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Abstract.—Abundance estimators that account for imperfect detection, such as N-mixture models, assume that detection of individuals 
is independent of abundance. Using spot-mapping and N-mixture models applied to point-count data, we estimated abundance of Golden-
cheeked Warblers (Setophaga chrysoparia) in two years at six study sites at the Balcones Canyonlands Preserve, Austin, Texas. N-mixture 
model estimates deviated from spot-mapping estimates at the site level by overestimating at low abundances, and at the survey-station 
level by underestimating at high abundance, which suggests that model assumptions may have been violated. We tested whether detection 
of individuals is influenced by abundance by assessing per capita song rate in relation to abundance. Per capita song rate increased with 
abundance, illustrating how the behavior of a territorial passerine may violate the independent-detectability assumption. We next explored 
violation of this assumption at the survey-station level by applying N-mixture models to simulated data exhibiting heterogeneity in detection. 
This exercise revealed a slight but increasingly negative bias (underestimation of abundance) in the estimator as the actual abundance 
increased, given positive density-dependent detection. The simulations also revealed a potential effect of sampling variation on misestimation 
by N-mixture model estimators. Assessing the strength, basis, and prevalence of density-dependent detection; further analyzing the effects of 
nonrandom heterogeneity in producing estimator bias; and accounting for nonrandom detection heterogeneity in abundance estimators are 
fruitful areas for further study. Received 31 January 2013, accepted 13 September 2013.
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Hétérogénéité de détection et estimation de l’abondance dans les populations de Setophaga chrysoparia

Résumé.—Les estimateurs d’abondance qui représentent une détection imparfaite, comme les modèles de N-mélange, supposent 
que la détection des individus est indépendante de l’abondance. À l’aide de la méthode des plans quadrillés et de modèles de N-mélange 
appliqués aux données de points d’écoute, nous avons estimé l’abondance de Setophaga chrysoparia pendant deux ans à six sites d’étude 
de la Balcones Canyonlands Preserve, à Austin, au Texas. Les estimations des modèles de N-mélange différaient des estimations des 
plans quadrillés au niveau du site en surestimant lorsqu’il y a de faibles abondances, et au niveau de la station d’échantillonnage en 
sous-estimant lors de fortes abondances, ce qui suggère que les hypothèses des modèles n’ont pu être respectées. Nous avons testé 
si la détection des individus est influencée par l’abondance en évaluant le taux de chant par individu par rapport à l’abondance. Le 
taux de chant par individu a augmenté avec l’abondance, illustrant la façon dont le comportement d’un passereau territorial peut 
transgresser l’hypothèse de la détectabilité indépendante. Nous avons exploré le non-respect de cette hypothèse au niveau de la station 
d’échantillonnage en appliquant des modèles de N-mélange aux données simulées présentant une hétérogénéité dans la détection. 
Cet exercice a révélé un biais négatif léger mais croissant (sous-estimation de l’abondance) dans l’estimateur à mesure qu’augmentait 
l’abondance réelle, en considérant une détection dépendante de la densité positive. Les simulations ont aussi révélé un effet potentiel 
de la variation de l’échantillonnage sur la mauvaise estimation des estimateurs des modèles de N-mélange. L’évaluation de la force, 
de la base et de la prévalence de la détection dépendante de la densité, une analyse plus poussée des effets de l’hétérogénéité non 
aléatoire dans la production d’un biais de l’estimateur, ainsi que la prise en compte de l’hétérogénéité de détection non aléatoire dans les 
estimateurs d’abondance sont des domaines intéressants pour d’autres études. 
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best (with the least error and no bias) when there is minimal 
heterogeneity in r. N-mixture models have been employed to 
provide estimates of population abundance for a number of pas-
serine species (Kéry et al. 2005, Joseph et al. 2009, Schlossberg 
et al. 2010, Chandler et al. 2011, Hunt et al. 2012). However, for 
some species and applications, N-mixture models have led to 
erroneous estimates of abundance when applied to populations 
for which abundance was known or had been estimated indepen-
dently by other means (Joseph et al. 2009, Chandler et al. 2011, 
Hunt et al. 2012). Both Kéry et al. (2005) and Joseph et al. (2009) 
hypothesized that estimation errors resulted from inappropri-
ate use of the negative binomial distribution, whereas Chandler 
et al. (2011) showed that overestimation of abundance by the 
N-mixture model was corrected by incorporating temporary 
emigration into the model. 

One approach to understanding the basis of any estimation 
error associated with abundance (density) in N-mixture models 
is to examine the relationship between “known” population 
abundance and N-mixture model estimates across multiple 
populations (or individual populations followed across time) 
and then explore the ecological and/or behavioral mechanisms 
behind nonrandom heterogeneity in detection. A complemen-
tary approach is to use simulations that explicitly incorporate 
nonrandom heterogeneity in the probability of detection in the 
form of density-dependent detection to determine whether such 
heterogeneity leads to bias in the N-mixture model estimator. 

The Golden-cheeked Warbler (Setophaga chrysoparia; here-
after “warbler”) provides an appropriate study system for 
investigating probability of detection as a function of variation in 
density. Given that the species is a territorial songbird, males might 
increase their frequency of singing when surrounded by several 
other males. Surveying for the species is typically conducted by ob-
servers listening for and recording the songs of individual males 
at stationary points during a given time interval. Therefore, such 
acoustic detections (or counts of males) could be affected by differ-
ences among males in singing rate (i.e., the count data at and among 
sample points might include an effect of heterogeneity in individual 
detection probability). In a larger context, conservation concern for 
this endangered species, endemic to south-central Texas (Pulich 
1976), has led to strong interest in reliable and accurate estimates 
of abundance at multiple spatial scales (Wahl et al. 1990; Anders 
and Dearborn 2004; Peak 2007, 2011; Watson et al. 2008; Collier 
et al. 2010; City of Austin [COA] 2011; Hunt et al. 2012; Mathewson 
et al. 2012).

In the present study, we applied N-mixture models to 
estimate warbler abundance at six different study sites near 
Austin, Texas. We also obtained abundance estimates at each 
of 36 survey stations within each site. We compared model 
estimates with estimates derived from spot mapping of terri-
tories at both the study-site and survey-station levels. We then 
examined the ecological and behavioral basis of heterogene-
ity in detection (r) in these same populations by estimating 
per capita song rate and examining the relationship between 
per capita singing rate and warbler abundance at the site and 
station levels. Finally, we used a series of data simulations to 
compare the effects of random and nonrandom heterogeneity 
in individual detection probability on estimates of abundance 
produced by N-mixture models.

Reliable population estimates are important for developing 
effective monitoring, management, and conservation programs. 
Although raw counts reliably estimate population size in some 
instances, unbiased and accurate population estimators often 
require accounting for imperfect detection (Johnson 1995). 
This may be a particular concern for estimating abundance of 
relatively small, highly active, and cryptic organisms such as 
many passerine birds. Occupancy (MacKenzie et al. 2002) and 
N-mixture models (Royle 2004) use presence–absence or count 
data, respectively, to estimate occupancy and abundance, respec-
tively, while accounting for detection–nondetection. A major 
advantage of these models is the ability to incorporate covariates 
to account for heterogeneity in detection among sample units. 
For example, habitat attributes (Warren et al. 2013), temporal 
factors (Hunt et al. 2012), distance from observer (Alldredge  
et al. 2007a), vegetation (Pacifici et al. 2008), and variation among 
observers (Diefenbach et al. 2003) can be included as covariates 
upon which probability of detection can be conditioned within 
the model framework (MacKenzie et al. 2002, MacKenzie 2006). 
Increasingly, these models are employed to assess within- and 
among-population variation in occupancy, distribution, and/or 
abundance across a range of geographic scales (MacKenzie et al. 
2002, 2009; MacKenzie 2006; Chandler et al. 2009).

A potential factor that may translate into bias associated 
with population estimation techniques, including occupancy and 
N-mixture model estimators, is nonrandom heterogeneity in the 
probability of detection of the individual among sample units 
(Royle and Nichols 2003, Royle 2006). When present, variation 
in detectability among sample units that is related to variation in 
the abundance (density) of the organisms whose population size 
is to be estimated presents an intriguing challenge within the oc-
cupancy and N-mixture model framework. This is because these 
models are predicated on there being no relationship between the 
probability of detecting an individual and local abundance. Royle 
and Nichols (2003) expressed the probability of detecting occu-
pancy (pi) conditional on the number of individuals at a sample 
unit (Ni) as

pi = 1 (1 – r)Ni

where r is the binomial probability that a given individual is 
detected. Therefore, as the number of individuals increases, the 
probability of detecting at least one individual (and species oc-
cupancy) also increases. Two key assumptions of this equation 
are that (1) all individuals at a sample unit are equally detectable  
(r is a constant) and (2) the detection of one individual is inde-
pendent of the detection of other individuals; hence, nondetection 
probabilities (1 – r) can be multiplied (Royle and Nichols 2003). If 
either of these assumptions is violated, the above equation does 
not hold; the estimated pi may be inaccurate. Thus, any relation-
ship between the probability of detecting an individual (r) and 
local abundance could lead to bias in the occupancy or abundance 
estimator.

N-mixture models actually take advantage of the above 
equation by reasoning that variation (or heterogeneity) in pi is 
a direct indicator of variation in abundance (Ni) among sam-
ple units (Royle and Nichols 2003). However, this logic still 
requires that the probability of detecting an individual (r) is not 
itself related to Ni. Moreover, N-mixture models likely perform 



October 2013	 — Detection Heterogeneity —	 679

Methods

Study system.—We assessed the relationship between local abun-
dance, N-mixture model estimates of abundance, and probability 
of detection—dependent on singing behavior—in natural popu-
lations of the warbler. Variation in warbler abundance among 
our study sites, previously examined by Hunt et al. (2012), and 
across the species range (Wahl et al. 1990, Mathewson et al. 2012), 
in conjunction with observed relationships between song rate 
and local abundance in other passerines (Penteriani et al. 2002, 
Sillett et al. 2004, Laiolo 2008, Laiolo and Tella 2008), suggests 
the possibility that the warbler’s per capita song rate and, hence, 
probability of detection of the individual (r) may be influenced by 
local abundance.

We studied warblers at five sites previously studied by Hunt 
et al. (2012) in 2008 and at six of the seven sites studied by Hunt 
et  al. in 2009. We excluded one site in 2009 from all analyses 
because we did not record warbler vocalizations at this site. Study 
sites were distributed throughout the Balcones Canyonlands Pre-
serve (BCP) located in Travis County, Texas. The BCP consists of 
5,365 ha of discontinuous land interspersed with residential and 
mixed-use properties and is managed by multiple agencies for the 
conservation of the warbler and other endangered species (COA 
and Travis County 1996). Descriptions of the study sites are pro-
vided in COA (1999) and Hunt et al. (2012).

Estimates of abundance.—We estimated the abundance 
of warblers per unit area during the 2008 and 2009 breeding 
seasons for each study site by means of two techniques. Esti-
mates of abundance (density) were derived independently from 
spot mapping (used here as the known abundance) and N-
mixture models (Royle 2004). In this instance, using estimates 
of abundance derived by spot mapping as a surrogate for known 
abundance is justified by results of long-term spot mapping of 
warblers at these study sites. Inspection of spot-mapped abun-
dance estimates reveals that the estimates are repeatable across 
years and differ consistently among study sites (COA 2011). 
From 1998 through 2012, the COA has estimated the number of 
territorial male warblers within 40.5-ha plots at each of the study 
sites by means of the spot-mapping technique (Bibby et al. 1992). 
In 2008, territory abundance ranged from 3 to 21.5 per spot-
mapping plot, and in 2009, the season in which we also examined 
the relationship between singing rate and abundance, the num-
ber of territories ranged from 2.5 to 18 per study site (COA 
2011). In 2008, a 1-km2 point-count grid, positioned to overlay 
the COA 40.5-ha spot-mapping plot, was established at each 
study site. Each point-count grid consisted of 36 survey stations 
equally spaced at 200-m intervals in a 6 × 6 array (Fig. 1). Point-
count surveys (n = 4), conducted at weekly intervals and based 
on a 5-min survey per survey station, provided the data used in 
conjunction with N-mixture models to estimate the abundance 
of male warblers at the five study sites in 2008 and the six study 
sites in 2009. Following Hunt et al. (2012), only those detections 
of warblers deemed to be ≤100 m from the center of each survey 
station were used to estimate abundance; thus, each point-count 
grid surveyed an effective area of 113 ha.

Spot mapping involves determining territory size, shape, 
and location from repeated detections (observations) of known 
individuals. Although the method is laborious and perhaps not 
practical across large spatial scales—hence the desire to develop 

alternative methods—spot mapping is often considered the 
standard (i.e., the approximate known population size) for com-
paring methods of estimating avian abundance (Verner and Ritter 
1988, Verner and Milne 1990, Bibby et al. 1992, Buckland 2006, 
Chandler et al. 2011, Peak 2011, Hunt et al. 2012). We compared 
the estimates of abundance derived from N-mixture models (l) 
to estimates derived from spot mapping to determine whether 
the magnitude of error (l/spot-mapped estimate) was a function 
of spot-mapped abundance per study site in both 2008 and 2009. 
Because N-mixture model estimates of abundance were based on 
a 113-ha grid, we scaled the 40.5-ha spot-mapping estimates of 
abundance to 113 ha. All estimates of abundance are, thus, num-
bers of male warblers per 113 ha.

We next compared l and spot-mapping estimates of 
abundance at the station level. We examined the correspon-
dence between known (spot mapped) and predicted numbers 
(N-mixture model estimates) of warblers per survey station 
and the structure of any deviation between the two methods 
for each year. To estimate the number of male warblers per 

Fig. 1.  Field design for data collection, illustrated for one of the six study 
sites. Point-count grids sampled 113 ha and were composed of 36 survey 
stations (black circles; spaced at 200-m intervals) laid out in a 6 × 6 array. 
Each survey station sampled Golden-cheeked Warblers within a 100-m 
detection radius. Survey stations at which ARUs recorded warblers 
are indicated by the “audio” symbol. Spot-mapped warbler territories 
(shaded polygons) were delineated within the City of Austin 40.5-ha 
study plot (square). Territories outside this plot were not delineated. The 
number of territories that overlapped the detection radius at each survey 
station was used to estimate spot-mapped abundance per survey station.
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survey station based on spot mapping, we projected a 100-m 
buffer around each survey station and then, using the COA 
spot-mapping data for each year, tabulated the number of ter-
ritories that overlapped the 100-m detection radius for each 
survey station in ARCMAP, version 10 (ESRI, Redlands, Califor-
nia) (Fig. 1). Specific information on the spatial relationships of 
warbler territories was available for the subset of the 36 survey 
stations at each study site that fell within the 40.5-ha COA spot-
mapping plot (range: 9–12 survey stations per study site; 2008:  
n = 57; 2009: n = 67). Because COA biologists mapped only those 
territories that fell primarily within the 40.5-ha study plot, we 
excluded those survey stations with ≥50% of the buffer area out-
side the study plot. Spot-mapped abundance represented the 
number of territorial male warblers potentially available at each 
survey station to be detected by surveyors in 2008 and by both 
surveyors and autonomous recording units in 2009.

To obtain an estimate of warbler abundance per survey sta-
tion (l) in both 2008 and 2009, we extended the N-mixture model 
previously used by Hunt et al. (2012) (l[study site], p[site, season, 
time2]) by adding a habitat covariate (slope of the terrain at each 
survey station). Slope has been shown to affect warbler occupancy 
positively, presumably through an effect on vegetation struc-
ture (Warren et al. 2013). Use of the habitat covariate to produce 
unique station-specific estimates of warbler abundance was fur-
ther justified by comparison of the two models, which showed that 
the habitat covariate model (l[study site, slope], p[site, season, 
time2]) was superior to Hunt et al.’s (2012) model (habitat model 
AICc = 1,760.61, −2*LL = 1,739.74, K = 10, w = 0.999; Hunt et al.’s 
model AICc = 1780.28, −2*LL = 1,763.58, K = 8, w < 0.001). We used 
PRESENCE, version 3.1 (MacKenzie et al. 2002, Hines 2006), to 
build the model. Linear regression was then used to test whether 
station-specific deviation in model-estimated abundance was a 
function of spot-mapped abundance per survey station in each 
of the two years. Finally, station-specific estimates of abundance 
produced by spot mapping were used to examine the relationship 
between abundance and per capita singing rate during the 2009 
breeding season.

Estimates of song rate.—To test the assumption that the 
detection of an individual at a sample unit (point count survey 
station for our study) is independent of the detection of other 
individuals present, we recorded the singing behavior of male war-
blers in 2009 and examined the relationship between per capita 
singing rate and warbler abundance at the survey station and site 
levels. In March 2009, we deployed SM1 Song Meter Autonomous 
Recording Units (ARUs) (Wildlife Acoustics, Concord, Massa-
chusetts) at each of 14 randomly selected survey stations within 
each of the six point-count grids established by Hunt et al. (2012). 
Recordings were collected from 15 March through 3 May, corre-
sponding to the warbler breeding season.

Importantly, we deployed ARUs prior to the delineation of 
territories; thus, ARU positioning mimicked the random selec-
tion of survey-station locations that would be followed by human 
observers in the design of a typical point-count survey. At each 
survey station, ARUs were attached at breast height to a small 
tree to allow ≈360° recording and were programmed to record 
for 5-min intervals with a 1-min pause between recordings from 
approximate sunrise to approximate sunset (≈13 h day–1) for two 
consecutive days. The ARUs were then moved to the next survey 

station, until 14 stations had been sampled per study site. The 
5-min recording corresponds to the 5-min survey interval typi-
cally used in passerine point-count surveys (Lynch 1995, Ralph 
et al. 1995, Watson et al. 2008) and concurrently used at these 
same study sites and survey stations in 2008 and 2009 (Hunt 
et  al. 2012). SONG SCOPE software (Wildlife Acoustics) pro-
vided a sonogram of vocalizations that was inspected to identify 
and manually count all warbler songs. This procedure provided 
an accurate record of warbler vocalizations within the detection 
radius of each ARU at each sampled survey station throughout 
the 7-week study season. We considered a song to be a discrete 
vocalization, typically no longer than 2 s in duration. Each ARU 
recorded the vocalizations contributed by all singing male war-
blers within its detection radius. Thus, song rate per survey 
station was computed as the average number of songs recorded 
per 5-min interval across all ~280 intervals per station and rep-
resents the number of songs available at a point-count station 
during a survey interval for a surveyor to detect the species (p) 
or an individual (r). Like other members of the family Parulidae, 
warblers use a multi-category song system (Pulich 1976, Bolsinger 
2000, Leonard et al. 2010). In estimating song rate, we pooled 
“A” and “B” category songs, because preliminary analyses found 
no difference in an ARU’s ability to detect the two major song 
types of the warbler as a function of distance. Across all sites, 
8% of recordings were excluded because weather exceeded U.S. 
Fish and Wildlife Service (2010) survey parameters, non-warbler 
zoogenic or anthropogenic noise, or equipment failure. After 
excluding these recordings, we analyzed an average of 3,188 five-
minute samples recorded from a minimum of 13 survey stations 
per study site. In total, we analyzed 19,127 five-minute samples 
that included 80,107 songs from 80 survey stations across the six 
study sites.

Detection radii of ARUs.—Estimates of warbler abundance 
per study site (Hunt et al. 2012) and per survey station (pres-
ent study) included only those warbler detections estimated by 
observers to have been within 100 m from each survey point (Hunt 
et al. 2012: Fig. 2). Because testing our hypotheses about singing 
rate and warbler abundance involved data gathered by both 
observers (used in estimating λ) and ARUs (used to calculate song 
rates), we assessed whether the area sampled per survey station 
was comparable between humans and ARUs in a preliminary 
study. To determine the maximum detection distance and ver-
ify consistency of ARUs, we suspended ARUs (n = 6) side by side, 
1.5 m above the ground, in an open field in calm weather con-
ditions. We then played a 1-min recording of A and B songs 
calibrated to 55 dB at 6 m for both song types (the average volume 
of 10 male warblers singing in the wild on BCP properties at an 
average of 6 m) at distances of 5, 10, 30, 50, 75, 100, and 150 m. 
Inspection of sonograms showed that A and B songs were rou-
tinely detected at 75 m but, with the exception of a single A song, 
no songs were detected at 100 m. Thus, under ideal circumstances, 
the detection radius of ARUs was ≤100 m, and ARU data were 
comparable with data collected by human observers. The ARUs 
did not vary in their ability to detect warbler songs.

Site-level warbler abundance and song rate.—Mean song rate 
per study site was calculated by using both data from all survey 
stations sampled by ARUs and data from only those stations where 
ARUs detected one or more warbler songs. Preliminary analysis 



October 2013	 — Detection Heterogeneity —	 681

showed that the relationship between mean song rate and the 
number of territories per study site did not differ between the two 
methods; thus, we present results based on data from all stations 
(n = 80) sampled by ARUs. We used analysis of variance to deter-
mine whether significant variation in mean song rate was present 
among study sites. Linear regression was used to test the hypoth-
esis that per capita song rate per study site (i.e., mean number of 
songs per survey station per 5 min, divided by estimated study site 
abundance) was influenced by territory abundance.

Station-level warbler abundance and song rate.—To test the 
hypothesis that song rate was related to abundance, we regressed 
per capita song rate recorded at each survey station on the number 
of territories estimated to overlap each station in 2009. Station-
level data were pooled across study sites for these regressions. All 
analyses were conducted in R, version 2.9.2 (R Development Core 
Team 2009). Means and regression coefficients are presented ± SE 
throughout.

Simulation study.—We simulated hypothetical abundance 
and count data to explore the effect of heterogeneity in individual 
detection probability (r) on abundance estimates obtained from 
N-mixture models. We conducted four sets of simulations, each 
set consisting of 1,000 iterations. In each set, abundance data (Ni) 
at each of 36 survey stations were simulated as a Poisson distri-
bution with a mean (Nx) set as a random variable between 0 and 
5 (this resulted in stations having between 0 and 12 individuals). 
Iterations with Nx near 0 tended to produce abundance values of 
0, 1, 2, or 3 at the stations, whereas iterations with Nx near 5 tended 
to produce abundance values mostly between 3 and 8, with some 
values as high as 12. Set 1: r at each station was a constant at 0.5; 
this simulated a scenario without any heterogeneity in r. Set 2: 
at each station, r was taken as a random variable from a uniform 
distribution bounded between 0.1 and 0.9. This simulated a sce-
nario with random heterogeneity in r. Set 3: at each station, r was 
obtained from a logit-logistic function of abundance and a latent 
(not density-dependent) detection probability, r lat. That is, ri = 
eL + b(Ni – Nx)/(eL + b(Ni – Nx) + 1), where L = logit(rlat) = log[rlat/(1 – rlat)] 
with station abundances (Ni) centered on the mean (Nx). In this 
simulation, we used rlat = 0.5 and b = 0.5; the latter constant pro-
duces positive density dependence in r as a sigmoidal function. Set 
4: at each station, r was obtained from a linear function, ri = 0.05 
+ (Ni × 0.05). This simulated a scenario in which each additional 
individual increases detection probability by an increment of 0.05, 
beginning with ri = 0.1 when only one individual was present.

Using the ri values at each station, simulated count data were 
obtained from a binomial distribution with probability of success = 
ri and number of trials = Ni. Therefore, these simulations effectively 
mimicked a binary surveying process in which observers either do 
or do not detect each individual at the station. For each of the 36 
stations, count data were simulated for four hypothetical repeat 
surveys in order to resemble the study design of the actual warbler 
surveys. We also conducted versions of these simulations with 200 
stations to assess the effect of sampling variation on abundance 
estimates under each detection scenario. For each iteration of a 
simulation, count data were then used in an N-mixture model (the 
“pcount” function in R package “unmarked”; Fiske and Chandler 
2011) to get abundance estimates (i.e., estimated λ). The data simu-
lation and N-mixture models were conducted in R, version 2.15.2. 
The computer code is given in the Appendix.

Results

Abundance at the site level.—The magnitude of the difference 
between N-mixture model and spot-mapped estimates of warbler 
abundance at the level of the study site was negatively related to 
spot-mapped abundance in both 2008 (β = −0.057 ± 0.01, t = −5.07, 
P = 0.015, R2 = 0.90) and 2009 (β = −0.034 ± 0.01, t = −3.54, P = 
0.024, R2 = 0.76; Fig. 2). Differences in the two estimates of abun-
dance were greatest at the study sites known to have the lowest 
spot-mapped abundance of warblers, where the ratio of λ/spot-
mapped abundance approached 3×. With increasing abundance 
of warblers at a site, the ratio approached 1, indicating good agree-
ment between the two estimators.

Song rate at the site level.—The ARUs detected male war-
blers at all sampled survey stations at three study sites and at 76%, 
85%, and 92% of survey stations at the remaining three sites. Thus, 
warblers were available to be detected at most survey stations. 
Comparison of the distribution of the number of songs recorded 
by ARUs per 5-min survey interval across the six study sites (Fig. 3) 
provides a general depiction of the differences in singing frequency 
among study sites and also highlights the relationship between 
the frequency of nondetection (0 songs per 5-min survey interval) 
and spot-mapped abundance per study site. Warblers were least 
frequently detected by ARUs at survey stations within the two 
study sites that exhibited the lowest territory density. Mean song 
rate varied over an order of magnitude among study sites (F = 5.98, 
df = 5 and 67, P < 0.001), with an average of 0.49 ± 0.17 and 7.51 ± 
1.8 songs recorded per 5 min at the study sites with the lowest and 
highest spot-mapped estimates of abundance, respectively. The 
observed variation in song rate within and among study sites pro-
vided the variation necessary to test hypotheses relating song rate 
and warbler abundance. Song rate was converted into a per capita 
measure (mean song rate/abundance estimate per study site) to 
examine the relationship with spot-mapped warbler abundances 
across study sites. Per capita song rate increased significantly with 

Fig. 2.  Ratio of the abundance of male Golden-cheeked Warblers esti-
mated by N-mixture models (λ) and abundance estimated by spot map-
ping of territories, for 2008 and 2009, in relation to known abundance: 
2008 = triangles and dashed line, n = 5; 2009 = circles and solid line, 
n = 6.
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spot-mapped abundance per study site (β = 0.0013 ± 0.0003, t = 
4.74, P = 0.009, R2 = 0.85; Fig. 4A).

Abundance and song rate at the station level.—A comparison 
of spot-mapped abundance and estimated λ per survey station 
revealed that the two estimators of warbler abundance were mod-
erately correlated within each year (2008: r = 0.61, P = 0.001, n = 57; 
2009: r = 0.71, P = 0.001, n = 67). However, in both years, estimated 
λ deviated from spot-mapped abundance per survey station with 
the magnitude of the deviation being a negative function of spot-
mapped abundance (2008: β = −0.645 ± 0.06, t = −10.36, P < 0.001, 
R2 = 0.67; Fig. 5A; 2009: β = −0.702 ± 0.04, t = −19.45, P < 0.001, 
R2 = 0.85; Fig. 5B). At survey stations for which spot-mapped abun-
dance was ≤2 territories, the distribution of differences between λ 
and spot-mapped abundance was symmetrical about 1, indicating 
no bias in the N-mixture model estimator. However, at stations with 
higher territory abundances, λ increasingly underestimated spot-
mapped abundance, indicating a negative bias in the estimator. Per 
capita song rate increased with spot-mapped abundance of warblers 
per survey station, although the relationship was highly variable 
(β = 0.153 ± 0.06, t = 2.68, P = 0.013, R2 = 0.22, n = 28; Fig. 4B).

Simulation study: Nonrandom detection heterogeneity and  
N-mixture model bias.—Data simulated from a constant detection 
probability (r = 0.5) showed no bias (i.e., a symmetrical distribution 
of estimates about unity) in the N-mixture model estimator across 
the range of simulated mean abundances. However, there was 
substantial sampling variation, as indicated by the scatter of abun-
dance estimates based on N = 36 point count stations (Fig. 6A). 
The simulation of data with random heterogeneity in detection 

probability (r drawn from uniform distribution 0.1 to 0.9) revealed 
greater amounts of variation in the N-mixture model estimates, 
although again with no evidence of estimator bias across the simu-
lated range of mean abundances per station (Fig. 6B). By contrast, a 
negative bias in the N-mixture model estimator (underestimation 
of actual abundance, on average) was revealed in the simulations 
where count data were produced under a condition in which r was 
density dependent (Fig. 6C, D). More specifically, this condition 
tended to lead to more underestimation rather than overestima-
tion as density increased. All simulations that involved 36 stations 
had some sampling variation (error) that arose from a limited sam-
ple size compared with the simulations of 200 stations, which had 
substantially less scatter in the plots (not shown).

Discussion

A primary goal of our study was to examine whether nonrandom 
heterogeneity in individual detection probability might introduce 
bias in N-mixture models used to estimate abundances of warblers 

Fig. 3.  Distribution of the number of Golden-cheeked Warbler songs 
recorded by ARUs per 5-min survey interval summed across all survey 
stations at each of the six study sites. Histograms are ordered according 
to spot-mapped abundance per study site: lowest (left) to highest (right). 
The number of 5-min survey intervals recorded at each study site ranged 
from 2,874 to 3,356.

Fig. 4.  (A) Relationship between spot-mapped abundance of male 
Golden-cheeked Warblers (GCWAs) per study site in 2009 and per 
capita song rate (± SE). (B) Relationship between spot-mapped abun-
dance of male GCWAs per survey station and per capita song rate. Axis 
scale varies between plots.
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at our study sites. We assumed that spot-mapped abundances of war-
bler territories were the most valid estimates of actual abundance at 
the study-site and station levels; thus, we compared these versions 
of the truth to estimates of abundance derived from N-mixture 
models. Our analyses revealed possible systematic error in N-mix-
ture model estimates of abundance. At the site level, the N-mixture 
model overestimated abundance with the degree of overestimation 
inversely related to known population abundance. At the station 
level, the N-mixture model estimator generally underestimated 
abundance, particularly when spot-mapped abundance was >3. The 
latter result accords with the presumed way in which heterogene-
ity in detection probability should bias abundance estimators such 
as the N-mixture model and related mark–recapture estimators. 
Specifically, the bias should be expressed as negative (underestima-
tion of actual abundance), on average, and this pattern was revealed 
in the station-level estimates (Fig. 5) and data simulations (Fig. 
6C, D). Possible explanations for these observed patterns include 

violation of model assumptions, poor fit of the N-mixture model 
(missing covariate or misspecification of the underlying abundance 
distribution), violations of assumptions involved in comparing 
spot-mapped and N-mixture model estimates, and aspects of the 
behavior and biology of the warbler. 

We explored the relationship between abundance estimated 
by spot mapping and the potential detectability of warblers 
(i.e., singing rate) within and among study sites. In so doing, we 
indirectly tested a key assumption of Royle’s (2004) model—that 
detection of an individual is independent of the detection of other 
individuals at sample units. Our results showed that per cap-
ita singing rate at survey stations increased with estimated local 
abundance. The increased rate of singing could be explained 
by either the primary individual males being sampled by ARUs 
singing more in response to increased local abundance or the 
multiple males being sampled by ARUs individually singing less 
but collectively producing more songs per recording interval. Al-
though our study did not directly test whether singing by one male 
warbler causes another to begin singing, density-dependent per 
capita singing rate is consistent with that behavioral mechanism. 
Given the established role of song in territorial interactions in 
warblers (Bolsinger 2000), the hypothesis that males sing more in 
response to increased local abundance may be more parsimonious 
than the “more males but fewer songs” hypothesis. Direct evidence 
of increased singing rate would be the strongest indication of bio-
logically and statistically nonindependent detection—individuals 
directly and immediately affect each other’s availability to be 
detected.

In most passerines, detection at a survey station is primarily 
dependent on observers hearing singing males. Thus, per capita 
singing rate is intimately related to the probability of detection. 
Given that per capita song rate (a core component of individual 
detectability) was positively related to warbler abundance at both 
the survey-station and study-site levels, detection of individuals 
of this species was likely influenced by abundance. Under con-
ditions where abundance (density) influences per capita singing 
rate, a core assumption of N-mixture models—that the detection 
of individuals is independent of the detection of other individu-
als at sample units—may be violated. To date, density-dependent 
detectability has received little attention. Our results suggest that 
such a relationship may contribute to N-mixture models produc-
ing erroneous abundance estimates.

The density dependence of song rate essentially leads to 
unmodeled among-individual heterogeneity in detection prob-
ability. That is, an individual’s probability of being detected 
depends directly on the density of conspecifics in its immediate 
environment. In the classic mark–recapture design, this would 
be a scenario in which individuals with inherently high detec-
tion or capture probability are more likely to be captured, marked, 
and then recaptured than are unmarked individuals (Royle and 
Dorazio 2008). This is a clear violation of the “equal catchability” 
or “resighting” assumption of mark–recapture design because 
it overestimates recapture or detection probability and, hence, 
underestimates true population size. Although we did not have a 
mark–recapture design, any density-based bias in detection prob-
ability (e.g., among stations or singing rate of a songbird) could 
lead to underestimation of abundance. That is, stations with a high 
density of birds would have high detection probabilities (because 

Fig. 5.  Ratio of difference between estimated abundance (λ) of male 
Golden-cheeked Warblers, based on N-mixture models, and known 
abundance, based on spot-mapped territories, within a 100-m detection 
radius of each survey station for (A) 2008 and (B) 2009. Each dot repre-
sents a survey station (2008: n = 57; 2009: n = 67).
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birds sing more often at high density) with the consequence that 
N-mixture models underestimate actual abundance. Stations with 
a low density of birds might have lower detection probabilities if 
the birds sing very little or not at all. However, this should still 
generally lead to underestimation of actual abundance because 
the N-mixture model estimator is negatively biased when there 
is nonrandom heterogeneity in detection probability. In practice, 
given the restrictions in the number of point-count stations that 
can be sampled, abundance estimates from N-mixture models can 
be either overestimates or underestimates (Fig. 6). Much of this 
misestimation is due simply to sampling error that arises from a 
limited sample size (e.g., 36 stations instead of 200). Nonetheless, 
density-based heterogeneity in detection probability can affect 
the performance of N-mixture models even for large sample sizes, 
as illustrated by our simulations involving 200 survey stations 
(similar patterns to those in Fig. 6C and D were obtained). The 
negative bias in the estimator is not due to sampling error.

Understanding the relationship between density and dete- 
ctability (p or r) is facilitated by examining the components 
of detection. Marsh and Sinclair (1989) and Johnson (2008) 
divided detection into “perceptibility” (likelihood of detection 

given presence at a survey station) versus “availability” (like-
lihood of presence during a survey interval). Passerine birds 
are primarily enumerated by sound-based surveys (Mayfield 
1981, Ralph et  al. 1995); hence, the presence of an individual 
at a sample unit may not be sufficient for the species or indi-
vidual to be detected. Availability for detection is primarily 
dependent on song rate (i.e., the number of songs produced per 
time per sample unit or per individual bird), which translates 
into the number of opportunities for detection during a survey. 
Behaviors linked to local abundance are therefore likely to af-
fect the availability component of detection (Diehl 1981, Bart 
and Schoultz 1984, Verner 1985). Factors that affect availability 
have been investigated for select taxa (Johnson 2008), but our 
understanding of the mechanisms underlying variation in avail-
ability in relation to local abundance remains underdeveloped 
for many taxa. Moreover, because of differences among taxa 
and survey protocols (Stanislav et al. 2010, Reidy et al. 2011), the 
direction of, and mechanisms underlying, detection bias may 
differ between studies and study systems.

Many passerine species increase singing rate with increased 
local abundance (Penteriani et al. 2002, Sillett et al. 2004, Ríos 

Fig. 6.  Results of simulation studies. All plots show simulated mean abundance over 36 survey stations and the ratio of the model-estimated λ to the 
simulated mean abundance of Golden-cheeked Warblers. Each point represents one of the 1,000 iterations of the given simulation. (A) Count data are 
simulated on the basis of an individual detection probability (r) that is a constant set at 0.5. This simulation represents count data without any hetero-
geneity in r. (B) Count data are simulated on the basis of a random r taken from a uniform distribution bounded between 0.1 and 0.9. This simulation 
depicts count data with random heterogeneity in r; that is, r is not a function of the simulated abundance at a station. (C) Count data are simulated on 
the basis of r as a logistic (binary sampling) function of abundance at a station. This simulation represents count data derived under a condition where 
r is an increasing sigmoidal function of abundance at a station. (D) Count data are simulated where r is a linear function of abundance at a station, r = 
0.05 + (0.05 × Ni). This simulation represents a scenario where each additional bird at a station increases individual detection probability by an incre-
ment of 0.05, with a minimum value of 0.1 when there is only one bird at a station. Note that there is also sampling variation in all the simulations that 
is derived from having a limited sample size (36 stations).
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Chelén et al. 2005, Sexton et al. 2007, Laiolo and Tella 2008), and 
song rate has been shown to influence detection probabilities (p) 
positively in some species (Mayfield 1981, Wilson and Bart 1985, 
McShea and Rappole 1997, Alldredge et al. 2007b). We observed 
a positive effect of abundance on per capita song rate of warblers. 
However, factors other than local abundance have been found 
to influence passerine song rate—for example, temporal factors 
(Amrhein et al. 2004, Liu and Kroodsma 2007, Avey et al. 2008), 
habitat attributes (Hoi-Leitner et al. 1995, McShea and Rappole 
1997), and pairing status (McKillip and Islam 2009). These factors 
(not measured in the present study) may contribute to the varia-
tion in song rate of warblers evident in Figure 4.

Intra-territorial movements of male warblers may also con-
tribute to variation in the relationship between abundance and 
per capita song rates, because the probability that an individ-
ual warbler is detected at a randomly placed survey station may 
be a function of the proportion of its territory that overlaps the 
detection radius of the survey station. Thus, the assumption that 
all individuals are equally detectable from a survey station may 
be violated when heterogeneity exists in the extent that indi-
vidual territories overlap the detection radius of survey stations 
(Fig. 1). In territorial wood warblers like the Golden-cheeked 
Warbler, resource availability or defensibility may limit the size 
of breeding territories or home ranges (Smith and Shugart 1987, 
Anich et al. 2010). In this way, local abundance may influence the 
size of breeding territories (Morse 1976). In a separate analysis, 
we found that the size of territories maintained by male warblers 
in 2009 decreased as a function of known abundance per study 
site (β = −0.93 ± 0.023 ha, t = −4.12, P < 0.001). Hence, male war-
blers in our lower-density study sites, for example, may spend 
less time at any given point within their territory that is within 
the detection radius of a survey station. Thus, temporary emi-
gration could translate to decreased song rate per survey station 
and lower detection availability at lower densities, even without 
an effect of local abundance on individual song rate. Therefore, 
we suggest two non–mutually exclusive explanations for the 
observed relationship between spot-mapped abundance and per 
capita song rate: (1) an increase in the number of neighboring 
territories increases the stimulus for singing; and (2) an increase 
in territory density results in smaller territories or territories 
that overlap to a greater extent, increasing the potential for an 
observer to be within the detection radius of multiple individual 
males. We are currently examining the latter possibility using a 
multi-year data set from the same study sites.

Our primary conclusions of density-dependent bias in N-
mixture models and density-dependent detection availability of male 
warblers depend on accurately delineating territories and estimating 
territory abundance within and among study sites. High-resolution 
territory mapping of color-banded warblers beginning in 2009 
(27 ± 1 relocations used to delineate territories) has confirmed previ-
ous estimates of abundance based on spot mapping and verified the 
long-standing among-study-site differences in warbler abundance 
(COA 2011). Thus, spot mapping provides reliable estimates of 
“known” abundances. To make spot-mapped estimates (based on 
40.5-ha areas) comparable to the site-level N-mixture model esti-
mates (based on 113 ha), we scaled COA territory estimates to 113 ha. 
Extrapolation assumes that warbler territory densities throughout 
the 113-ha survey grids were equivalent to territory densities within 
the 40.5-ha plots. Because the COA spot-mapping plots were placed 

in areas known to be warbler habitat, it is unlikely that habitat quality 
outside spot-mapping plots exceeded habitat quality within the plots. 
If habitat was less suitable outside the 40.5-ha area than within it, the 
relationship shown in Figure 2 may be conservative and provide only 
a lower bound for the discrepancy between N-mixture model and 
spot-mapped estimates of abundance.

In summarizing our work, we note that it was the magnitude 
and negative density-dependent pattern of overestimation by the 
N-mixture model in relation to the spot-mapped estimator at the site 
level (Fig. 2) that motivated (1) inspection of the difference between 
these estimators at the survey-station level, (2) field study of per 
capita song rate and the relationship between abundance and per 
capita song rate at both the study-site and survey-station level, and 
(3) simulations of the possible effects of nonrandom heterogeneity 
in detection probability in producing bias in the N-mixture model 
estimator. A major goal of our work has been to examine how any 
relationships revealed by the above investigations explain, combine 
to explain, fail to explain, and/or point to the need for further study 
of mechanisms that underlie the original observations at the study-
site level.

In practice, N-mixture model estimates of abundance at 
the survey-station level sum to site-level estimates of λ. At the 
survey-station level, ceteris paribus, we expected λ to overestimate 
abundance when spot-mapped abundance was low and to be equiv-
alent to spot-mapped abundance estimates at higher spot-mapped 
abundances. Instead, we saw in our field studies that the N-mixture 
model estimator was unbiased at low spot-mapped abundances but 
became progressively negatively biased at higher spot-mapped abun-
dances. Although particular estimates of λ can still overestimate 
(or underestimate) abundance at low spot-mapped abundances, 
it appears unlikely that the pattern of misestimation at the survey 
station can explain the study-site-level pattern of misestimation. 
Temporary emigration, modeled successfully by Chandler et al. 
(2011) to bring N-mixture model estimates into accord with “known 
abundances,” perhaps combined with variation in availability that is 
related to abundance, represents one possible explanation.

The positive density-dependent relationship we observed 
between per capita song rate and local abundance justified explor-
ing, via simulations, the possible role of nonrandom heterogeneity 
in detection probabilities in leading to N-mixture model bias. 
Importantly, simulation results show that although heterogeneity 
in r alone can produce underestimation of abundance at the survey-
station level, it is positive density-dependent heterogeneity in r 
that produces the systematic negative bias in the N-mixture model 
estimator, with the error in individual estimates of abundance com-
pounded by sampling variation when only a limited number of 
stations are sampled. These simulation results suggest that the rela-
tionship between density-dependent detection and estimator bias 
merits closer inspection via more thorough modeling.

Model-based abundance estimators that correct for imperfect 
detection are powerful tools that can improve both the efficiency and 
accuracy of studies aimed at estimating population abundance. Our 
research draws attention to the role that density-dependent detection 
can play in biasing the N-mixture model estimator and the behavioral 
basis for density-dependent detection in a territorial songbird. We 
urge that careful attention be paid to the model assumptions, partic-
ularly in relation to the biology and behavior of territorial organisms. 
Assessing the strength and prevalence of density-dependent detec-
tion, and the conditions that favor it; analyzing more comprehensively 
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the effects of nonrandom heterogeneity in producing estimator bias; 
and accounting for nonrandom heterogeneity of detection in abun-
dance estimators are fruitful areas of further study. Recent studies 
that recommend adjusted methodologies as a means of lessening 
bias due to violation of other model assumptions, such as population 
closure in this (Peak 2011) and other passerine species (Chandler et al. 
2011), may serve as templates for future improvements in response to 
density-associated bias.
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Appendix.  R computer code for generating simulated data and applying 
the N-mixture model (Royle 2004); the code requires the “unmarked” R 
package (Fiske and Chandler 2011). The code simulates abundance and 
count data at S = 36 survey points for each site and for T = 4 repeat survey 
periods. Other values could be used for these parameters. The N-mixture 
model uses no covariates. 

Code below simulates the data.
sim.fn=function(S=36,T=4,lambda=lambda, mean.r=0.5, 
betaN=0.5){
require(unmarked)
y=array(dim=c(S,T))
lambda <- runif(1,0,5.0)
N=rpois(n=S,lambda=lambda)
r=plogis(log(mean.r/(1-mean.r))+betaN*(N-mean(N))) #see note 
at end of document
for(j in 1:T){y[,j]=rbinom(n=S,size=N,prob=r)}
av.r=round(mean(r),3)

Code below applies the N-mixture model.
umf=unmarkedFramePCount(y = y)
fm=pcount(~1 ~1,umf,K = 100+max(y))
lambda_hat=round(exp(fm@estimates@estimates$state@
estimates),3)
p_hat=round(plogis( fm@estimates@estimates$det@
estimates),3)

Code below summarizes the results and prints them to the R con-
sole window.
cat(i, lambda, lambda_hat, p_hat, paste(N), “\n”) return(i
nvisible(list(S=S,T=T,lambda=lambda,mean.r=mean.r,av.
r=av.r,betaN=betaN,
N=N,y=y,lambda_hat=lambda_hat,p_hat=p_hat)))}

Code below runs the simulation for 1,000 iterations.
simreps=1000
estimates.beta.pos.7=array(NA,dim=c(simreps,2))
colnames(estimates.beta.pos.7)=c(“lambda_hat”,”p_hat”)
avge.p.beta.pos.7=array(NA,dim=simreps)
for(i in 1:simreps){#cat(“\n\n***Sim Number”,i,)
tmp1=sim.fn(mean.r=0.4,betaN=1)
estimates.beta.pos.7[i,]=c(tmp1$lambda_hat,tmp1$p_hat)
avge.p.beta.pos.7[i]=tmp1$av.r}

NOTE: Line of code given in the above program is for simulating 
individual detection probability as a logit-logistic function of 
abundance. For simulating other detection probabilities, the code 
should be replaced with one of the following:
p=0.5 #simulates detection probability as a constant
p <- runif(n=1, min=0.1, max=0.9) #simulates detection prob-
ability as a random number drawn from a uniform distribution 
bounded between 0.1 and 0.9
p=(0.05 * N)+ 0.05 #simulates an incremental increase in detec-
tion probability with increasing abundance at a station


