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ATTRACTORS OF ASYMPTOTICALLY PERIODIC
MULTIVALUED DYNAMICAL SYSTEMS GOVERNED BY
TIME-DEPENDENT SUBDIFFERENTIALS

NORIAKI YAMAZAKI

ABSTRACT. We study a nonlinear evolution equation associated with time-
dependent subdifferential in a separable Hilbert space. In particular, we con-
sider an asymptotically periodic system, which means that time-dependent
terms converge to time-periodic terms as time approaches infinity. Then we
consider the large-time behavior of solutions without uniqueness. In such a
situation the corresponding dynamical systems are multivalued. In fact, we
discuss the stability of multivalued semiflows from the view-point of attrac-
tors. Namely, the main object of this paper is to construct a global attractor
for asymptotically periodic multivalued dynamical systems, and to discuss the
relationship to one for the limiting periodic systems.

1. INTRODUCTION

We consider non-autonomous systems, in a real separable Hilbert space H, of
the form

V(1) + 0 (v(t)) + G(t,v(t)) 2 f(t) in H, t>s(>0), (1.1)
where v = %}7 ¢t is a subdifferential of time-dependent proper lower semicontin-

uous (L.s.c.) convex function ¢ on H, G(t,-) is a multivalued perturbation small
relative to ¢!, and f is a forcing term.

In the case when G(t,-) = 0, many mathematicians studied the existence-
uniqueness and the asymptotic behavior of solutions, the time periodic problem
and the almost periodic case for (cf. [7, [8), [13], [14], [15], [16], [18], [23],
21]). A

For the multivalued nonmonotone perturbation G(t,-), Otani has already shown
the existence of solution for in [21]. The large-time behavior of solutions for
was discussed in [28] from the view-point of attractors. For the time periodic
case, assuming the periodicity conditions with same period Ty, 0 < Ty < 400, i.e.

@t = ¢t+TO7 G(ta ) = G(t + TOa ')a f(t) = f(t + TO)a vt € R+ = [07 OO),
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the existence of periodic solution for was proved in [22]. Moreover, the peri-
odic stability was discussed in [29]. In fact, the author showed the existence and
characterization of time-periodic global attractors for in [29)].

In this paper, for a given positive number Ty > 0, we treat the case when ¢,
G(t,-) and f(¢t) are asymptotically Tp-periodic in time. Namely we assume that

in appropriate senses as t — +00, where ¢}, = cp;/fTO, Gp(t,-) = Gp(t + Tp,-) and

fp(t) = fp(t +Tp) for any t € R.. By the asymptotically Tp-periodic condition
(1.2), we have the limiting Ty-periodic system for (|1.1)) of the form:

w'(t) + 0@l (u(t)) + Gp(t,u(t) 3 fp(t) inH, t>s (>0). (1.3)

In the case when G(¢,-) and G,(t,-) are single-valued, the asymptotically Tp-
periodic problem has already been discussed in [11I]. To guarantee the uniqueness
of solutions for the Cauchy problem of and , they assumed some con-
ditions on ¢?, cp;, G(t,-) and G,(t,-). Then, they discussed the asymptotically
To-periodic stability for from the view-point of attractors (cf. [11]). The main
object of this paper is to develop the result obtained in [I1] in order to consider
the large-time behavior of solution for without uniqueness. Namely, we would
like to construct the attractor for the asymptotically Tp-periodic multivalued flows
associated with ([L.1]). Moreover we shall discuss the relationship to the Ty-periodic
attractor for tained in [29].

In the next Section 2, we recall the known results for the Cauchy problem of

. In Section 3 we consider the limiting Ty-periodic problem and recall the
abstract results obtained in [29]. In Section 4, we introduce the notion of a metric
topology on the family {¢%;¢ > 0} which was constructed in [16]. And we present
and prove the main results in this paper. In proving main results, we generalize
the results obtained in [II] and [30]. In the final section we apply our abstract
results to the parabolic variational inequality with asymptotically Typ-periodic dou-
ble obstacles. Then we can discuss the asymptotic stability for the asymptotically
To-periodic double obstacle problem without uniqueness of solutions.
Notation. Throughout this paper, let H be a (real) separable Hilbert space with
norm | - |y and inner product (,-)g. For a proper ls.c. convex function ¢ on
H we use the notation D(y), 0p and D(J¢) to indicate the effective domain,
subdifferential and its domain of ¢, respectively; for their precise definitions and
basic properties see [4].

For two non-empty sets A and B in H, we define the so-called Hausdorff semi-
distance

dist g (A, B) := sup inf |x — y|g.
zcAYEB

2. PRELIMINARIES

In this section, we recall the known results for a nonlinear evolution equation in
H of the form:
u'(t) + 0t (u(t)) + G(t,u(t)) > f(t) in H, telJ, (2.1)

where J is an interval in Ry, d¢! is the subdifferential of a time-dependent proper
l.s.c. and convex function @' on H, G(t,-) is a multivalued operator from a subset
D(G(t,)) C H into H for each t € Ry and f is a given function in L _(J; H).
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We begin by defining a solution for (2.1)).

Definition 2.1. (i) For a compact interval J := [to,t;] C Ry and f € L?(J; H),
a function v : J — H is called a solution of on J, if u e C(J;H)N
W2 ((to, t1]; H), 0O (u(-)) € LY(J), u(t) € D(dg) for ae. t € J, and if there
exists a function g € LE (J; H) such that g(t) € G(t,u(t)) for a.e. t € J and

f(t) —g(t) —u'(t) € 0t (u(t)), ae. te
(ii) For any interval J in Ry and f € L2 (J; H), a function u : J — H is called a

loc

solution of (2.1)) on J, if it is a solution of (2.1)) on every compact subinterval of J
in the sense of (i).
(iii) Let J be any interval in R, with initial time s € R,. For f € L% (J;H), a

loc

function w : J — H is called a solution of the Cauchy problem for (2.1)) on J with

given initial value ug € H, if it is a solution of (2.1]) on J satisfying u(s) = uo.
For the rest of this paper, let {a,} := {a,;r > 0} and {b,} := {b;r > 0} be

families of real functions in I/Vlif (Ry4) and V[/licl (R4), respectively, such that

sup |ay.|p2(t,041) + sup |bypiger1) < +oo  for each r > 0.
teRy teRy

Now we define the class ®({a,}, {b,}) of time-dependent convex function ¢*.
Definition 2.2. A function {p'} belongs to ®({a,},{b.}) if ¢ is a proper Ls.c.
convex function on H and satisfies the following three properties:

(®1) For each r > 0, s,t € Ry and z € D(¢®) with |z|g < r, there exists
Z € D(p!) such that

2= 2ln < lar(t) = ar(s)|(1 4 |0°(2)[7),
©'(2) = °(2) < [br(t) = br ()1 + |0° ()]
(®2) There exists a positive constant Cy such that
©'(2) > Ch|2|%, Vte Ry, Vze D(ph).

(#3) For each k > 0 and t € R, the level set {z € H; '(z) < k} is compact in
H.

Next, we introduce the class G({¢'}) of time-dependent multivalued perturbation
G(t,-) associated with {¢'} € ®({a,},{b.}).

Definition 2.3. An operator {G(t,-)} belongs to G({¢'}) if G(t, -) is a multivalued

operator from D(G(t,-)) C H into H which fulfills the following five conditions:
(G1) D(¢') € D(G(t,-)) C H for any t € R.. And for any interval J C R,
and v € L (J; H) with v(t) € D(¢") for a.e. ¢ € J, there exists a strongly
measurable function g(-) on J such that g(t) € G(t,v(t)) for a.e. t € J.
(G2) G(t,z2) is a convex subset of H for any z € D(¢') and t € Ry.

(G3) There are positive constants Co, C5 such that
lg|3 < Copl(2) +C3, Vte Ry, Vze D(p"),Vg € G(t,2).

(G4) (demi-closedness) If z, € D(¢'"), gn € G(tn,2n), {tn} C Ry, {¢'(2n)} is
bounded, z, — z in H, t,, — t and g, — g weakly in H as n — +o00, then
g€ Gt z).
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(G5) For each bounded subset B of H, there exist positive constants Cy(B) and
C5(B) such that

forallt € Ry, all g € G(t,2), all z € D(¢"), and all b € B.

For a given {¢'} in ®({a,},{b,}), {G(t,-)} in G({¢'}) and a forcing term f in
L2 (R4; H), we consider the evolution equation

u'(t) + 0" (u(t)) + G(t,u(t)) > f(t) in H, t>s (2.2)

for each s € Ry.
Now we recall the known results on the existence and global estimates of solutions
for the Cauchy problem of (2.2):

(A) [Existence of solution for ] (cf. [2I, Theorem II, IIT]) The Cauchy
problem for has at least one solution u on J = [s,+00) such that
(—s)¥u’ € LE(J: H), (—s)o0) (u()) € Li5, () and O (u(-)) is absolutely
continuous on any compact subinterval of (s,+00), provided that given
initial value ug € D(p#®). In particular, if ug € D(¢*), then the solution u
satisfies that u' € L2 .(J; H) and () (u(-)) is absolutely continuous on any
compact interval in J.

(B) [Global boundedness of solutions for (2.2)] (cf. [25, Theorem 2.2]) Suppose

that

Sy = sup |f|p2@t41;,m) < +00.
teER

Then, the solution u of the Cauchy problem for (2.2]) on [s,400) satisfies
the global estimate

t+1

suplu()ff +sup [ ¢ (u(r)dr < Ni(1+ 53+ luof}y)
t>s t>s Jt

where NV is a positive constant independent of f, s € Ry and a given initial

value ug € D(¢?®). Moreover, for each 6 > 0 and each bounded subset B of

H, there is a constant N»(d, B) > 0, depending only on § > 0 and B, such

that

sup [u'[Z2(z 150y + sUP_ @' (ult)) < No(8, B)
t>s+9 t>s+9

for the solution u of the Cauchy problem for (2.2) on [s, +00) with s € Ry

and ug € D(p®) N B.
Next, we remember a notion of convergence for convex functions.
Definition 2.4 (cf. [20]). Let ¢, ¥, (n € N) be proper l.s.c. and convex functions

on H. Then we say that ¢, converges to ¢ on H as n — +00 in the sense of Mosco
[20], if the following two conditions are satisfied:

(i) For any subsequence {9y, } C {tn}, if zr — 2z weakly in H as k — +o0,
then

lkim+inf U, (z1) > Y(2).
(ii) For any z € D(v), there is a sequence {z,} in H such that

zn, — zin H as n — 400, lirf VYn(2n) = P(2).

Now, we recall a convergence result (cf. [25) Lemma 4.1]) as follows.
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(C) Let {4} € ®({ar}, {b:}), {Gn(t,)} € G({¥,}) with common positive
constants C1,Co, Cs,Cy(B),Cs(B), {fn} € L?(J;H), J = [s,t1] C Ry,
and Uo,n € D(ps3) for n =1,2,.... Assume that

(i) ¢! converges to ¢’ on H in the sense of Mosco [20] for each t € J (as
n — +o00) and U+ {z € H; ¢l (2) < k} is relatively compact in H for
every real k > 0 and t € J, where {¢'} € ®({a,},{b,}) and ¢, = '
if n = +o0.

(i) If z,, € D(plr), gn € Gnltn,2n), {tn} C Ry, {¥'(2,)} is bounded,
zn—>zlnH t, — t and g, — g weakly in H as n — +o00, then
g € G(t,z), where {G(t,")} € G{p'}).

(iii) fn, — f weakly in L*(J; H) for some f € L*(J;H) and ug,, — uo in
H for some ug € D(¢?).

Denote by u the solution of the Cauchy problem for on J with
u(s) = wup and by u, the solution of the Cauchy problem for with
¢!, G, f replaced by ¢f, Gy, frn, and with u,(s) = ug,,. Then u, converges
to u on J in the sense that

Up —uin C(J; H), (-—s)2ul, — (- — s)%u' weakly in L*(J; H),

/(pn (un(t))dt — as n — 400.

3. ATTRACTOR FOR PERIODIC MULTIVALUED DYNAMICAL SYSTEM

In this section we recall the known results obtained in [29] for a Tj-periodic
system in H, of the form:

u'(t) 4+ 0@y (u(t)) + Gp(t,u(t)) 3 f(t) in H, t>s (3.1)

for each s € R, where goz, Gp(t,-) and fp(t) are Tp-periodic, namely periodic in
time with the same period Ty, 0 < Ty < +00.

Definition 3.1. Let Tj be a positive number. Then
(i) ®,({ar},{b,};To) is the set of all {p,} € ®({a,},{d,}) satisfying the Tp-
periodicity condition

cpZJrTO( )= <p;(~) on H, VteR,.

(i) Gp({wh}; To) is the set of all {G)(t,-)} € G({}}) satisfying the Tp-periodicity
condition
Gyt +Tp,-) = Gy(t,) inH, ¥teR,.

For the rest of this section we assume that {¢}} € ®,({a,},{b.};To), {Gp(t,")} €
Gp({9h}; To) and f, € LY, (Ry; H) is To-periodic in time, namely

fo(t+To) = fp(t) in H, VteR,. (3.2)

Here we note that (3.1]) can be considered as (2.2)) in Section 2. So, by the result (A)
in Section 2, the Cauchy problem for (3.1)) has at least one solution u on [s, +00).
Hence we can define the multivalued dynamical process associated with (3.1) as
follows:
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Definition 3.2. For every 0 < s < t < 400 we denote by U(t,s) the mapping

from D(g;3) into D(yh) which assigns to each ug € D(y5) the set

U(t,s)uo := {z € H; There is a solution u of (8.1 on [s, +00)
such that u(s) = ug and u(t) = 2.}

Then we deduce easily the following properties of {U(t,s)} := {U(t,5);0 < s <
t < +oo}:

(Ul) U(s,s) =1 on D(ps) forany s € Ry.

(U2) Ul(ta,s)z = Ulta, t1)U(t1,5)z forany 0 < s <3 <tz < +ocand z € D(p;).

(U3) U(t+To,s+To)z = Ul(t,s)z for any 0 < s <t < 400 and z € D(p3), that
is, U is Ty-periodic.

(U4) {U(t, s)} has the following demi-closedness:
If0<s, <t, <400, 8, = 8, t, = t, 2 € D(pp"), z € D(gozs,), Zp — z in
H and an element w,, € U(t,, $n)zn converges to some element w € H as
n — +oo, then w € U(t, s)z.

Next we define the discrete dynamical system in order to construct a global

attractor for (3.1)).

Definition 3.3. Let U(-,-) be the solution operator for (3.1)) defined in Definition
Then

(i) For each 7 € Ry, we denote by U, the Tp-step mapping from D(¢j) into
Dy ™) = D@y, namely, Uy i= Ur + Ty, 7).

(ii) For any k € Z; := N U {0}, we define

UF:=U,oU,0---0U,.

k iterations

Clearly we have UF = U(r + kT, 7) for any 7 € Ry and k € Z,.

Now, we recall the known result on the existence of global attractors for discrete
multivalued dynamical systems U, associated with (3.1)).

Theorem 3.4 (|29, Theorem 3.1]). Assume that {o}} € ®,({a,},{b,};To),
{Gp(t,)} € G,({eL}i To), and f, € L}, (Ry; H) satisfies the Ty-periodicity con-

dition (3.2). Then, for each T € Ry, there exists a subset A, of D(¢]) such that
(i) A, is non-empty and compact in H;
(ii) for each bounded set B in H and each number € > 0 there exists Ng . € N
such that
dist i (UF2, A;) < €
for all z € D(¢]) N B and all k > Np ¢;
(iii) UFA, = A, for any k € N.

Remark 3.5. By [29, Lemma 3.1] we can get the compact absorbing set By , of
D(p7) for U, such that for each bounded subset B of H there is a positive integer
np (independent of 7 € Ry ) satisfying

ur (D((p;) N B) C By, foralln>ng.
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Then we observe that the global attractor A, is given by the w-limit set of the
absorbing set By , for U, i.e.

./4-,—: ﬂ U Uj_CBQﬂ—.
nezZy k>n

The next theorem concerns a relationship between global attractors A, and A .
For detail proof, see [29].

Theorem 3.6 (|29, Theorem 3.2]). Suppose the same assumptions are made as in
Theorem . Let A, and A, be global attractors for Ug and U, with 0 < s < 7 <
Ty, respectively. Then, we have

A, =U(1,s)As,
where U (T, s) is the To-periodic process given in Definition ,
Remark 3.7. By Theorem (iii) and Theorem we see that the global at-

tractor A, for U, is Tg-periodic in 7. In fact, for each 7 € Ry choose m, € Z, and
or €10,Tp) so that 7 = o + m;Ty. Then, we have A, = A,_.

The third known result is the existence of a global attractor for the Ty-periodic
multivalued dynamical system (3.1)).

Theorem 3.8 (cf. [29, Theorem 3.3]). Under the assumptions of Theorem|[3.4] put
A= U -'47'7
0<T<To
where A, is as obtained in Theorem[3.], Then, A has the following properties:
(i) A is non-empty and compact in H;
(ii) for each bounded set B in H and each number € > 0 there exists a finite
time T, > 0 such that

dist y(U({t +7,7)2,A) <€

forallT € Ry, all z € D(¢]) N B and allt > Tpg.

Remark 3.9. In [29] Section 4] the characterization of the Tj-periodic global at-
tractor was discussed. The author proved that for each time 7 € Ry the global
attractor A, for the discrete multivalued dynamical system U, coincides with the
cross-section of the family of all global bounded complete trajectories for the Ty-

periodic system ((3.1)).
4. ATTRACTOR FOR ASYMPTOTICALLY PERIODIC MULTIVALUED DYNAMICAL

SYSTEM

Throughout this section, let M > 0 be a fixed (sufficiently) large positive number.
Now we put

Wy = {w;w is proper, l.s.c. and convex on H,
Jz € D) st |zlg < M, ¥(z) < M}

Then we state the notion of a metric topology on W), introduced in [16].
Given @, 1 € Uy, we define p(p, ;) : D(p) — R by putting

p(p,; z) = inf{max(ly — 2|m, ¥ (y) — »(2));y € D(¥)}
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for each z € D(y), and for each r > M

pr(p¥) == sup p(p,; 2),
2€Ly(r)
where L, (r) := {z € D(¢);|2|m < r,¢0(z) < r}. Moreover, for each r > M, we
define the functional 7.(+,-) on Upy x Uy by

WT(QO’ 77[1) = pr(@; 11[}) + Pr(d’v QD) for <P;¢ S \IIM

Then, according to [16, Proposition 3.1], we can define a complete metric topology
on ¥, so that the convergence ¢, — ¥ in ¥y, (as n — +o00) if and only if

7 (Pn, ) — 0 for every r > M.

Now by using the above topology on W,;, we consider an asymptotically Ty-
periodic system as follows.

Definition 4.1. Assume {¢'} € ®({a,},{b.}) N Y, {G(t,-)} € G({y'}) and
f € L% (Ry;H). Then the system

loc
V' (t) + 0p'(v(t)) + G(t,v(t)) > f(t) in H, t>s(>0) (4.1)

is asymptotically Tp-periodic, if there are {¢}} € ®,({a,}, {b,};To) N W,
{Gp(t,)} € Go({¥}}; To) and a Ty-periodic function f, € Lf, (R4 ; H) such that

loc

(A1) (Convergence of @' — ¢! — 0 as t — +oc) For each r > M,

Jg) = sup w,(pmTote

o€[0,To]

(A2) (Convergence of G(t,-) — Gp(t,-) — 0 as t — +oo) If {r,} C [0,Tp],

{mn} C Zy, myp — 400, z, € D(SomnTOJrTn)a gn € G(mnTO + Tn,zn)a
ntot™n ()} is bounded, z, — z in H, 7, — 7 and g, — ¢ weakly in
pmnTotT is bounded in H d kly i
H (as n — +00), then g € G,(T, 2).
onvergence of f(t) — f,(f) = 0ast — +oo
A3) (C ff I 0

ypp) — 0 asm — 4o0.

|f(mTo + ) = fplr20,10:0) — 0 as m — +oo.

By Definition we easily see that a limiting system for (4.1)) is a Tp-periodic
one (3.1) of the form:

o' (t) + aw;(u(t)) + Gp(t,u(t)) > fp(t) in H, t>s(>0).

Here we note that (4.1)) is also considered as (2.2)). So, by the result (A) in Section
2, the Cauchy problem for (4.1]) has at least one solution v on [s,+00). Hence we
can define the multivalued dynamical system associated with (4.1)) as follows:

Definition 4.2. For every 0 < s < ¢t < 400 we denote by F(t,s) the mapping

from D(p®) into D(p?) which assigns to each vy € D(¢?®) the set
E(t, s)vg := {z € H; There is a solution v of (1)) on [s, 4+00)
such that v(s) = vo and v(t) = z.}

Then we easily see that {E(t,s)} := {E(t,5);0 < s <t < 400} has the following
evolution properties:

(E1) E(s,s) =1 on D(¢*) for any s € R,.

(E2) E(ta2,s)z = E(te,t1)E(t1,s)zforany 0 < s <3 <t < +ooand z € D(¢?).
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(E3) {E(t,s)} has the following demi-closedness:
If0<s, <t, <400, 8y — 8, tn, — t, 2, € D(p*n), z € D(¢®), 2z, — z in
H and an element w,, € E(t,, $p)zn converges to some element w € H as
n — +oo, then w € E(t, s)z.

Now we give the definition of a discrete w-limit set for E(,-).

Definition 4.3 (Discrete w-limit set for E(-,-)). Let 7 € Ry be fixed. Let B(H)
be a family of bounded subsets of H. Then for each B € B(H), the set

wr(B) = ﬂ U E(kTy +mTy + 7,mTy + 7)(D(emT0+7) N B)
neZy k>n,mezy

is called the discrete w-limit set of B under E(-,-).

Remark 4.4. By the definition of the discrete w-limit set w,(B), it is easy to see
that ¢ € w,(B) if and only if there exist sequences {k,} C Z; with k, T +o0,
{mn} C Z4, {2z} C B with z, € D(¢mT0+7) and {z,} C H with z,, € E(k,To +
mpTo + 7,mpTo + 7)z, such that

T, — ¢ in H as n — +oo.

Now we state the main theorems in this paper.

Theorem 4.5 (Discrete attractors of (4.1))). For each 7 € Ry, let A, be the global
attractor of Ty-periodic dynamical systems U, which is obtained in Section 3. For

{¢'} € ®({ar}, (b)) N War, {G(t, )} € G{'}) and f € L2, (Ry: H), we assume
that the system (4.1) is asymptotically Ty-periodic. Here we put

Ar= |J w(B). (4.2)
BeB(H)
Then, we have
(i) A5(C D(¢y)) is non-empty and compact in H;
(ii) for each bounded set B € B(H) and each number € > 0 there exists Np . €
N such that
dist g (E(kTy + 7,7)2,AL) < €
forall z€ D(¢™)N B and all k > N ¢;
(iii) A* C ULA: C A, for anyl € N, where U, is the discrete dynamical system
for (3.1) given in Definition .
Remark 4.6. By the definition of the discrete w-limit set w, (B) and A%, we easily
see that
A;k. = j’-‘rnTo’ Vn € N.

Hence A% is Tp-periodic in time in the above sense.

The second main theorem concerns a relationship between attractors A% and

Ar.

Theorem 4.7. Suppose the same assumptions are made as in Theorem [{.5 Let
A% and A% be discrete attractors for E(-,s) and E(-,7) with 0 < s < 7 < 400,
respectively. Then,

A Cc U(r,s)Ax,
where U(7, s) is the Ty-periodic process for which is given in Definition .
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By Theorems [L.54.7, we can get the attractor for the asymptotic Tp-periodic
system (4.1)).

Theorem 4.8 (Global attractor for (4.1)). Suppose the same assumptions are made
as in Theorem |4.5 For any T € Ry, let A% be the discrete attractor for E(-,T)
obtained in Theorem[[.5. Here we put

A= AL (4.3)
T7€[0,T0]
Then, for any bounded set B € B(H),
N U Et+nn)D)NB)cCA. (4.4)

s>0t>s,TERL

By Theorem the set A* can be called the global attractor of (4.1)).
Here we give some key lemmas.

Lemma 4.9. If {s,} C Ry, {tn} C Ry, s € Ry, 7T € Ry, 8y — 8, Tn — T,
{mn} C Zy with my, — +o0, 2z, € D(pmnTotsn) 2 € D(p5), 2, — 2z in H and an
element wy, € E(mp,To + Tn, + Sn, mnTo + $n)2zn converges to some element w € H
as n — +oo, then w € U(T + s, 5)z.

Proof. Since T, — 7, without loss of generality we may assume that there exists a
finite time 7' > 0 such that {7,} C [0,T] and 7 € [0,T]. By w,, € E(m,To + 7, +
Sn, MpTo + Sn)2n, there is a solution v, of (4.1) on [m,Ty + $p, +00) such that

Un(MmnTo + Tn + S$n) = wy, and v, (MpTo + 85) = 2p.

Now we put u, (t) := v, (t+m,To+ s,), then we easily see that u, is the solution
for
u;z (t) + 8¢t+mnTo+sn (un(t)) + Gt +mnTo + sn,un(t))
S f(t+mpTo+ s,), t>0,
Un (0) = 2.
Let 6 € (0,1) be fixed. Since z, — z in H as n — 400, {z,} is bounded in H.

Hence, from global estimates of solutions (cf. (B) in Section 2) it follows that there
is a positive constant My > 0 (independent of n) satisfying

sup [t ()3 4 sup |up |72y 44 1.0y +sup @7 T0T5 (u, (8)) < M. (4.5)
t>6 t>6 t>5

By [16, Lemma 4.1] we note that the convergence assumption (A1) implies

<)01‘/+mnTo+sn N <,0§,+S (4.6)

in the sense of Mosco [20] for each ¢ > 0 as n — +o0o. Moreover by the same
argument in [I0, Lemma 3.1] we can prove that

+oo
Utz € HightmeToron () < k) (4.7)

n=1

is relatively compact in H for every real k > 0 and ¢ > 0, where @'t Totsn — pl+s
if n = +o00. Therefore, by (4.5)-(4.7), (A2), (A3) and the convergence result (C)
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in Section 2, (by taking a subsequence of {n}, if necessary) we see that there is a
function ugs such that

uf(t) + 8(,0?3(115(15)) + Gp(t+ s,us(t)) 2 fp(t+s), t>0.

By the standard diagonal process and the same argument in [2T, Lemma 3.10],
we can construct the solution u on [0, +00) satisfying

u(t) + 0L (u(t)) + Gp(t + s,u(t)) 3 fo(t +5), t>0,

P
u(0) =z
and
u, — win C([0,T]; H) asn — +4oc. (4.8)
Then, by (4.8) and u,(7,) = w, we have u(r) = w, which implies w € U(r +
s, 8)z. O

By (B) in Section 2, for each B € B(H) we can choose constants rp > 0 and
Mp > 0 so that
lvjlg <rp and ""¥(v) < Mp, (4.9)

for any s € Ry, t > Ty, 2 € D(p®) N B and v € E(t + s, 8)z. Hence it follows from
condition (A1) that for each m € Z;, 7 € [0,T5], n € N and z € D(p™To+7)N B
there is 2 := Z,1y 472,07y € D(gog) such that

T,

J(rB+MB+M)>

m—+n

|Z — U|H <
(hence |Z|lag < 7B+

and

Py (2) = AT (g) < B PR,

(hence ¢, (2) < Mp + J(TB+MB+M)),

m—+n

where v € E(nTy + mTy + 7,mTy + 7)z.
Since J,gTB+MB+M) — 0 as k — 400, there is a number Ny € N such that

JUretMeEMY <1k > N,

Now, put Jo := 1 +sup;<p<n, J;irB+MB+M) < +00. Then, we define the bounded

set BVT by
B, = (= € H; |2l < i + Jo} N D7),
Let By~ be the compact absorbiilg set for U, introduced by Remark Then,
we see that there exists a number V € N so that

U.B, C By,, Vl>N. (4.10)
The next lemma is very important for proving Theorem (iii).

Lemma 4.10. Let 7 € Ry and By, be the compact absorbing set for U.. Then we
have

w,(B) C By, VB € B(H).
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Proof. At first we assume 7 € [0,Tp]. For each B € B(H), let  be any element
of w;(B). Then, it follows from Remark that there exist sequences {k,} C Z4
with k, — +o0, {m,} C Z4, {z,} C B with z,, € D(p™»To*7) and {z,} C H with
Tpn € E(kyTo +mpTo + 7,mpTo + 7)z, such that
T, —xin H asn — 4oo. (4.11)
Let N be the positive integer obtained in (@.10)). Then by (E2) we have

2n €E(knTy + mnTy + 7, knTo — NTy + mpTy + 7) @12)

o E(k,To — NTO +mnTo + 7,maTo 4+ 7)zn .
for any n with k, > N + 1. Hence, there exists an element y,, € FE(k,Ty — JVTO +
myTo + 7,m,To + 7)z, such that

Ty € E(knT() +mpTo + 7,k To — NT() + m, Ty + T)yn (413)
Since {z,} C B, we see that |y,|g < rp and

s01{777,’1—'()7]\]’T()%’Tl’lln’T()~FT(yn) S MB

for any n with k,, > N+ 1, where rp and Mp are same positive constants in (4.9)).
From the convergence condition (Al) it follows that for y, € E(k,Ty — NTp +
mpTo + 7,mpTo + 7)z, there is z,, € D(cp;) such that
(re+Mp+M)
[ = ynln < J ~Ntm,

J(rB+MB+M))

(hence |Znly < 7B+ Nt

and

(r5+Mp+M)
Pp(an) < Mp +J, 75 00

Since {z, € D(p;) ; n € N with k,, > N + 1}(c B, ) is relatively compact in
H, we may assume that
Zn — Zeoin H asn — +oo
for some z,, € H. Then we easily see that z, € EVT and

Yn — Zoo I H as n — +oo. (4.14)

By Lemma and (4.11)-(4.14), we observe that = € U(NTy + 7,7)Zs0, which
implies that -
2 € U(NTy +7,7)B, = UNB, C By
Hence we have w,(B) C By -.
For the general case of 7 € Ry, choose positive numbers i, € N and 79 € [0, Tp]

so that 7 = 19 + i, Tp. Then, we can show w,(B) C By by the same argument as
above. (]

Proof of Theorem[.5. On account of Lemma [1.10] we can get A% C By .. Hence,
Theorem (i) holds. Also, by and Remark |4.4| we observe that Theorem
(ii) holds.

Now, we prove Theorem (iii). At first, let us prove that A* C ULA® for any
[ € N. Let x be any element of A%. By the definition of A%, there are sequences
{B,} C B(H) and {«,} C H with z,, € w,(B,) such that

Tp, — o inH asn— 4oo. (4.15)
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Then, for each n it follows from Remark [4.4] that there exist sequences {ky ;} C Zy
with k,; — 400, {my;} C Zy, {z,;} C B, with z,; € D(pmniTo+7) and
{Un,j} C H with Un,j € E(knijO + mnijo + 7, mnijo + T)Zn’j such that

Unj — Tnp in H as j — 4o00. (4.16)
Let [ be any number in N, then we see that
Un,j € E(kn jTo + my ;1o + 7, knjTo —1To + my jTo + 7)
o E(ky jTo — Ty + my jTo + T, My ;To+ T)2n

for j with k,, j > 14 1. So, there exists an element w,, ; € E(ky, ;To—1To+my ;To+
T, My ;To + T)zy ; such that

Un,j € E(ky jTo + my, jTo + 7, kn jTo — 1To + my, ;To + T)wn, ;. (4.17)

By the global estimates (B) in Section 2, {w, ; € H ; j € N with k, ; > [+ 1}

is relatively compact in H for each n. Therefore we may assume that the element
wp,; converges to some element Wy o € H as j — +o00. Clearly, Wp o0 € wr(By).

Moreover, it follows from Lemma [£.9) and ([4.16)-(4.17) that
Ty € U(TH + 7, T)Wnoo CU(To+ 7, T)w,(B),
hence, we have

2, € | Ulw,(B,), Yn>1. (4.18)
n>1
Here, by the closedness of U(+,-) we note that for each subset X of By -,

ULX cU'X, VieN. (4.19)
Taking into account Lemma [4.10] (4.15)), (4.18) and (4.19)), we observe that

€ U Ulw,(B,,) = UL U w,(B,) Cc U U wr(B,) Cc ULA?,

n>1 n>1 n>1

which implies that A% is semi-invariant under the Ty-periodic dynamical systems
U, ie.

A: CULA:, VIeN. (4.20)
Next we shall prove that ULA* C A, for any [ € N. By (#.20), for each [ € N
ULA: cULUMA: = U™ AR, Vn € N. (4.21)

By A% C By, (4.21)) and the attractive property of A, we have
ULA*C A, VIEN.
Therefore, we conclude that A* C ULA% C A, for all I € N. O

Proof of Theorem[{.7] Let x be any element of A%. Then by the definition of A%,

there exist sequences {B,} C B(H) and {z,} C H with z,, € w,(B,) such that
xn, —xin H asn— 4oo. (4.22)

From Remark it follows that for each n, there are sequences {k, ;} C Z; with

kn,j — +oo, {my ;} C Zy, {zn;} C By with z, ; € D(¢mniTo+7) and {v, ;} C H
with v, j € E(kn ;To + my ;To + 7, my ;To + 7)2p,; such that

Unj — Tn in H as j — +oo. (4.23)
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Note that for given s,7 € Ry with s < 7 there is a positive number Iy € N
satisfying
s <71 <IlTH+s.
Using the property (E2) we see that

Un,j € E(knJT@ + mijO + 7, kn,jTO + mij() + S)
o] E(kijo =+ mijo =+ S, TO + mnvao + ZSTO —+ S)
o E(To +mp;To +1To + s, myp ;To + T)2n

for any j € Z, with k,; > I + 2. Here we can take elements w, ; € H and
Yn,; € H so that

Un,j € E(kn’jT() + an‘TO + 7, kn,jT() + mn’jT() + s)wnm (424)
Wn,j € E(kn;To +mn;To + 5, To + mn ;To + 1sTo + 5)yn 5, (4.25)
Yn,j € E(To + my jTo + 1T + s,my ;To + T)zn, ;. (4.26)

By {zn;} C B, and the global boundedness result (B) in Section 2, we can get
a positive constant C,, := C,(B,,) > 0 satisfying

[Yn,ilor < Cny  Yyn,j € E(To + my ;To +1To + 5, My ;To 4+ T)2n ;- (4.27)
Here we define the bounded set B¢, by
Be, :={be H:|blg <C,}.
From and the result (B) in Section 2 it follows that the set
{wmj € Hywy, ; € E(ky ;To 4+ muy i To + 8, To + mp jTo + 1sTo + 8)yn,
for any j € Z; with &k, ; > I, + 2}

is relatively compact in H. Hence, we may assume that the element w, ; converges
to some element W, o € H as j — +o00. Clearly, W, o € ws(Bg, ), and it follows
from Lemma [4.10] that

ws(Bc,) C Bos C D(‘P;)~
Moreover, by Lemma and - we have
Ty € U(T, 8)Wn,co CU(T,S)ws(Be,), Yn>1,
hence, we see that

2, € | J U 9)ws(Be,), ¥n>1. (4.28)

n>1
Here, by the closedness of U(-, -), we note that for each subset X of By,
U(r,s)X c U(r,s)X. (4.29)
On account of Lemma [4.10} (4.22)), (4.28)) and (4.29)), we observe that

T € U U(r,s)ws(Bg, ) =U(r,s) U ws(Be,) C U(T,s) U ws(Be, ) C U(r,s)A%,

n>1 n>1 n>1

which implies that A% is a subset of U(7, s).A%, namely A* C U(r, s).A%. O
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Proof of Theorem[.8 For any B € B(H), let zp be any element of the w-limit set
wg(B) which is define by

weB)=() | ECt+m7)(D)NB).

s>0t>s,TER

Then we easily see that there exist sequences {t,} C Ry with ¢, — +oo, {7} C

Ry, {yn} C B with y, € D(¢™) and {z,} C H with z, € E(tn + Tn, Tn)yn such
that

ty = knTo+t,, kn€Zy, ky — 400, t, € [To,2T0], t, — to,
T =ULTo+7), l,€Zy, 7, €10,T0], 7, — 75, (4.30)

Zn — 2o In H

as n — +o00. Without loss of generality, we may assume that
(a) t), + 7 7ty + 7 or
(b) &, + 7, \ th + 7.
Now, assume that (a) holds. Then let us consider the multivalued semiflow
vp € E(1 4 knTo 4 1 To + to + 75, knTo + 1, To + T, + 7))z (4.31)
Then, there is a solution u,, on [k,To + 1, To + t,, + 7,,, +00) for
up (1) + Ot T TR AT (1)) 4 G+ KT + 1 To + b, + 75, un (1))
S ft+kTo+ L, To+t, +7.), t>0,
un(0) =2, and wu,(1+ty+75—t, —7)) =v,.

Since z, — zp in H, {z,} is bounded in H. Therefore, by the global estimate (B)
in Section 2, we see that the set

{vn € Hyvy € E(L+ knTo + 1Ty + ty + 70, knTo + 1nTo + t, + 7)2n
for any n € N}

is relatively compact in H. Hence we may assume that
v, — v in H for some v € H. (4.32)
Now applying Lemma with —, we obtain
v e U(l+ty+ 75, ty+70)20,
more precisely, (taking the subsequence of {n} if necessary) we observe that
u, —u in C([0,1; H) asmn — 4oo, (4.33)
where u is the solution on [t} + 7§, +00) satisfying
W/ () + O OO (u(t)) + Gyt + ) + T u(t)) 3 folt +th+ 1), >0,
u(0) =20 and wu(l)=w.
By we easily see that
/

un(ty + 70— t, — 7)) — 29 as n — +oo. (4.34)
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Note that

un(ty + 76 — th, — 1)

€ E(knTo + 12 To + th + 14, knTo + 1nTo +th +70) 2,

= FE(k,To + 1, To + ty + 70, 1nTo + 7)) Yn

= E(k,To + 1, To + to + 7, 1nTo + ty + 70)E(lTo + to + 76, 1nTo + 7)) Yn-
So, we can take an element x,, € E(1, Ty + ty + 74, 1nTo + 7),)yn such that

U (t + 70 — t, — 70) € E(knTo + 1, To 4+t + 70, InTo +ty +70)2,.  (4.35)

By {y»} C B and the global estimate (B) in Section 2, we easily see that {x,} is
bounded, i.e.

{zn} C B for some B € B(H). (4.36)
Therefore, from Remarks and (4.34)-(4.36]) we observe that

20 € Wt6+7—(/)(B) C A:6+ , C A*

To
Thus (4.4) holds.

In the case (b) when ¢/, +7,, \, t(+ 7}, we can prove (4.4) by a slight modification
of the proof as above. O

Note that Theorem implies that the attracting set A% for (4.1)) is semi-

invariant under U, associated with the limiting Ty-periodic system (3.1)), in general.
Moreover, from Theorem we observe that

AL CcU(1,8)A;  forany 0 < s <7 < +00.

To get the invariance of A¥ under U, and A* = U(r, s).A%, let us use a concept
of a regular approximation, which was introduced in [17].

Definition 4.11 (Regular approximation). Let s € R, be fixed. Let 2 € D(y;).
Then, we say that U(t+ s, s)z is regularly approximated by E(t+ kTo +s, kT + s)
as k — —+oo, if for each finite T' > 0 there are sequences {k,} C Z; with k,, — +o0
and {z,} C H with 2, € D(¢**70%9%) and 2, — z in H satisfying the following
property: for any function u € W12(0,T; H) satisfying u(t) € U(t + s, s)z for all
t € [0, T] there is a sequence {u,} C W12(0,T; H) such that u,(t) € E(t + k,To +
s, knTo + $)zy for all t € [0,T] and u,, — u in C([0,T]; H) as n — +o0.

Using the above concept, we can show the invariance of A% under U,. Moreover
we can get

A* = U(r, )AL

Theorem 4.12. Suppose all assumptions in Theorem . Let A% and A% be
discrete attractors for E(-,s) and E(-,7), with 0 < s < 7 < 400, respectively.
Assume that for any point z of A%, U(t+ s,s)z is reqularly approximated by E(t +
kTy + s, kTy + s) as k — +o00. Then we have

AZ =U(T,s)A;.
Proof. By Theorem we have only to show that

U(r,s)A; C AL
To do so, let « be any element of U(r, s).A%.
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At first, taking into account Definitions (3.2 and Theorem [4.5| (iii), we see
that for each n € N

UrU(r,s)A;
=U(nTy + 7,7)U(1,8)AL = U(nTy + 7,nTy + s)U(nTy + s, 5) A’ (4.37)
=U(r,s)UA; DU(T,s)A;.
Hence, there exists an element y,, € A% such that
x e UrU(T,8)yn =UMTo+7— 5+ S, $)Yn.

Using our assumption as t = nTy + 7 — s, we observe that for each n, there are
sequences {ky ;} C Z;, {z,;} C H and {y, ;} C H such that

knj — 400, ynj € D(™TF) i — vy, in H
and
Tnj € EMTo+7—5+kn,;To+Ss, knjTo+ S)Ynj, Tn,; — inH (4.38)
as j — +o00. Therefore, by the usual diagonal argument, we can find a subsequence

{jn} of {j} such that z,, := xy j., Un := yn,j, and k, =k, ;, satisfy

- 1 - - N

|Zn —2|lg < —, Tp€EMTo+7—s+kTo+ 8, knTo+ 8)Un,
n

. (4.39)

|gn - yn|H < =

n

for n =1,2,.... Since {y,} is bounded in H, there is a bounded set B € B(H) so
that {g,} C B. By (E2), we see that

Tpn € EMTy+717— s+ ERTO + S,EnTO + 8)Un
= E(nTy + knTo + 7, To + knTp + 7)E(Ty + knTo + 7, knTo + 5) G,

hence there is an element z,, € E(Ty + EnTo + T, E,LTO + $)Yn such that
Tn € E(nTy + knTo + 7, Ty + knTp + 7)Z. (4.40)

Since {y,,} C B and the global estimate (B) in Section 2, we see that {Z,} is also
bounded in H. Hence, there is a bounded set B € B(H) so that {z,} C B. The

above fact (4.38])-(4.40) implies (cf. Remark that € w,(B) C A%. Thus we
have U(r, s) A% C A% O

By Remark [f.6]and the same argument in Theorem[4.12] we can get the following
corollary.

Corollary 4.13. (i) Suppose the same assumptions of Theorem . Then, A% is
invariant under the Ty-periodic dynamical system Ugs(:= U(To + s,5)). Namely,

Ar=ULAr  foranyl e N.

(i) Assume that for any point z of A, U(t + 7,7)z is regqularly approximated by
E(t+kTy+ 7,kTo + 1) as k — +oo. Then, Af D A.. Hence we have AX = A,
(cf. Theorem[4.5] (iii)).
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Remark 4.14. If the solution operator U(t,s) is single valued, namely the solu-
tion for the Cauchy problem of is unique, the assumptions of Theorem m
always hold. Thus, Theoremimplies the abstract results obtained in [TT] which
was concerned with the asymptotically Tp-periodic stability for the single valued
dynamical system associated with time-dependent subdifferentials.

5. APPLICATIONS TO OBSTACLE PROBLEMS FOR PDE’s

Let Q be a bounded domain in RV (1 < N < +4o0) with smooth boundary
I' =09, q be a fixed number with 2 < g < 400 and Tj be a fixed positive number.
We use the notation

ag(v,2) = [ |Vo|7 2 Vv Vzdr, Yv, z € WH(Q)
Q
and denote by (-,-) the usual inner product in L?().
For prescribed obstacle functions oy < o1 and each t € R, we define the set

K(t):={z € W"(Q);00(t,") <z < 01(t,") ae. on Q}.

Let f be a function in L2 (R4;L%*(Q)) and h be a non-negative function on
Ry x R.

Then for given b € L>(Q)" we consider an interior asymptotically Tp-periodic
double obstacle problem for each initial time s € R :
Find functions v € C([s, +o0); L*(Q)) and 6 € L2 ((s,+00); L?(£2)) such that

loc

v € Li (5, 4+00); WH(Q)) N W2 (s, +00); L*(9));

loc loc
v(t) € K(t) fora.e. t>s;
0<0(tx) <h(t,v(t,z)) a.e. on (s,+00)xQ; (5.1)

(W' () +0(t) +b-Vo(t) — f(t),v(t) — 2) + ag(v(t),v(t) —2) <0
for z € K(t) and a.e. t > s.

The main object of this section is to consider the large-time behavior of solution
for (5.1)) under asymptotically Tp-periodicity assumptions

Ui(t) - ai,P(t) —0 (Z =0, 1)’ h(t’ ) - hp(t7 ) — 0, f(t) - fp(t) —0

as t — oo in the sense specified below, where o, ,,(t), hy(t,-), fp(t) are periodic in
time with the same period Ty. By the above assumptions, the limiting system of
is a Ty-periodic one as follows:

Find functions u € C([s, +00); L?(Q2)) and 6 € L2 ((s,+0o0); L*()) such that

L2 ) loc
u € Lil (5, 400); WH(2)) N W02 (s, +00); L (9));
u(t) € Kp(t)
0<6(t,x) < hp(t,u(t,z)) a.e. on (s,+00) x Q; (5.2)
(u'(t) + 0(t) + b - Vu(t) — fp(t), u(t) = 2) + ag(u(t), u(t) — z) <0
for any z € K,(t) and a.e. t > s,

for a.e. t > s;

where K(t) := {z € WH9(Q) : 50,(t,-) < 2 < 01,(¢,-) a.e. on Q}.
Now we suppose the following conditions:
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e 0; and 0, ), are functions on R4 x ) such that

dor + % <+
su su o
teRIl dt |L2(ts+1,wra(Q)) tERp+ dt |L2(t,t4+1;L () ’
sup —dai’p + sup —dai’p
ter, | dt 1L2(tt+1;wh9(Q))  gery | dt IL2(4t41;0(9Q)

and o, ,, is a Tp-periodic obstacle function, i.e.
oip(t+To,x) =0;,(t,x) forae z€Qandanyte Ry

for ¢ = 0,1. Moreover, there are positive constants k1 > 0 and ks > 0 such
that

o1—o9p>k and o01p,—00p >k ae on Ry xQ

and

) ) . ) } ) <
+ B 3 ) —
04| oo (Ry s wta(Q)) + [Til Lo (R x Q) F |Tiplioe (Ryswra)) + Tiplre(rox) < k2

for i =0, 1.
e h and h, are non-negative continuous functions on R x R. There is a
positive constant L such that

|h(t, 21) — h(t, 22)| < L|z1 — 2|
‘hp(tv 21) — hp(ta z9)| < L|z1 — 22
forallt € Ry, z; € R and 7 = 1,2. Moreover, h, is a Ty-periodic function,

ie. for any z € R, hy(t+ To,z) = hy(t, 2) for any t € R,
o f, fpeL? (Ry;L3(R)), and f, is a Ty-periodic function, i.e.

loc
fot+To) = fp(t) in L*(Q), VteR..

Moreover, we suppose the following convergence conditions:
o (Convergence of 0;(t) — 0, ,(t) — 0 as t — 400) Put
Ly, := sup |og(mTy +t) — 00,(t)|wra()
t€]0,To]

+ sup |oi(mTy +t) — o1,(t)|wraq)
t€[0,7o]

+ sup |og(mTy +t) — 00,,(t)| L ()
t€[0,7o]

+ sup ‘O’l(mTo + t) — 0'17p(t)|Loo(Q).
t€[0,To)

Then, I,, — 0 as m — +oo.
e (Convergence of h(t,-) — hy(t,-) — 0 as t — 4o00) For any z € R,

sup |h(mTp+t,z) — hy(t,2)] = 0  as m — 4o0. (5.3)
te[0,To]

e (Convergence of f(t) — fp(t) — 0 as t — +00)

|f(mT0 + ) - fp|L2(07T0;L2(Q)) — 0 as m — +00. (5.4)
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Under the above assumptions, let us consider problems (5.1)) and (5.2)). To apply
the abstract results in Sections 2-4, we choose L?({)) as a real separable Hilbert
space H. And we define a proper l.s.c. convex function ! on L?(2) by

1
f/ Veltde if 2 € K(2),
=4 9Ja
+00 if 2 € L*(Q)\ K(t),
and define ¢}, by replacing K (t) by K (t) in (5.5).
Also, we define a multivalued operator G(,-) from R, x H(Q) into L?(2) by
G(t,z) ={g€e L*(Q);g=1+b-Vz in L*(Q)
0 <i(z) < h(t, 2(z)) ae. onQ}

forall t € Ry and z € H'(Q2). And we define G, (-, -) by replacing h(t,-) by hy(t,)
in (5.6).

By the same argument as in [27, Lemma 5.1], we can obtain the following lemmas.

¢'(2) (5:5)

(5.6)

Lemma 5.1 (cf. [27, Lemma 5.1]). For anyr >0 and t € Ry, put
ar(t) = b.()

t
- k3/0 {106 pl L= (0 + 100 plwra(e) + |01 plL=(0) + 107 plwra(e) } d7

t
+ 7f3/ {loolL=(@) + loblwra) + |01l @) + ol lwra) } dr,
0

where ks is a (sufficiently large) positive constant. Then, {¢'} € ®({a,},{b.}) and
{eb} € @,({ar}, {b+}; To). Moreover we have {G(t,-)} € G({¢'}) and {G,(t,-)} €
Gp({ep}: To)-
Lemma 5.2. The convergence assumptions (A1)-(A3) hold.
Proof. We see easily that (A2) and (A3) hold by assumptions (5.3]) and (5.4). Now
let us show (Al). For each t € Ry there are m € Z; and 7 € [0,Tp] so that
t =mTy + 7. For each z, € D(p},) = Kp(t), we put
01(t) = oo(t)
o1,p(t) = 00,p(t)
Then we see that z € D(¢?) = K(t). Moreover, by the same argument in [27]
Lemma 5.1], we see that

|z — Zp|L2(Q) < kql,, and |Vz-— VZp|Lq(Q) < kgl (1 + ‘VZp|Lq(Q)) (5.7)
for some constant k4 > 0. Hence we have
@'(2) = ¢p(zp) < ksln(1+ ¢ (2p)) (5.8)

for a sufficiently large k5 > 0.
Conversely, let 2z € D(p?) = K(t) and we put

(t) — oop(t)
o1(t) — oo(t)
Then, we observe that z, € D(¢}) = K,(t) and

lzp — 2l2() < kalm  and @) (2) — ©'(2) < ksIn (14 ¢'(2)). (5.9)
Therefore, by (5.7)-(5.9) we see that the convergence assumption (Al) holds. O

2= (2p = 00,(1)) +o0(t).

+ 0'07p(t).
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Clearly, the obstacle problem ({5.1]) can be reformulated as an evolution equation
(4.1) involving the subdifferential of ! given by (5.5) and the multivalued oper-

ator G(t,-) defined by (5.6). Also, the limiting Ty-periodic problem (5.2) can be
reformulated as an evolution equation (3.1]). Therefore, by Lemmas [5.1}15.2] we can
apply abstract results in Section 2-4. Namely, we can obtain an attractor A* for

(5.1), a To-periodic attractor A for ((5.2) and the relationships between (5.1)) and
(©-2)

Additionally, we assume that f(t) = f,(¢) for any ¢t € Ry and
oo(t,z) = 00,p(t, 2), o1t 2) =01(t,2), hy(t,z) < h(t, 2)

for any 0 < t < 400 and z € R. Then we easily see that the assumptions of
Theorem and its Corollary hold. Hence we can get A% = A; by the same
argument in [30, Theorem 5.4].
Unfortunately, we do not give assumptions for o;(t,-), h(t,-) and f(¢) in order
to get
U(r,s)Ar; = A C A, for any 0 < s <7 < 400. (5.10)
It seems difficult to show , so we leave it as an open problem.
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