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ABSTRACT

Only a small fraction of extragalactic X-ray sources have reliable classifications.

Although a large amount of X-ray data exists in the archives, the X-ray data alone

are not enough to reveal the nature of the X-ray sources, and multi-wavelength

data is the only way to make progress toward this goal. Therefore, creating an

automated Machine Learning (ML) tool for classification of extragalactic X-ray

sources with multi-wavelength data will enable us to understand X-ray source

populations in a plethora of nearby galaxies. Modern ML methods can be used to

quickly analyze the vast amount of multi-wavelength data for these unclassified

sources providing both the classifications and their confidences. To this end, we

have created a ML pipeline to classify extragalactic X-ray sources, which can utilize

the large amount of existing archive data taken with Hubble Space Telescope. The

use of the Hubble Space Telescope is essential when dealing with extragalacic

sources, and we have adopted our pipeline accordingly. The tool that we have

developed will open new avenues to explore extragalactic astronomy.

xi



I. Introduction

I.1 History of X-ray Missions

Our knowledge about the Universe originates in studies of astronomical sources

across the electromagnetic (EM) spectrum, from radio waves (∼ 10−11 eV) to cos-

mic rays (∼ 1012 eV). X-ray astronomy focuses on phenomena that emit radiation

at X-ray energies (typically ∼0.1–10 keV). However, ninety percent of the photons

in a beam of 3 keV X-rays are absorbed by traveling through just 10 cm of air

at sea level (blocked by the atmosphere molecules). Therefore, the earth’s atmo-

sphere is opaque to the high energy radiation such as X-ray and γ-ray, and such

photons can be detected only from space (above the atmosphere) thanks to the

development of advanced space technologies.

Due to the very high energies of the X-ray photons, X-ray telescopes are unique

designed with barrel-shaped mirrors, required to focus the photons onto the de-

tectors (Figure I.1). The X-ray “mirrors” have to be oriented at a very shallow

angle such that the mirror surfaces are nearly parallel to the incoming light. The

incoming photons are eventually focused onto the detectors where their energy is

recorded.

The first discovery of the X-ray sky occurred in 1949 when X-rays from the Sun

were discovered by rocket-borne experiments. The journey of X-ray astronomy

began in the early 1970’s by the advent of satellite observatories. Some of the

major satellite X-ray missions are briefly described below to illustrated the vital

developments achieved during the past five decades.

• In the 1970’s Uhuru was the first earth-orbiting mission dedicated entirely

to X-ray astronomy.

• In 1990, Roentgen Satellite (ROSAT), a joint project of Germany, the United

States, and Great Britain, was launched. It operated over eight years and
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Figure I.1: Chandra’s X-ray mirror assembly focuses X-rays onto a detector to produce
an image. (Credit: NASA/CXC/D. Berry)

finally shut down in 1999. It was instrumental in the discovery of X-ray

emissions from comets and conducted an all-sky survey in the X-ray region

of the spectrum.

• In 1995, NASA orbited the Rossi X-ray Timing Explorer (RXTE) to study

the variations in the emission of such X-ray sources as black hole (BH)

candidates, active galactic nuclei (AGN), white dwarf stars, neutron stars

(NS), and other high-energy sources.

• In 1999 the Chandra X-ray Observatory (Chandra) was deployed from a

shuttle and boosted into a high earth orbit (Figure I.2). Chandra has changed

the way we study population of X-ray point sources thanks to its unsurpassed

(to date) resolving power. The X-ray Multimirror Mission (XMM-Newton)

also launched in 1999 by the European Space Astronomy satellite (ESA), car-

ries an optical-ultraviolet telescope in addition to the three parallel mounted

X-ray telescopes.

• NuSTAR (launched in 2012, Figure I.3) is dedicated to observing hard X-

rays. NuSTAR is seeking out BHs and other collapsed stars in our galaxy,

mapping material in young supernova remnants, and studying relativistic

jets in active galactic nuclei.
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Figure I.2: Chandra X-ray Observa-
tory(Credit: NASA).

Figure I.3: NuSTAR X-ray Observatory
(Credit:NASA).

Lifetime Energy Range
(KeV)

Scientific Highlights

Uhuru 1970-1973 2-20 First Comprehensive and Uni-
form Sky Survey

ROSAT 1990-1999 0.1-2.5 X-ray All Sky Survey Cata-
logue

RXTE 1995-2012 2-250 X-ray Observed by Blackholes
and Neutron Stars

Chandra 1999-Present 0.2-10 Observed the Region Around
Supermassive Blackholes

NuSTAR 2012-Present 3-78 Deep Observation of The Ex-
tragalactic Sky

Table I.1: The X-ray satellites, their missions and the scientific highlights.

The X-ray satellites’ discoveries and their scientific highlights are summarized

in Table I.1.

I.2 Common Types of X-ray Detectors

X-ray detectors usually detect each individual photon and measure photons’ prop-

erties such as energy, time of arrival, position and (sometimes) polarization. The

first X-ray electronic detectors for detecting X-rays were gaseous detectors. Pro-

portional counters are a type of gaseous detectors with a signal output that is
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proportional to the photon energy of the incidence radiation. Imaging gas pro-

portional counters were employed on the X-ray satellites Einstein and ROSAT.

They had a moderate energy resolution with an acceptable background rejection

efficiency.

Silicon-based (or Solid State) detectors were the next generation of X-ray detec-

tors. Large Charge Coupled Device detectors (CCDs) are currently used whenever

a high spatial and spectral resolution required. In fact, CCDs are an array of linked

coupled capacitors. In these detectors, photoelectric interaction of arrived X-rays

with silicon atoms generate electron-hole pairs (only 3.7 eV is needed to create an

electron-hole pair), then an applied electric field collects and stores electrons as

pixels which are coupled and can transfer their stored charge to the neighboring

pixels. Eventually, stored charged transfer to an output amplifier. Semiconductor

detectors have some intrinsic advantages compared to gaseous detectors. Higher

density of detector material (ρSilicon/ρGas ≈ 100) yields higher quantum efficiency

and lower required energy for generating an electron hole pair yields better en-

ergy resolution. However, gaseous detectors have an excellent background noise

rejection capability.

I.3 Astrophysical Mechanism for Producing X-rays

X-rays are produced when an object is heated to very high energies (about a mil-

lion degrees). By studying these X-rays, scientist can obtain valuable information

and answer fundamental questions about the origin, evolution and density of the

universe.

The principle method of measurement in X-ray astronomy is to detect individual

photons in order to determine the complete set of four properties: direction on the

sky, energy of the photon, the arrival time of the photon, and its polarization

angle. These features allow us to expand our knowledge of the universe.

X-rays can be generated through three main physical processes which are:

• Bremsstrahlung: Thermal radiation produced by charged particles as they
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are accelerated through Coulomb interaction with other charged particles

(Figure I.4). This type of radiation can be seen in a very hot ionized plasma

such as X-ray binaries with a temperature of about 107K and the hot inter-

galactic medium in cluster of galaxies at very high temperature (108K).

Figure I.4: Accelerated Charges and Bremsstrahlung Process. (Credit: Chandra X-ray
Observatory)

• Synchrotron radiation from relativistic electrons: Synchrotron radia-

tion is a non-thermal emission from relativistic particles in the presence of

magnetic field (or magnetic bremsstrahlung). The production of Synchrotron

radiation could be a strong indicator of the presence of violent particle accel-

eration in a huge magnetic field. This phenomenon can be found within the

Galaxy, in the supernova remnants, external active galactic nuclei (AGN),

pulsars, other radio sources, and γ-ray bursts with a power-low spectrum

(I(E) = AE−α). It should be noted that the electrons which produce Syn-

chrotron X-ray must have energies about 104GeV, so the presence of Syn-

chrotron X-ray confirms the existence of the super energetic electrons.

• Inverse Compton Scattering: Compton scattering of longer wavelength

electromagnetic radiation by high-energy electrons that results in higher-
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energy photons, commonly called Inverse Compton scattering is another pri-

mary X-ray production mechanism (Gorenstein, 2010). When the electron

has significant kinetic energy as compared to the energy of the photon, the

electron’s energy can be transferred to the photon, resulting in the scattered

photon having a higher frequency.

• Blackbody radiation from star-like objects: The thermal EM radiation

comes from an object in thermal equilibrium. Such emission has specific spec-

trum and intensity that depends only on the object’s temperature following

Planck’s law.

Stars radiate as blackbodies in a wide variety of temperatures, ranging from

2500K, such as red dwarfs, to 40,000 K like O type stars. For instance, the

surface of a NS can have a temperature of few million degrees, with the

peak of the blackbody radiation observed in the X-ray range, which can be

determined by:

λmaxT = 2.898 [mm K] (I.1)

where T is the temperature in K and λmax is the peak wavelength in mm.

Each of above processes has its own spectral signature that determines the

characteristics of the X-ray sources (Figure I.5; Seward and Charles 2010).

I.4 Astrophysical Sources of X-ray Radiation

A brief list of objects that emit X-rays is provided below.

• Active Galactic Nuclei (AGN): AGNs are among the most energetic

sources in the universe. The galactic center, a small region compared to the

entire galaxy, emits tremendous amount of energy in the form of radio, opti-

cal, X-ray, and gamma radiation as well as high-speed particle jets. There are
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Figure I.5: Spectral forms expected from different astrophysical processes. (Adapted from
Seward and Charles 2010)

different kind of active galaxies, such as Quasars, Seyfert galaxies, and Radio

galaxies, but for simplicity we will refer to all of them as AGN. Although the

AGN emission is spread widely across the electromagnetic spectrum, often

peaking in the UV, there is significant luminosity in the X-ray bands. The

X-ray radiation from AGN is due to accretion of matter by a supermassive

BH at the center of the host galaxies. Therefore, the characteristics of an

AGN depend on different factors such as the mass of the central BH, the

rate of gas accretion onto the BH, the amount of obscuration of the nucleus

by dust, and the AGN geometric orientation.

• Pulsars and NSs: NSs are rapidly rotating (as short as 1.6milliseconds)

compact objects with a radius of ∼ 10 km. They have incredibly large

(∼ 1012Gauss) magnetic fields with significant portion of the NS radiation

emitted in a beam along the magnetic axis. If the beam sweeps across the

line-of-sight of the observer, a pulsed emission is seen and such NS are also

referred to as pulsars. A continuous X-ray emission can also be detected

because of thermal and/or magnetospheric emission in NSs. The first X-ray

pulsar to be discovered was Centaurus X-3, in 1971 with the Uhuru X-ray

satellite.
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• X-ray Binaries: X-ray binaries are among the most luminous galactic X-

ray sources. They consist of normal star or a white dwarf (“donor” star) and

a collapsed one, such as a NS or a BH. X-rays are released as material from

the donor is accreted onto the collapsed companion (also called compact

object). As the material spirals inward, it heats up (due to friction) to the

very high temperatures up to 108K. As a result, the gravitational potential

energy of infalling matter is released in the form of X-ray radiation. X-ray

binaries are classified into two major subclasses:

– High Mass X-ray Binaries (HMXB): In this group of X-ray bina-

ries, the mass-losing star has a mass > 10M� and they are optically

luminous (LX−ray/LOptical < 1). The compact object in HMXBs most of

the time are NS or BH. Due to the strong stellar wind of the donor star,

the compact object can accumulate large amount of material through-

out its orbit resulting in X-ray emission. The donor star, due to its

large mass, has short life-span (< 100Myr), and, therefore, HMXBs

are associated with young stellar populations.

– Low Mass X-ray Binaries (LMXB): In this group of X-ray binaries,

the mass-losing star has a mass of about 1M� and they do not have

very strong stellar winds. Therefore, mass transfer can occur only after

the donor star enter the last stages of its evolution and expands into a

red giant. This takes long time (in the order of giga years) and LMXBs

are associated with the older stellar population.

Both HMXB and LMXB both can exhibit variability in X-rays. The main

phenomena that cause changes in the X-ray flux are (1) Eclipse: it happens

when the compact object is hidden behind the normal star once in every or-

bital period (the binary orbit is seen edge on), and X-rays from the compact

star are obscured; (2) X-ray dips: dips can be explained by absorption of the

X-ray source by material passing in front of the source (White et al. 1995),

or accretion disk instabilities, which cause the ejection of the inner part of
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the disk (Greiner et al. 1996); and/or (3) pulsation: if the compact object in

an X-ray binary is a pulsar, where the X-ray emitting hot spots move in and

out of the line-of-sight as the NS spins, giving rise to regular X-ray pulses.

• Cataclysmic Variables (CVs): CVs are a type of binary system which

consist of a normal star as a companion, and a White Dwarf (WD) as the

compact object. Such systems have typical orbital periods between 75 min

and 8 h (Ritter and Kolb, 2003). Gravitational potential energy is converted

into X-rays during the accretion process similar to other XRBs, however, the

thermal emission from associated with the compact object peaks at lower

energies (UV) compared to other types of XRBs.

I.5 Measurable Properties of Astrophysical Sources

Observed flux is a measurement of the brightness of the source, usually given in

units of photons cm−2 s−1, or erg cm−2 s−1. What is measured by the detector is the

count rate, C, of the source, which is a product of the flux, F, detector efficiency,

η, and detector area, A, integrated over the energy range of the detector:

C = A

∫
F (E)η(E)dE (I.2)

Luminosity, L, the intrinsic power of a source, is the total amount of energy

emitted by a star each second and measured in units of erg s−1. It relates to the

flux through the square of the distance to the source, d:

F =
L

4πd2
(I.3)

For example, the Sun’s persistent X-ray luminosity, LX, can reach 5×1027 erg s−1.

In our Milky Way Galaxy, the brightest individual X-ray emitters, with persistent

9



LX of up to ∼ 1039 erg s−1 (100 billion times greater than that of the Sun), are

the XRBs, while in the range of 0.2–10KeV, the most luminous X-ray source

known is the quasar (a type of galaxy) PKS 2126-158 with an X-ray luminosity of

5× 1047 erg s−1.

I.6 Apparent Magnitude

Historically, source brightness has been measured by astronomers in magnitudes.

The apparent magnitude (m) of an astronomical object is logarithmic and a dif-

ference of 1 in magnitude corresponds to a change in brightness by a factor of

2.512. The dimmer an object appears, the higher the numerical value given to its

apparent magnitude, which is given by:

mx = −2.5 log
Fx
Fx,0

(I.4)

where Fx is the observed flux using spectral filter x, and Fx,0 is the reference flux

(zero-point) for that photometric filter.

The flux density (flux per wavelength) of any object varies across its spectrum.

To fully understand the nature of a source, we need to gather its multi-wavelength

(MW) information (sample the flux density at a large number of wavelengths). To

achieve this, we often need to observe an object with several different telescopes

and filters (X-ray, UV, optical, IR). The peak emission is related to the effective

temperature of a thermal source (Wien’s displacement law). For most of stars the

wavelength of the peak flux is in or near the visible region of the spectrum. It is

not true for other some objects such as AGNs, which emit significant energy over

a wide range of wavelengths.
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I.7 Photometric Filters

The process of measuring the brightness (or flux) of an object is called photometry.

For example to measure color, the star’s light is collected by a telescope through

various color filters. Then, the filtered light will be collected by a CCD to get the

star’s image with each of the filters in the set. By utilizing photometry in different

filters, which have well-defined pass-bands, we can gain information about the

objects’ temperature, distance, and their ages.

A number of astronomical photometric/filter systems have been introduced in

the past with a variety of detectors and passbands. Here are some of the more

commonly used filter systems:

• UBV : One of the first filter systems, and still commonly used, is the UBV,

which was introduced in the early 1950s by Harold L. Johnson and William

Wilson Morgan. The UBV system uses three pass-bands: one in the near-

ultraviolet, one in the blue, and the other in the dominant visual range

(Figure I.6). By measuring the apparent magnitudes in these filters, one

can determine the surface temperature of a star. It is well known that a

clear correlation exists between the star’s temperature and the magnitude

difference, or flux ratio, in the B and V filters (Figure I.7). If a star is very

hot, its radiation peak is in the short, ultraviolet wavelength. In contrast,

stars with lower temperature peak at longer wavelength.

• The Sloan Digital Sky Survey System: Each filter in the Sloan Dig-

ital Sky Survey (SDSS) system is designed to pass light around a specific

wavelength, somewhat differently than the UBV system. Table I.2 shows

the mid-point wavelengths at which each of the five SDSS filters. Sampling

wider EM range allows astronomers to compile a crude spectral profile of

the astronomical sources.
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Figure I.6: U, B, and V filters: the wave-
length to which the standard
filters are transparent. (Credit:
Freedman et al. 2011)

Figure I.7: This flux (or color) ratio is
small for hot, blue stars but
large for cool, red stars.(Credit:
Freedman et al. 2011)

SDSS′s Wavelength (Angstrom)

ultraviolet (u) 3542

green (g) 4770

red (r) 6231

near infrared (i) 7625

infrared (z) 9134

Table I.2: The Sloan Digital Sky "ugriz" System.
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II. Machine Learning Methods

In the current era of big data, modern science requires an efficient way to enhance

the computation accuracy, speed, and efficiency in a broad range of areas such

as Quantum Computation, signal and image processing, Machine Vision, DNA

sequencing, and, recently, in astrophysics. The field of machine learning (ML) is

multi-disciplinary, closely related to statistics, numerical methods and data anal-

ysis. ML is one of the most broad and applicable fields of Artificial Intelligence

(AI), in which computers learn to think and make decisions like humans. In order

to achieve this goal, the computer uses data (provided by the user) to learn and

improve its decision making algorithm. To create a robust ML method, one must

have large enough data for the computer to learn from. This will also ensure higher

result accuracy.

II.1 Types of Machine Learning Methods

There are four main types of ML models, which are used for the classification

problems.

• Supervised Learning: In supervised ML, machines use labeled (already

classified) training set of data, based on which a classification algorithm is

generated. The training data set consists of object with already assigned la-

bel (or class) and a number of parameters (features) associated with a given

object. The supervised approach is comparable to the human learning pro-

cess in which students learn new things under the supervision of instructor

and through good examples. As a result, students derive general rules from

the given examples. The most popular supervised ML algorithms are: Ran-

dom Forest (used in this work), Decision Tree, K-Nearest Neighbors (KNN),

Linear Regression, Logistic Regression, Support Vector Machines, and Neu-

ral Networks.
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– Classification Task: Classification is a powerful method where we

classify data into a given number of classes. The main objective of a

classification problem is to distinguish the class to which a new data will

belong and it is used for the prediction of discrete responses. Classes

are often called as targets or labels.

– Regression Task: Regression models a target prediction value based

on independent variables and it is basically useful for discovering the

connection between variables and forecasting. A regression task can be

applied if the output variable is a real or continuous value.

• Unsupervised Learning: In unsupervised learning, the the data set is not

labeled (i.e., objects are not classified), and machines are tasked to find

classes without prior knowledge of the number of existing classes. The goal

in such unsupervised learning problems is to find groups of similar instances

within the data, where it is called clustering, or to realize how the data is

distributed in the space, known as density estimation.

• Semi-supervised Learning: In many machine learning problems the do-

mains data is cheap (or easily accessible), but labelled data is somewhat

expensive. In these cases, semi-supervised machine learning could be a wise

approach that is to apply a small labeled training set to build a cost ef-

fective and initial model, which is then enriched using the unlabeled data

to increase the size of training dataset. Another example of semi-supervised

machine learning is image recognition in Astronomy so that algorithm auto-

matically recognizes that the same object A shows up in a group of photos

(say 1, 3, 5) while another object B shows up in another group of photos (say

2, 4, 6). This is the unsupervised part of the algorithm (e.g., Clustering).

The next step is for the user to provide information about the nature of the

objects.

• Reinforcement Learning: This method allows machines the most freedom
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to employ trial and error to discover the actions that yield the greatest re-

wards for the system. Errors help our system to learn better because they

have some negative consequences such as loss of time, and cost. The al-

gorithm reports the answer when it is right, but it does not provide any

feedback of finding the right and more efficient answer.

In this thesis, we will focus on Random Forest decision tree algorithm, which is

a Supervised Learning method.

II.2 The Machine Learning Process

All ML algorithms (see previous Section) respond to the same logic tasks. The idea

behind an ML algorithm is using a mathematical formulation (e.g., function) that

algorithms do not know at the beginning but will deduce them via some input data

over time as training examples. Each learning algorithm follows the same specific

steps toward achieving the right prediction. The most common steps include: Data

Collection, Data Preparation and Preprocessing, Algorithm selection and Model

Training, Model Evaluation, and Performance improvement.

The most important part of any efficient ML algorithm is data collection. In

Astrophysics, we use catalogues of literature verified sources from an archival

database (discussed in Chapter 3). Both the quality and the quantity affect the

model performance and accuracy. It is very difficult to determine the amount of

data that might be relevant. One also has to make sure that the data set is clean

and there are as few as possible missing values. Therefore, finding a high-quality

data with an appropriate size will significantly increase the model efficiency and

model prediction.

Preprocessing of the data refers to any required task that should be done on

the data set to make it clean, unbiased, weighted, and normalized. Moreover, the

data should be balanced so that there is about the same amount of data in each

class during the training and testing process. The last step involves splitting data

into the following three different sets:
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• Training set: Training set are a set of data that a system uses train from

to create the model.

• Validation set: A validation dataset is a dataset of examples used to tune

the model parameters of the classifier. Generally, the validation data set

is used to compare the performance of the potential algorithms which have

been suggested by training set and then decide which model has been trained

more properly.

• Test set: Testing set is used to evaluate the performance of our model. Over-

all, test set is set of examples which are used to evaluate the performance of

a fully-trained classifier in order to estimate the error rate after we have cho-

sen the final model. The main difference between the test set and validation

set is that the validation is used for the model evaluation during tuning the

parameters and data preparation while the test provides a standard for the

model evaluation and it can only used once a model is completely trained

by the training and validation sets.

There are many ML models that one can may choose. A good model should

be simple, accurate, and applicable to the big data sets. Model Evaluation is

an essential part of the ML process because every system needs to be evaluated

for the accuracy and precision on data that it was not trained on. Selection of

appropriate accuracy score is a convenient and reliable technique that we can use

to judge our model precision. Different classes of evaluation metrics are available,

such as classification accuracy, F-1 Score, mean squared errors, mean Absolute

Error, and Confusion Matrix (CM). In this thesis we applied the CM to find out

whether the performance of our model is good.

The CM demonstrate how comprehensive is the performance of the model. It

consists of a square matrix containing both horizontal (Actual Values) and vertical

(Predicted Values) directions with a list of all classes. To calculate the accuracy

of CM one can use the following equation:
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Accuracy =
TP + FN

Total Number of Samples
(II.1)

where TP and FN are true positives and false negatives, respectively.

II.3 Features

A feature defines a relevant object in our dataset that sits between raw data and

models in the machine learning pipeline (Zheng and Casari, 2018). It is a specific

property or characteristic of an object or phenomenon which has been observed.

Choosing the proper features of a dataset may significantly affect the classification

accuracy of the ML pipeline.

II.4 Cross Validation

A validation set can help us to improve and fine-tune the ML procedure. The cross

validation is a great way to evaluate the model. Cross validation based on k-fold

relies on random splitting, but it divides a given data into k-folds. Each time, one

of the k subsets is used as the test set and the other k-1 subsets are put together to

form a training set and eventually the average error across all k trials is computed

(Figure II.1). One important benefit of k-fold cross validation is that it matters

less how the data gets divided. The drawback of this technique is that the training

algorithm must be rerun from scratch k times, which means the execution time

get k times longer. A solution for this problem could be randomly splitting the

data into a test and training set k different times.

II.5 Overfitting and Underfitting in Machine Leaning

Overfitting happens when an ML model is closely fit to a limited dataset. Over-

fitting negatively impacts the performance of the model on new data and any

noise in our data will be interpreted as a significant deviation from the model.
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Figure II.1: K-fold cross-validation (Credit: Researchgate)

This makes the model more complicated so that it cannot easily be generalized.

Because of the algorithm flexibility of nonlinear and nonparametric models (such

as a decision tree), they are subjected to the overfitting more than other type of

models.

An underfit ML algorithm is not an appropriate model and displays a very low

qualified performance of the model. The solution for the underfitting problem is to

apply alternate machine learning algorithms. In contrast to overfitting problem, an

underfitted ML model is less flexible and cannot account for the data. Figure II.2

shows examples of overfitting and undefitting. An optimum hypothesis in the

Figure II.2 is the trade off between variance and bias.

II.6 Feature Importance

Future importance helps summarize how important each feature is for model. It

represents each feature by a number between 0 and 1 (feature importance always

sums to one), where 1 means “perfectly predicts the target” and 0 means “not used

at all”.

It should be considered that if a feature has a low feature importance value, this

cannot be concluded that it is useless and uninformative. It could mean that the
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Figure II.2: Examples of overfitting and underfitting in ML (Credit: Machinelearn-
ingmedium.com)

feature was not picked by the model, likely because another feature provides the

same information. In fact, the feature importance tell us how much a particular

feature is important, but not whether that feature is indicative of a sample being

benign or malignant (Muller and Guido, 2016).

II.7 Decision Tree

A decision tree is a supervised predictive model. It makes predictions based on a

series of questions related to the features. The outcome of each particular ques-

tion defines which branch of the tree to follow. It can learn to forecast outputs by

answering questions based on the values of the received inputs. Root node, leaf

node, internal node, and branches form the basis of tree-based algorithms that

facilitate the rules’ recognition to classify or predict events and variables (discrete

or continuous). Moreover, unlike linear or logistic regression, decision trees opti-

mized for both regression and classification problems. An example of decision tree

is shown in Figure II.3.

II.8 Ensemble Learning and Random Forest

Ensemble learning improves ML results by combining several models (algorithms),

which yield better predictive performances that could be obtained by each ML al-

gorithm alone. Ensemble learning method decreases bias and variances. Random
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Figure II.3: The decision tree is typically read from top (root) to bottom (leaves). A
question is asked at each node (split point) and the response to that question
determines which branch is followed next. The prediction is given by the label
of a leaf. (Credit: DisplayR)

Forest (RF) generate a family of techniques that consist in building an ensemble

(or forest) of decision trees grown from a randomized variant of the tree induction

algorithm. They are an example of an ensemble learner built on decision trees,

meaning it relies on aggregating the results of an ensemble of simpler estimators

and eventually select the prediction result with the most votes as the final predic-

tion (Figure II.4). In this thesis we will use RF classifier for our analysis (see next

chapter for specific details).

A main drawback of decision trees is overfitting the training data. Therefore,

the RF classifier is a great way to alleviate overfitting. It makes a collection of

decision trees, where each tree is a bit different from the others, and each tree

will likely overfit one part of the data. But by creating many trees the amount

of overfitting will decreases (because of averaging all results). To accomplish this,

each tree should do an acceptable task of predicting the target and should also be

different from the other trees.

Similarly to the decision tree, the RF provides feature importance, which are
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Figure II.4: Random Forest Procedure (Credit: Medium.com).

computed by adding the feature importance over the trees in the forest. Therefore,

one could say that the feature importance created by the RF classifier are more

reliable than the ones provided by each tree alone.

II.8.1 ML Python Libraries

The ML pipeline utilized the existing Python library Scikit-learn, which is a very

popular tool, and probably the most prominent Python library for ML. It contains

a number of state-of-the-art ML algorithms, as well as comprehensive documen-

tation about the algorithms. Scikit-learn works very well with almost all scientific

Python tools. The RF Decision Tree that we are using is a part of Supervised

Machine Learning algorithms, which is accessible via Scikit-learn library.

To manage the project, we utilized several other Python libraries which contain

mathematical and statistical tools for the implementation of our machine learning

model. Each of these essential libraries play an important role in each portion of

our analysis. Some of these libraries are NumPy, SciPy, Pandas, PySynphot, and

Matplotlib.

21



III. Classification Results

Currently, only a small fraction of extragalactic X-ray sources have reliable classi-

fications. The X-ray data alone are not enough to reveal the nature of the X-ray

source. Therefore, creating an automated ML tool for classification of extragalactic

X-ray sources with MW data is essential to understand X-ray source populations

in a plethora of nearby galaxies. Here we describe the specifics of the ML model

we used to accomplish this goal.

It is important to note that we can only use the HST to study the optical/NIR

counterparts of extragalactic X-ray sources (these sources are too far from us

and ground based observatories lack the resolving power and sensitivity to detect

them). At the same time, there are not enough verified X-ray sources observed

with HST to build a training dataset from the HST catalog. Therefore, we used

training dataset created based on galactic X-ray sources detected with ground

based instruments and transformed the dataset to HST parameter space.

This chapter explores our ML results, which have been obtained with the RF

classifier. As we have discovered so far, there are different approaches for analyzing

a big set of data, however it is crucial to know the exact nature of our data

before diving into data exploration and manipulation. Our goal is to create a ML

classifier capable of identifying X-ray sources using astrophysical measurements

from different observatories probing large range in the EM spectrum.

We split our data-set into a training set and a test set, where training set assists

us to build our model, and the test set applies for the evaluation process in order

to see how well our model will generalize to a new-unseen data. Finally, we checked

the accuracy of our model using Confusion Matrix and Score method to see how

good our model (RF decision tree classification algorithm) fit our test set.

22



AGN HMXB LMXB CV STAR

Number 3856 13 20 105 536

Table III.1: Training dataset of 5 different object classes for the RF classification.

III.1 Training Data Set

The pipeline makes use of the RF decision tree classifier and relies on a large

training dataset of literature verified sources. The training data set we used has

∼ 6, 000 sources with the following object classes: (1) stars (Samus et al., 2009), (2)

AGN (Véron-Cetty and Véron, 2010), (3) LMXBs (Liu et al., 2007), (4) HMXBs

(Liu et al., 2006), and (5) CVs (Downes et al., 2001). The source breakdown is

illustrated in Table III.1. All sources in the dataset (with exception of AGN) are

Galactic sources.

Since we are interested in X-ray sources, we require all X-ray sources in the

training dataset to be detected in X-ray with XMM-Newton. Also, since we have

to make a transition to HST filter system, we also require all sources to have a

Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) coun-

terpart. The resulting training dataset uses the following MW parameters: X-ray

fluxes in two bands (0.5−2 and 2−7 keV) and two hardness ratios from the XMM-

Newton Observatory, fluxes from the Pan-STARRS catalog in five bands(g, r, i,

z, and y), NIR fluxes from 2MASS in three bands (J , H, and K), and IR fluxes

in three bands (W1, W2, and W3). We then constructed various combinations of

flux rations.

We set 25% of the data aside as a validation set, to be used for checking the

accuracy of the algorithm.

III.2 Oversampling

Due to observational biases, we have more AGN in the catalog then any of the other

classes, with LMXBs and HMXBs being the least represented. This makes the
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training data unbalanced, which can reduce the performance of our classification

ML algorithm. To avoid this, we applied the SMOTE (Synthetic Minority Over-

sampling Technique) method (part of Scikit-learn) to introduce synthetic sources

with similar properties to the class that is being underrepresented. This fixes

the weight issue with the RF algorithm. By applying oversampling methods all

categories have equal amount of records simply by oversampling instances of the

minority class. Fitting SMOTE is a great way to fix imbalanced our data sets and

makes the same amount of sources as the number of AGN sources are (here 4478

sources).

III.3 Missing Data

There are many reasons that could result in missing values in the dataset: the

source being to faint to be detected, limited observing coverage of the observatory,

low signal-to-noise, etc. Missing values are commonly handled via imputation,

where the blank spaces or NAN values can be filled in with inferred values, such

as mean or median. While appropriate for some domains, this approach is not well

suited to astronomical data sets, because a missing value may well be physically

meaningful. Therefore, missing values cannot be eliminated easily from our data

set because they may contain important information that we would get back to

them for further analysis.

III.4 Normalization and Standardization

The distance to all sources in the training dataset it not always known, which

introduces bias and can confuse the algorithm because we cannot determine the

intrinsic power of of the source (just measure its flux). For example, if two identical

light bulbs are placed at difference distances from the observer, the closer light

bulb will appear brighter then the other, even though they are exactly the same

(e.g., same class). To account for this, we normalize all fluxes (for a given object)

by the total X-ray flux.
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We then normalize each feature (e.g., parameter) so that it will have the prop-

erties of a standard normal distribution with µ = 0 and σ = 1, where µ and

σ are the mean (average) and the standard deviation respectively. The Z-score

normalization can be written as:

z =
x− µ

σ
(III.1)

III.5 Feature Selection

Feature selection is a proper method for removing irrelevant and non-related in-

formation that must be applied before the implementation of algorithm and can

be expected to result an improvement in learning accuracy and comprehensive-

ness. While there are numerous attributes that can play a role in the analysis of

astronomical data, only a fraction of them are helpful in the model making and

statistical predictions.

To determine which features should be eliminated, all features are ranked ac-

cording to their predictive power and those with very low importance are re-

moved. The scores can be measured by t-statistics and F-statistics, which are two

well-known examples of features selection method. Here we apply F-statistics in

evaluating the model accuracy.

By making different flux ratios, we can create a large number of new features.

While selected few have been shown historically to provide useful information

(in terms of separating classes of sources), many of these features are unlikely to

provide new, useful insight. To determine which features contribute the most, we

have analyzed the importance of different features. We can improve the model by

focusing on the most important features and removing those that are insignificant

and have not been made a serious impact on our prediction. Moreover, shorter

training time will be obtained, which can be very important when we are dealing

with high dimensional datasets. We implemented the feature importance method
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using Scikit learn tools, and we have optimized the classification pipeline by ana-

lyzing the feature importance to select the most optimal parameters. An example

of how individual features are evaluated is shown in Figure III.1.

The features include normalized (to the total X-ray) fluxes and flux ratios (also

referred to as optical colors for Hubble Space Telescope (HST) filters, e.g., F475W-

F110W), and X-ray hardness ratios (HR2 and HR4). In the example shown in

Figure III.1, four features, HR4-norm, HR2-norm, FX27-norm, and FX052-norm)

are the most informative while three (FU_norm, FG_norm, and FZ_norm) are

very insignificant and can be removed from consideration without lowering the

model’s predictive accuracy.

III.6 Hubble Space Telescope Filter Transformation

As mentioned earlier, we have to convert the training dataset (constructed from

catalogs via ground based observatories) to HST parameter space. This is nec-

essary because both Pan-STARRS and 2MASS (ground based observatories) use

different filter system than HST, and, therefore, they each observe slightly dif-

ferent part of the EM spectrum (the difference if filter transmission is illustrated

in Figure III.2). However, the conversion is very model dependant. Since we are

transforming the training dataset, for which the sources are known, we can esti-

mate the overall spectral profiles for each class. To calculate conversions between

ground-based telescopes and HST, we use the Python package PySynphot. We

use derived fluxed ratios between similar filters (e.g., J and F110W) to make the

transformation. To model these spectral profiles, we use black body models for

the following classes: HMXBs (15,000 K), CVs and LMXBs (3,000K), and stars

(5,000 K). These models are shown on Figure III.2 (scaled to fit the Figure). For

AGN we use a power law model with slope of −1.2.
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Figure III.1: Importance of features used by the classification ML algorithm.
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Figure III.2: Throughput HST and Pan-STARRS filters are shown with solid and dashed
lines, respectively. Three black body models (for 3,000, 5,000, and 15,000
K, scaled to fit the figure) are shown for illustration purposes.

III.7 Classifier Fitting

For the classification part we used RF, which creates decision trees on randomly

selected data samples, fits several decision tree classifiers on various sub-samples

of the dataset and ultimately gets prediction from each tree and selects the best

solution by averaging. Some of the RF classifier parameters control the size of the

trees, such as max_depth, and Class_weight that may finally cause fully grown

trees which results in very large trees on some data sets and increased over-fitting.

After some testing, we conclude that leaving these parameters at default provide

good combination of model accuracy and computational speed.

Two other parameters can be optimized: the number of trees (n_estimator) and

the number of variables at each node (min_sample_leaf). We have found that the

n_estimator=1000 is the optimal number of trees to create an accurate RF model.
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III.8 Verifying the Model

The 25% of the data that was initially set aside, the validation set, is now used

to check the accuracy of the model. The metric module implements functions to

estimate prediction error for specific purposes. Here, we used scoring parameters

such as accuracy_score where this function computes subset accuracy in multil-

abel classification. The model accuracy can be expressed by classification_report

function which shows the main classification metrics.

The F1 score can be interpreted as a weighted average of the precision and recall

(F1 score is between 0 and 1). The recall represents the ability of the classifier to

find all the positive samples and the support is the number of occurrences of each

class in target_test. The scores corresponding to every class tells us the accuracy

of the classifier in classifying the data points in that particular class compared to

all other classes. The F1 score can be calculated as follow:

F1 Score = 2 · ( precision · recall
precision+ recall

) (III.2)

III.9 Classification Performance

A confusion matrix is a table we used here to describe the performance and preci-

sion of our classifier on the validation (or training) data for which the true values

are known. The diagonal elements of the confusion matrix indicate the number of

points for which the predicted label is equal to the true label, while off-diagonal

elements are those that are mislabeled by the classifier. Figure III.4 shows the con-

fusion matrix for the classification training after applying the SMOTE procedure.

Almost all 5 classes of object have been accurately labeled. The color bar beside

the confusion matrix is an indicator of how many objects of each class (balanced

class) are precisely labeled.
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Figure III.3: Importance of Features for the HST Filter Transformation.

Similar confusion matrix, but for the validation set, is shown in Figure III.5.

While the training dataset is balanced because of the SMOTE procedure, the

validation set does not contain synthetic sources, and therefore is unbalanced (e.g.,

more AGN than other classes). Because of this, we have plotted the Figure III.5
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Figure III.4: Confusion matrix for the classification training dataset. The numerical la-
bels correspond to AGN (0), CVs (1), HMXBs (2), LMXBs (3), and Stars
(4).

in logarithmic scale to help with the visualization.

III.10 Classification Accuracy

We have presented here the preliminary results from our completed ML classifi-

cation pipeline. Comparing the accuracy’s results reveals that the accuracy of the

training sets is 99.7% where the accuracy of validation test set is about 97.8%.

This proximity of the predicted values shows that the model is accurately predict-

ing the “new”, validation set. While further tests need to be made (using different

extragalactic data), we can conclude that we have successfully constructed a ML

method that can automatically classify X-ray sources using existing archival data.

Finally, the full code is available at https://www.dropbox.com/s/irxs4e32xldnmld/

classification_code.pdf?dl=0.
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Figure III.5: Same as III.4 but for the validation training dataset shown in logarithmic
scale for better visualization.
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IV. Future Work

Over the last decades astrophysics has been in a unique period of its history with

observatories viewing the sky over a multitude of wavelengths, which leads to a

fast increase in the number of detected sources. We have seen that creating an

automated ML tool for classification of extragalactic X-ray sources will enable

future studies of X-rays sources in a large number of nearby galaxies. This will

significantly increase the number of classified X-ray sources, enabling a statistical

study of the X-ray source populations. This in turn will provide greater insight

about galaxy evolution.

One does not need to look further than the two closest large galaxies, Andromeda

(M31) and Triangulum (M33) to see that, even though roughly ∼ 2, 000 X-ray

sources have been detected in M31 and M33, only ∼ 25% have been successfully

classified (see Figure IV.1). The majority of these X-ray sources lack astrophysical

identification, and, thus we are unable to study the formation and evolution of the

population of X-ray sources in these galaxies. The situation is not that dissimilar

in other nearby galaxies.

Going forward, the ML classification tool that was developed here will be used

to first explore the nature of X-ray sources in M31, where large amount of archival

X-ray and HST data exists. This will further test and optimize the ML pipeline.

Moreover, this will enable the classification of thousands of X-ray sources.
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Figure IV.1: Left: Existing HST coverage of M31. The WFPC2 pointings are shown in
blue, the ACS in orange, and the WFC3 in purple. Center: The Chandra
coverage of M31. ACIS-I pointings are shown with blue, ACIS-S with red,
HRC-I with green, and HRC-S with magenta. The circle has a radius of
1 degree. Right: A deep optical image of M31 overplotted with the XMM-
Newton fields of the XMM survey. The area covered by individual EPIC
observations is approximated by circles with 14′ radius.
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APPENDIX SECTION

APPENDIX A: Essential Libraries and Tools

A Python library is a reusable fragment of code that people may use to include in

their projects for specific purposes such as data analyses, machine learning tasks,

mathematical computation, and so on. The most important Python packages are

listed below.

• NumPy: NumPy is one of the essential packages for the scientific computing

in Python that contains sophisticated functions such as linear algebra oper-

ations, Fourier transform, high-performance multidimensional array object,

and powerful N-dimensional array objects.

• Pandas: Pandas is another core library in the Python and the best Pythons

tool for the data wrangling and data analysis. It provides users a vast range of

methods to manipulate and operate on the table for doing inquiries over rows

and columns, by using Python two-dimensional data structure (DataFrame).

In contrast to NumPy in which all entries in an array should be of the same

type, Pandas allows each column to have different types. Pandas also has

ability to accord with a great range of formats such as Excel files, SQL, and

Comma-Separated Values.

• Scikit-Learn: Scikit-learn is a very popular tool and probably the most

prominent Python library for ML. It contains several state-of-the-art ML

algorithms, as well as comprehensive documentation about the algorithms.

Scikit-learn works very well with almost all scientific Python tools. The RF

Decision Tree that we are going to use in this chapter is a part of Supervised

Machine Learning algorithms which is accessible via Scikit-learn library.

• Matplotlib: Matplotlib is a comprehensive 2D and 3D plotting tool in the

Python which gives users important insights to the data and provides great
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functions for making precise and diverse visualizations such as line charts,

histograms, scatter plots, and so on.

• SMOTE Algorithm: Heavily unbalanced training sets can reduce the per-

formance of our classification ML algorithm. To rectify this problem, we

oversampled the 4 most underrepresented classes using the SMOTE algo-

rithm. We used imb_os.SMOTE which is a class that is located in the im-

blearn package and is a part of smotefamily library in the Scikit-Learn and

gives us a powerful tool to perform oversampling. By applying oversampling

methods all categories have equal amount of records simply by oversampling

instances of the minority class. Fitting SMOTE is a great way to fix imbal-

anced our data sets and make the same amount of sources as the number of

AGN sources are.

We used the aforementioned libraries, specifically Scikit-learn libraries, pack-

ages, and modules for the data prepossessing, classification problem, and data

analysis. The code was written using the Jupyter Notebook.
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