Next we outline the contributions of this article. To the best of our information,
the movements of orbits to (1.1) have not investigated in the literature; therefore,
we present a novel work. Second order DIDEs with multiple kernels and delays
have many applications in engineering [10, 18, 19, 20, 22, 23, 25], but fundamental
properties of their solutions are rarely investigated. Therefore, investigating second
order DIDEs is also a desirable feature of our work Finally, the results of this article
have suitable conditions for applications, because of functional w defined by (2.1)
below. The techniques and results here are different from those in [9].

The rest of this article is arranged as follows: Section 2 presents two theorems
about stability and integrability results. Section 3 includes a numerical example as
applications of the stability and integrability results in Section 2. Section 4 includes
Theorem 4.1 which addresses the boundedness of solutions. Section 5 includes a
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numerical example as an application of the boundedness result of Section 5. Section
6 presents the conclusions from this article.

2. Stability and integrability results

We use the following assumptions for proving the results of this article.

(A1)

gi(0) = 0,
gi(x)

x
≥ bi, x 6= 0,

h(0) = 0,
h(x)

x
≥ h0, x 6= 0,

|g′i(x)| ≤ αi for all x ∈ R,

where, bi > 0, h0 > 0, αi > 0, bi, h0, αi ∈ R, for i = 1, 2, . . . , n;
(A2)

fi(t, x, 0) = 0, yfi(t, x, y) ≥ fi0y2, y 6= 0, i = 1, 2, . . . ,m,

g(x, 0) = 0, yg(x, y) ≥ g0y
2, y 6= 0, for all x, y ∈ R,

|qi(s, y(s))| ≤ ri|y(s)|, |Ci(t, s)| ≤ di,

where ri > 0, di > 0, ri, qi ∈ R for i = 1, 2, . . . , l; and the positive constants
fi0, g0, αi, di, ri satisfy

m∑
i=1

fi0 + g0 − 2−1τ
( n∑
i=1

αi +

l∑
i=1

(αi + 2diri) +

n∑
i=l+1

αi

)
≥ σ,

where σ > 0, σ ∈ R;
(A3)

|p(t, x, y)| ≤ |p0(t)||y|, for all t ∈ R+, x, y ∈ R,∫ ∞
0

|p0(t)|dt <∞.

Theorem 2.1. If (A1) and (A2) hold and p(t, x, y) ≡ 0, then the trivial solution
of (1.2) is asymptotically stable.

Proof. As an auxiliary tool to prove this theorem, we define the Lyapunov-Krasovskii
functional

W (·) = W (t, xt, yt)

= 2

n∑
i=1

∫ x

0

gi(s) ds+ 2

∫ x

0

h(s) ds+ y2

+

n∑
i=1

γi

∫ 0

−τi

∫ t

t+s

y2(θ) dθ ds,

(2.1)

where γ1, . . . , γn are positive constants to be determined later. We have

W (t, xt, yt) = 2

∫ x

0

g1(s)

s
sds+ · · ·+ 2

∫ x

0

gn(s)

s
sds+ 2

∫ x

0

h(s)

s
sds+ y2

+

n∑
i=1

γi

∫ 0

−τi

∫ t

t+s

y2(θ) dθ ds.
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Using condition (A1), we obtain

W (t, xt, yt) ≥ (b1 + b2 + . . .+ bn + h0)x2 + y2. (2.2)

The derivative of W (t, xt, yt) along the trajectories of (1.2) gives

W ′(·) = 2g1(x)y + 2g2(x)y + . . .+ 2gn(x)y + 2h(x)y + 2yy′

+

n∑
i=1

(γiτi)y
2 −

n∑
i=1

(γi

∫ t

t−τi
y2(s)) ds

= 2y

n∑
i=1

gi(x) + 2y
[
−

m∑
i=1

fi(t, x, y)−
n∑
i=1

gi(x)− g(x, y)− h(x)
]

+ 2h(x)y + 2y

n∑
i=1

∫ t

t−τi
g′i(x(s))y(s) ds

+ 2y

l∑
i=1

∫ t

t−τi
Ci(t, s)qi(s, y(s)) ds+

n∑
i=1

(γiτi)y
2

−
n∑
i=1

(γi

∫ t

t−τi
y2(s)) ds

= −2y

m∑
i=1

fi(t, x, y)− 2yg(x, y) + 2y

n∑
i=1

∫ t

t−τi
g′i(x(s))y(s) ds

+ 2y

l∑
i=1

∫ t

t−τi
Ci(t, s)qi(s, y(s)) ds+

n∑
i=1

(γiτi)y
2

−
n∑
i=1

γi

∫ t

t−τi
y2(s) ds.

Using conditions (A1), (A2) and doing elementary calculations, we obtain

2y

∫ t

t−τi
g′i(x(s))y(s) ds ≤ 2|y(t)|

∫ t

t−τi
|g′i(x(s))||y(s)|ds

≤ αi
∫ t

t−τi
(y2(t) + y2(s)) ds

= αiτiy
2 + αi

∫ t

t−τi
y2(s) ds,

for i = 1, 2, . . . n; and

2y

∫ t

t−τi
Ci(t, s)qi(s, y(s)) ds ≤ 2|y|

∫ t

t−τi
|Ci(t, s)||qi(s, y(s))|ds

≤ 2diri|y|
∫ t

t−τi
|y(s)|ds

≤ diri
∫ t

t−τi
(y2(t) + y2(s)) ds

= diriτiy
2 + diri

∫ t

t−τi
y2(s) ds,
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for i = 1, 2, . . . , l. Hence,

W ′(·) ≤ −2y

m∑
i=1

fi(t, x, y)− 2yg(x, y) +
[ n∑
i=1

(αiτi) +

l∑
i=1

(diriτi) +

n∑
i=1

(γiτi)
]
y2

+ (α1 + d1r1 − γ1)

∫ t

t−τ1
y2(s) ds+ (α2 + d2r2 − γ2)

∫ t

t−τ2
y2(s) ds

+ (αl + dlrl − γl)
∫ t

t−τl
y2(s) ds+ . . .+ (αn − γn)

∫ t

t−τn
y2(s) ds.

Let γ1 = α1 + d1r1, γ2 = α2 + d2r2, . . . , γl = αl + dlrl, . . . , γn = αn. Then using
condition (A2), we obtain

W ′(·) ≤ −2y

m∑
i=1

fi(t, x, y)− 2yg(x, y)

+
[ n∑
i=1

(αiτi) +

l∑
i=1

(diriτi) +

l∑
i=1

(αi + diri) τi +

n∑
i=l+1

(αiτi)
]
y2

≤ −2y2
m∑
i=1

fi0 − 2g0y
2

+
[ n∑
i=1

(αiτi) +

l∑
i=1

(diriτi) +

l∑
i=1

(αi + diri) τi +

n∑
i=l+1

(αiτi)
]
y2.

Let τ = max{τ1, τ2, . . . , τn}. Then

W ′(·) ≤ −2
[ m∑
i=1

fi0 + g0 − 2−1τ
( n∑
i=1

αi +

l∑
i=1

(αi + 2diri) +

n∑
i=l+1

αi

)]
y2

≤ −σy2 < 0, y 6= 0,

provided that

τ <
2
∑m
i=1 fi0 + 2g0∑n

i=1 αi +
∑l
i=1 (αi + 2diri) +

∑n
i=l+1 αi

= σ.

In addition, it can be shown that the only invariant set in W ′(·) = 0 is {0, 0} (see,
Hale [18]). Then, the trivial solution of system of(1.2) is asymptotically stable. �

Theorem 2.2. If (A1), (A2) hold and p(t, x, y) ≡ 0, then the squares of the deriv-
ative of solutions x(t) of (1.2) are Lebesgue integrable.

Proof. From Theorem 2.1, we have that

W ′(t, xt, yt) ≤ −σy2 < 0, y 6= 0.

Integrating we obtain

W (t, xt, yt)−W (t0, φ(t0), ψ(t0)) ≤ −σ
∫ t

t0

y2(s) ds.

Then ∫ ∞
t0

y2(s) ds ≤ σ−1W (t0, φ(t0), ψ(t0))− σ−1W (t, xt, yt) ≤ K,

where K = σ−1W (t0, φ(t0), ψ(t0)). �
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3. Numerical applications of stability and integrability results

Example 3.1. Let p(·) ≡ 0. As a particular case of (1.1), we consider the nonlinear
second order DIDE with multiple kernels and delays,

d2x

dt2
+
(
t+ x2 + (

dx

dt
)2 + 25

)dx

dt
+ 17

dx

dt
+ 2x

+ x7 + 2x(t− 4−1) + 2x(t− 8−1)

=

∫ t

t− 1
4

1

1 + t4 + s2

x′(s)

[1 + (x′(s))
2
][1 + exp(s2)]

ds

+

∫ t

t− 1
8

1

1 + t6 + s2

x′(s)

[1 + (x′(s))
2
][1 + exp(s4)]

ds.

(3.1)

This equation can be transformed into the system

dx

dt
= y,

dy

dt
= −

(
t+ x2 + y2 + 25

)
y − 17y − 6x− x7

+ 2

∫ t

t− 1
4

y(s) ds+ 2

∫ t

t− 1
8

y(s) ds

=

∫ t

t− 1
4

1

1 + t4 + s2

y(s)

[1 + y2(s)][1 + exp(s2)]
ds

+

∫ t

t− 1
8

1

1 + t6 + s2

y(s)

[1 + y2(s)][1 + exp(s4)]
ds, t ≥ 1

8
.

(3.2)

Hence, comparing (1.2) and (3.2) gives the relations

f1(t, x, y) =
(
t+ x2 + y2 + 25

)
y, f1(t, x, 0) = 0,

f1(t, x, y)y =
(
t+ x2 + y2 + 25

)
y2 ≥ 25y2, f10 = 25, y 6= 0;

g(x, y) = 17y, g(x, 0) = 0,

g(x, y)y = 17y2 ≥ 16y2, g0 = 16, y 6= 0;

g1(x) = 2x, g1(0) = 0,

g1(x)

x
= 2 > 1 = b1, x 6= 0,

g′1(x) = 2, |g′1(x)| = 2 < 3 = α1;

g2(x) = 2x, g2(0) = 0,

g2(x)

x
= 2 > 1 = b2, x 6= 0;

g′2(x) = 2, |g′2(x)| = 2 < 3 = α2;

h(x) = 2x+ x7, h(0) = 0,

h(x)

x
= 2 + x6 ≥ 2 = h0, x 6= 0,∫ t

t−τ1
C1(t, s)q1(s, y(s)) ds =

∫ t

t− 1
4

1

1 + t4 + s2

y(s)

[1 + y2(s)][1 + exp(s2)]
ds,
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C1(t, s) =
1

1 + t4 + s2
, |C1(t, s)| = 1

1 + t4 + s2
≤ 1 = d1,

q1(s, y(s)) =
y(s)

[1 + y2(s)][1 + exp(s2)]
,

|q1(s, y(s))| = |y(s)|
[1 + y2(s)][1 + exp(s2)]

≤ |y(s)|, r1 = 1;∫ t

t−τ2
C2(t, s)q2(s, y(s)) ds =

∫ t

t− 1
8

1

1 + t6 + s2

y(s)

[1 + y2(s)][1 + exp(s4)]
ds,

C2(t, s) =
1

1 + t6 + s2
, |C2(t, s)| = 1

1 + t6 + s2
≤ 1 = d2,

q2(s, y(s)) =
y(s)

[1 + y2(s)][1 + exp(s4)]
,

|q2(s, y(s))| = |y(s)|
[1 + y2(s)][1 + exp(s4)]

≤ |y(s)|, r2 = 1;

τ = max{4−1, 8−1} = 4−1;

[f10 + g0 − 2−1τ(α1 + α2 + d1r1 + d2r2)] = [25 + 16− 8−1(3 + 3 + 1 + 1)]

= 40 > 39 = σ > 0.

Hence, when p(t, x, y) ≡ 0, the conditions of Theorems 2.1 and 2.2 are fulfilled.
Therefore their results hold.

0.125 50.125 100.125 150.125 200.125 250.125

time(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
(t

)

Figure 1. Trajectories of the solution x of (3.1), which shows the
asymptotic stability and integrability of the solutions depending
on various values of initial function.

4. Boundedness result

Theorem 4.1. If (A1)–(A3) hold, then the solution (x(t), y(t)) of system (1.2) are
bounded.

Proof. From (A1)–(A3) and some calculations, we obtain

W ′(t, xt, yt) ≤ 2yp(t, x, y)

≤ 2|y| |p(t, x, y)|
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Figure 2. Trajectories of the solution y of (3.1), which shows the
asymptotic stability and integrability of the solutions depending
on various values of initial function.

≤ 2|p0(t)|y2

≤ 2|p0(t)|W (t, xt, yt).

Hence,

W ′(t, xt, yt)

W (t, xt, yt)
≤ 2|p0(t)|.

Integrating this inequality, we obtain

W (t, xt, yt) ≤W (t0, φt0 , ψt0) exp(2

∫ t

t0

|p0(s)|ds)

≤W (t0, φt0 , ψt0) exp(2

∫ ∞
t0

|p0(s)|ds)

≤M0.

Hence, in view of (2.2) and the last inequality above, we derive that

(b1 + b2 + . . .+ bn + h0)x2 + y2 ≤W (t, xt, yt) ≤M0.

Then (b1 + b2 + . . .+ bn + h0)x2 + y2 ≤M0. Thus,

|x(t)| ≤
( M0∑n

i=1 bi + h0

)1/2

, |y(t)| ≤
√
M0 for all t ≥ t0.

These inequalities verify that the solution (x(t), y(t)) of (1.2) are bounded. �
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5. Numerical application of the bounded result

Example 5.1. Let p(·) 6= 0. As a particular case of (1.1), we consider the nonlinear
second order DIDE with multiple kernels and delays,

d2x

dt2
+
(
t+ x2 + (

dx

dt
)2 + 25

)dx

dt
+ 17

dx

dt
+ 2x

+ x7 + 2x(t− 4−1) + 2x(t− 8−1)

=

∫ t

t− 1
4

1

1 + t4 + s2

x′(s)

[1 + (x′(s))
2
][1 + exp(s2)]

ds

+

∫ t

t− 1
8

1

1 + t6 + s2

x′(s)

[1 + (x′(s))
2
][1 + exp(s4)]

ds

+
x′ exp(t)

1 + exp(2t) + exp(x2 + (x′)
2
)
.

(5.1)

This equation can be transformed into the system

dx

dt
= y,

dy

dt
= −

(
t+ x2 + y2 + 25

)
y − 17y − 6x− x7

+ 2

∫ t

t− 1
4

y(s) ds+ 2

∫ t

t− 1
8

y(s) ds

=

∫ t

t− 1
4

1

1 + t4 + s2

y(s)

[1 + y2(s)][1 + exp(s2)]
ds

+

∫ t

t− 1
8

1

1 + t6 + s2

y(s)

[1 + y2(s)][1 + exp(s4)]
ds

+
y exp(t)

1 + exp(2t) + exp(x2 + y2)
.

(5.2)

All the data in Example 3.1 hold for (5.2). We need only to consider the function
p(t, x, y). Hence, we derive that

|p(t, x, y)| = |y| exp(t)

1 + exp(2t) + exp(x2 + y2)
≤ |y| exp(t)

1 + exp(2t)
≤ |p0(t)||y|,

|p0(t)| = exp(t)

1 + exp(2t)
,∫ ∞

0

|p0(t)|dt =

∫ ∞
0

exp(t)

1 + exp(2t)
dt =

π

4
<∞.

Thus, the conditions of Theorem 4.1 hold. Then, all solutions of (5.2) are bounded.

6. Conclusion

In this article, a class of nonlinear DIDEs of second order with multiple ker-
nels and delays has been considered. Three new results have been given on the
behaviors of solutions of considered equations. New numerical applications related
to the obtained results have been given. The aim of this paper is to do the new
contributions to the theory of DIDEs of higher order.



10 S. PINELAS, O. TUNÇ EJDE-2022/68
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Figure 3. Trajectories of the solution x(t) of (5.1), which shows
the boundedness of the solutions depending on various values of
initial function.
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Figure 4. Trajectories of the solution y(t) of (5.1), which shows
the boundedness of the solutions depending on various values of
initial function.
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