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UPPER SEMICONTINUITY OF ATTRACTORS AND
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PROBLEMS WITH DEGENERATE p-LAPLACIAN
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Abstract. In this work we obtain some continuity properties on the param-

eter q at p = q for the Takeuchi-Yamada problem which is a degenerate p-
laplacian version of the Chafee-Infante problem. We prove the continuity of

the flows and the equilibrium sets, and the upper semicontinuity of the global

attractors.

1. Introduction

The inspiration for this study arose from the description by Chafee and Infante
of the bifurcation scheme and stability properties of the equilibrium solutions for
the semilinear problem

ut = λuxx + u− u3, (x, t) ∈ (0, 1)× (0,+∞)

u(0, t) = u(1, t) = 0, 0 ≤ t < +∞
u(x, 0) = u0(x), x ∈ (0, 1),

(1.1)

where λ is a positive parameter and the initial data are sufficiently smooth [4].
Using a time-map method that adjusts the initial speed of a Cauchy problem to
ensure that the desired boundary conditions are satisfied, Chafee and Infante proved
that for fixed values of λ > 0 there are a finite number of stationary solutions to
the problem (1.1), which bifurcate in pairs from the null solution at each point of
a decreasing sequence {λn}, each new pair being symmetrical with respect to the
abscissa axis and containing one more zero than the prior pair in such way that
when λn → 0, the number of stationary solutions of (1.1) tends to infinity.

Since this problem belongs to a class of problems in which trajectories asymp-
totically tend to the equilibrium points when t → ∞, and also when t → −∞ in
the case of complete trajectories, detailed knowledge of the stationary solutions is
useful in understanding the attractor structure, which for gradient systems, is the
set of all equilibrium solutions with their connecting trajectories, [6].
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Subsequently Takeuchi and Yamada published a detailed description of the bi-
furcation diagram for equilibria of the quasilinear problem

ut = λ(|ux|p−2ux)x + |u|q−2u(1− |u|r), (x, t) ∈ (0, 1)× (0,+∞)

u(0, t) = u(1, t) = 0, 0 ≤ t < +∞
u(x, 0) = u0(x), x ∈ (0, 1),

(1.2)

where p > 2, q ≥ 2, r > 0 and λ > 0, taking into consideration the relations
between p and q, [13]. Denoting by Eλ = Eλ(p, q) the set of equilibria of problem
(1.2), which describes a gradient system, we find that:

• If p > q, Eλ = {0} ∪∞n=0 ±Enλ , where Enλ = Enλ (p, q) is the set of stationary
solutions φn with n zeros in (0, 1) and the sign ± indicates the sign of
(φn)x(0), any equilibrium φ ∈ +Eλ = Eλ has positive initial condition
φx(0) and −Eλ is the set of the opposites. In this case, there is a relevant
sequence {λn} such that, if n ≥ 1 and λ ≥ λn, then Enλ is a single set. E0

λ

is always a single set.
• if p = q, Eλ changes depending on where the parameter λ is located with

respect to two sequences, {λ∗n} and {λn}. The first sequence sets the max-
imum number of zeros allowed to an equilibrium. The second sequence, as
in the prior case, states for each n > 0, if Enλ is a single or a continuum set.
If λ ≥ λ∗0, then Eλ = {0}. If λ∗M+1 ≤ λ < λ∗M , then Eλ = {0} ∪Mn=0 ±Enλ .
E0
λ is always a single set.

• if p < q, Eλ also changes according the position of λ with respect to two
sequences {λ∗n(p, q)} and {λn}. Again, if λ ≥ λ∗0, Eλ = {0}. If λ∗M+1 <

λ ≤ λ∗M , then Eλ = {0} ∪Mn=0 (±{Fnλ } ∪ ±Enλ ), where Fnλ = {ψn} and, if
λ = λ∗n(p, q), Enλ = ∅, Enλ = {φn} if λn ≤ λ < λ∗n(p, q). Here ψn and φn are
equilibria with n zeros in (0, 1), |ψn(x)| < |φn(x)| for all x ∈ (0, 1) except
for zero points of ψn and φn.

In any case, if n ≥ 1 and λ < λn, then Enλ is diffeomorphic to [0, 1]n.
When p = q there are notable similarities between problems (1.1) and (1.2), par-

ticularly in regarding the stability properties of the equilibria. The trivial solution
in each case is asymptotically stable for large values of the diffusion parameter λ
and becomes unstable when the first pair of nontrivial equilibria bifurcates from
null solution. These, in turn, remain asymptotically stable, while other stationary
solutions are unstable.

The principal difference between problems (1.1) and (1.2) lies in the following. In
the former, semilinear problem, although the number of elements in the equilibrium
set tends to infinity when the diffusion goes to zero, it remains discrete, because
the equilibria bifurcate from the trivial solution in pairs. In the later, quasilinear
problem, however, the equilibrium set can contain continuum components if the
diffusion coefficient is insufficiently large since the stationary solutions can reach
their extremes at 1 and −1, which are zeros on the right side of the equation. Thus,
stationary solutions can form flat cores when attaining these values and, although
the sum of the lengths of all flat cores must be constant, it can be freely distributed
among them. Accordingly there is a continuum of equilibrium solutions with the
same number of zeros. This situation does not occur in the semilinear problem, as
the “x-time” required for equilibria to achieve their extremes in 1 or −1 is infinite.

Nevertheless, in regard to problem (1.2), for each fixed value of λ, there are
finite connected components of Eλ(p, p), each composed of solutions containing the
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same number of zeros and bifurcating from the trivial solution. The attractor is the
finite union of the unstable set of the connected components of Eλ. In this case, the
attractor is the union of Eλ with the complete trajectories joining their connected
parties, [2, 13]. It was proved in [2] that the problem (1.1) can be attained as a
limit of (1.2) when p ↓ 2 and, for each fixed value of λ, Eλ behaves continuously
with relation to p, becoming discrete when p is located in some positive distance of
2.

Only the case p = q is considered in [2], as in other cases, the complex configura-
tion of the equilibrium sets diverges significantly. The purpose here is to prove the
continuity of the equilibrium set of problem (1.2) with respect to q when q → p.
To this end, the following questions must be considered. For λ fixed, when q ↑ p,
even when q is close to p, given n > 0 there are at least two solutions in Eλ(p, q)
having n zeros in (0, 1). When p = q, however, there exists a maximum value M
such that any solution in Eλ(p, p) have a number of zeros less than or equal to M .
The value of M is determined as a function of the position of λ with respect to the
points of the sequence {λn}. When q ↓ p, the number of zeros in (0, 1) of equilib-
ria is bounded if p = q or p < q but the sequences that determine the maximum
value of zeros for a stationary solution are distinct, being {λ∗n} in the first case and
{λ∗n(p, q)} in the latter. Further, given n, Eλ(p, q) can contain two entirely distinct
equilibria with n zeros, ±ψnλ , that do not appear in the configuration of Eλ(p, p).
As will be shown in Section 4 these unanticipated equilibria, i.e., the stationary
solutions which are not supposed to exist in case p = q, converges to the trivial
solution when q → p despite the value of λ.

The lower continuity of attractors is not an easy problem and there is no much
we know about. In the specific case when p = q and the diffusion parameter λ is
such that λ∗1 ≤ λ ≤ λ∗0, then we can say that the attractors Ap of the problem (1.2)
are lower semicontinuous at p = 2. This follows from the fact that, in this case,
there exists only two complete trajectories for the Chafee-Infante problem (case
p = 2), (see [8], p126), and then we can combine the continuity of the semigroups
on p with the continuity of the equilibrium set to verify that each point on those
complete trajectories can be reached as a limit of points on complete trajectories
inside the attractors Ap, p > 2.

Regarding the diffusion parameter λ, once λn depends on (p, q), the question
arises if the connected components of Eλ(p, q) and Eλ(p, p) have similar cardinality
properties when q is close to p, whether when p 6= q the equilibrium components
of Eλ(p, q) that have natural correspondence with some component Enλ (p, p) when
p = q are discrete or continuum according to the respective cardinality of Enλ (p, p).
The answer to this query is no, as detailed in Section 4. There is but one situation
described in Case 3, Section 4, in which this fact must be addressed, but the
continuity of Eλ(p, q) is not affected. Similarly, despite the fact that sequence
λ∗n(p, q) depends on q, the same maximum value M for the amount of zeros allowed
to an equilibrium in Eλ(p, p) and Eλ(p, q), p < q, is found consistently.

Based on the preceding, the continuity of the sets Eλ(p, q) is studied via the
continuity properties of equilibria. In Section 4, the ordinary differential equation,
which describes the stationary solutions of (1.2), is reviewed and its dependence
on initial conditions and parameters is analyzed. Section 2 presents the required
uniform estimates and locates the dynamics of problem (1.2) in W p

0 (0, 1). Subse-
quently it is proven that the family of attractors Apq is upper semicontinuous with
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respect to (p, q) in C[0, 1] topology. Additionally, if p remains fixed, Apq is upper
semicontinuous with respect to q in W 1,p

0 (0, 1).

2. Uniform estimates and asymptotic properties

The asymptotic behavior of solutions of problem (1.2) is a well known issue,
and it is not difficult to prove that (1.2) defines a semigroup which has a global
attractor when set in L2(0, 1) or even in W 1,p

0 (0, 1), since it enjoys good properties
of compactness and dissipativity. In this section we list all the necessary estimates
to guarantee the existence of these attractors. Most of the results below is shown
in [2], so we will just explicit the uniformity of the upper bounds with respect to
parameters p and q when (p, q) is in a bounded subset R of (2,∞) × [2,∞). We
will denote by upq a solution of (1.2).

We first need to obtain estimates for the L2(0, 1) norm of solutions. This is done
exactly as in [2, Lemma 2.1], whose statement is repeated here properly fitted to
the context of this work.

Lemma 2.1. Let upq be a solution of (1.2) with upq(0) = u0 ∈ L2(0, 1). Given
T0 > 0 there exists K̃1 > 0 such that ‖upq(t)‖2 < K̃1 for t ≥ T0 and (p, q) ∈
R. Furthermore, given B ⊂ L2(0, 1), B bounded, there exists K1 > 0 such that
‖upq(t)‖2 < K1 for t ≥ 0, (p, q) ∈ R and u0 ∈ B. The positive constants K̃1,K1

are independent of (p, q) ∈ R, r > 0 and λ > 0.

Remark 2.2. We note that the constant K̃1 gives us a L2(0, 1) estimate after
some time has elapsed from the origin, and it is uniform on (p, q) ∈ R, completely
independent of the initial data and uniform on bounded sets with respect to the
parameter r. The constant K1, which estimates solutions since the origin, carries,
as expected, a dependence on the initial data which is uniform however on bounded
subsets of L2(0, 1).

To establish the estimates on W 1,p
0 (0, 1) we introduce the following notation:

ϕ1
pq, ϕ

2
q : L2(0, 1)→ R given by

ϕ1
pq(u) .=

{
λ
p

∫ 1

0
|ux(x)|pdx+ 1

q+r

∫ 1

0
|u(x)|q+rdx, u ∈W 1,p

0 (0, 1)
+∞, otherwise,

and

ϕ2
q(u) .=

{
1
q

∫ 1

0
|u(x)|qdx, u ∈ Lq(0, 1)

+∞, otherwise

It is advantageous to rewrite the equation in (1.2) in an abstract way involving
the difference of two subdifferential operators. Thus the existence of global solutions
is easily obtained as a consequence of [11] and new estimates can be obtained, this
time in a stronger norm.

du

dt
(t) + ∂ϕ1

pq(u(t))− ∂ϕ2
q(u(t)) = 0 (2.1)

where ∂ϕ1
pq and ∂ϕ2

q are subdifferential of ϕ1
pq and ϕ2

q respectively.

Remark 2.3. Given c0 and qM , 0 < c0 < 1, qM > 2, there exists c > 0 depending
only on r and c0 such that

ϕ2
q(u) ≤ c0ϕ1

pq(u) + c
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for each u ∈W 1,p
0 (0, 1), λ > 0 and 2 ≤ q ≤ qM . In fact, if η > 0,

ϕ2
q(u) =

1
q
‖u‖qLq(0,1)

≤ r

(q + r)(ηq)
q+r
r

+ qη
q+r
q

(λ
p
‖u‖p

W 1,p
0 (0,1)

+
1

q + r
‖u‖q+rLq+r(0,1)

)
.

Let g(q) = ( c0q )
q
q+r = e

q
q+r ln(c0/q), then g′(q) < 0 and it is enough to choose η

such that 0 < η < ( c0qM )
qM
qM+r for 2 ≤ q ≤ qM . Then qη

q+r
q ≤ c0 and

c
.=

r

(2 + r)2
2+r
2 η

qM+r
r

.

The following lemmas show the estimates we have in W 1,p
0 (0, 1) norm. Note

that, even if the initial data are taken into L2(0, 1), since the flow is governed
by a subdifferential (so it has good smoothing properties), we can ensure strong
estimates in W 1,p

0 (0, 1) from any positive time elapsed from the origin.

Lemma 2.4. Given δ > 0 there exists K̃2 > 0 such that ‖upq(t)‖Wp,q
0 (0,1) ≤ K̃2 for

t ≥ δ and for all initial data u0 in L2(0, 1)

Remark 2.5. The above lemma is a direct consequence of [13, Lemma 2.1] and
the first assertion of Lemma 2.1. The constant K̃2 carries the same dependence of
K̃1, that means, it is uniform on (p, q) ∈ R, completely independent of the initial
data and uniform on bounded sets with respect to the parameter r.

However, if we are interested in estimates since the beginning of evolution, so
we naturally find upper bounds dependent on the initial data. The demonstration
is exactly the same as [2, Lemma 2.2].

Lemma 2.6. Let upq be a solution of (1.2) with upq(0) = u0 ∈ W 1,p
0 (0, 1). Given

M > 0 there exists a positive constant K2 > 0 such that ‖upq(t)‖
W

1,p
0 (0,1)

< K2

for t ≥ 0 and (p, q) ∈ R. Furthermore, the positive constant K2 can be uniformly
chosen for (p, q) ∈ R, and ‖u0‖W 1,p

0 (0,1) ≤M .

Finally, from the above lemma we conclude our set of uniform estimates of {upq},
giving bounds to the solutions of the problem (1.2) in L∞(0, 1).

Lemma 2.7. Let upq be a solution of (1.2) with upq(0) = u0 ∈ W 1,p
0 (0, 1) and

‖u0‖W 1,p
0 (0,1) ≤M . From Lemma 2.6 we obtain

‖upq(t)‖∞ ≤ K3(M), t ≥ 0.

Remark 2.8. If the initial data are in L2(0, 1)−W 1,p
0 (0, 1), for each δ > 0 we find

K̃3 depending on δ and p, with

‖upq(t)‖∞ ≤ K̃3(δ, p), t ≥ δ.

The existence of the global attractor in L2(0, 1) is a simple consequence of Lemma
2.1 and Lemma 2.6, as it is claimed in [2, Corollary 2.3]. It is also very simple to ob-
tain the existence of global attractor to the restriction of the semigroup to the space
W 1,p

0 (0, 1). In fact, for each (p, q) ∈ R, let us denote by {Spq(t)} the semigroup
associated with problem (1.2) in W 1,p

0 (0, 1). We prove below that {Spq(t)} is a
continuous semigroup of compact operators. The following result will be necessary.
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Lemma 2.9. Let B ⊂ W 1,p
0 (0, 1) be a bounded set and let T > 0, qM > 2. There

is a constant K4 such ‖ ∂∂tupq(t)‖L2(0,1) ≤ K4 for any p > 2, 2 < q < qM , t ∈ [0, T ]
and u0 ∈ B.

Proof. Multiplying the equation in (1.2) by ∂
∂tupq(t) and integrating from 0 to T

we obtain∫ T

0

‖ ∂
∂t
upq(s)‖2L2(0,1)ds+ ϕ1

pq(upq(T )) ≤ ϕ2
q(upq(T )) + ϕ1

pq(upq(0))

≤ c0ϕ1
pq(upq(T )) + ϕ1

pq(upq(0)) + c

(2.2)

where c0 < 1 and c is the same of Remark 2.3. On the other hand, if we denote
fq(s)

.= |s|q−2s(1− |s|r) then
1
2
d

dt
‖upq(t+ h)− upq(t)‖2L2(0,1) = 〈 ∂

∂t
upq(t+ h)− ∂

∂t
upq(t), upq(t+ h)− upq(t)〉

≤ 〈fqupq(t+ h)− fqupq(t), upq(t+ h)− upq(t)〉
≤ C‖upq(t+ h)− upq(t)‖2L2(0,1),

where C .= (qM − 1)
qM+r−2

r . So by Gronwall we obtain

‖upq(t+ h)− upq(t)‖2L2(0,1) ≤ ‖upq(s+ h)− upq(s)‖2L2(0,1)e
2CT .

Therefore,

T‖ ∂
∂t
upq(t)‖2L2(0,1) ≤

∫ T

0

‖ ∂
∂t
upq(s)‖2L2(0,1)ds e

2CT

and from (2.2) we conclude that

‖ ∂
∂t
upq(t)‖L2(0,1) ≤ K4.

�

Theorem 2.10. For each t > 0 the mapping Spq(t) : W 1,p
0 (0, 1) → W 1,p

0 (0, 1) is
continuous and compact.

Proof. Let T > 0, 0 < t < T and {u0n} ⊂ W 1,p
0 (0, 1) a sequence converging to u0

in W 1,p
0 (0, 1). Then u0n → u0 in L2(0, 1) and, from [13, Lemma 2.1], Spq(·)u0n →

Spq(·)u0 in Lp(0, T ;W 1,p
0 (0, 1)). Therefore we can conclude that exists a subse-

quence denoted by {un(t)} ⊂ {Spq(t)u0n} which converges to u(t) .= Spq(t)u0 a.e.
in [0, T ]. Let A ⊂ [0, T ] the set where ‖un(·) − u(·)‖W 1,p

0 (0,1) → 0. Given an arbi-
trary t ∈ (0, T ] we claim that ‖un(t)‖W 1,p

0 (0,1) → ‖u(t)‖W 1,p
0 (0,1). In fact, for each

θ ∈ A
|ϕ1
pq(un(t))− ϕ1

pq(u(t))| ≤ |ϕ1
pq(un(t))− ϕ1

pq(un(θ))|+ |ϕ1
pq(un(θ))− ϕ1

pq(u(θ))|
+ |ϕ1

pq(u(θ))− ϕ1
pq(u(t))|

and

|ϕ1
pq(un(t))− ϕ1

pq(un(θ))| ≤
∫ t

θ

∣∣∣∣〈∂ϕ1
pq(un(s)),

∂

∂s
un(s)〉

∣∣∣∣ ds
≤ 3

2

∫ t

θ

‖ ∂
∂s
un(s)‖2L2(0,1)ds+

1
2

∫ t

θ

‖fq(un(s))‖2L2(0,1)ds,

where fq(s)
.= |s|q−2s(1 − |s|r). We can obtain the same result changing un by u

in the above inequality. So, it follows from Lemma 2.7 and Lemma 2.9 that, given
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η > 0, we can choose θ ∈ A close to t and n large enough to obtain |ϕ1
pq(un(t)) −

ϕ1
pq(u(t))| ≤ η. Therefore we conclude that un(t)→ u(t) in W 1,p

0 (0, 1).
We observe that, in fact, this proof shows that Spq(t) is continuous from L2(0, 1)

to W 1,p
0 (0, 1).

To prove the second statement, let B ⊂ W 1,p
0 (0, 1) a bounded subset. Let us

prove that Spq(t)B is relatively compact in W 1,p
0 (0, 1). As W 1,p

0 (0, 1) is compactly
immersed in L2(0, 1), given any sequence {u0n} ⊂ B, there is u0 such that u0n →
u0 ∈ L2(0, 1) and so Spq(t)u0n → Spq(t)u0 in W 1,p

0 (0, 1), which concludes the
proof. �

The existence of a global attractor Apq for Spq(t) in W 1,p
0 (0, 1) is a consequence

of Lemma 2.6, Theorem 2.10, and [9, Theorem 2.2].

Proposition 2.11. Given (p, q) ∈ R, let Spq(t) : W 1,p
0 (0, 1) → W 1,p

0 (0, 1) the
semigroup determined by problem (1.2). Then {Spq(t)} has a global attractor, which
is compact and invariant.

3. Continuity of flows and upper semicontinuity of the attractors

In this section we proof that, given T > 0 and (p0, q0) ∈ R, the solutions {upq}
of (1.2) go to the solution up0q0 of (1.2) in C([0, T ];L2(0, 1)) , when p → p0 and
q → q0. After that, we will obtain the upper semicontinuity of the family of global
attractors

{Apq ⊂W 1,p
0 (0, 1); (p, q) ∈ R}

of (1.2) at (p0, q0) in the topologies of L2(0, 1) and C([0, 1]). Furthermore, when
p = p0 we will prove the upper semicontinuity in W 1,p0

0 (0, 1).
First of all we observe that from Section 2, there exists a positive constant M ,

independent of t ≥ 0 and (p, q) ∈ R, such that

‖upq(t)‖W 1,p
0 (0,1) ≤M

for all t ≥ 0 and (p, q) ∈ R. Following exactly the same steps in Section 3 of [2] we
obtain an adapted version of Baras’Theorem, [15], as we state bellow.

Lemma 3.1. Given T > 0, the set

Mpq :=
{
upq ⊂W 1,p

0 (0, 1) : (p, q) ∈ R, upq is a solution of (1.2) with

upq(0) = u0 pq ∈W 1,p
0 (0, 1), u0 pq → u0 as (p, q)→ (p0, q0) in L2(0, 1)

and ‖u0 pq‖W 1,p
0 (0,1) ≤M, ∀(p, q) ∈ R

}
,

is relatively compact in C([0, T ];L2(0, 1)).

Theorem 3.2. For each (p, q) ∈ R, let {upq} ⊂W 1,p
0 (0, 1) be a solution of

d

dt
upq(t)− λ(|(upq(t))x|p−2(upq(t))x)x = |upq(t)|q−2upq(t)(1 + |u(t)|rpq), t > 0

upq(0) = u0 pq ∈W 1,p
0 (0, 1).

Suppose that ‖u0 pq‖W 1,p
0 (0,1) ≤ M for every (p, q) ∈ R and u0 pq → u0 as (p, q) →

(p0, q0) in L2(0, 1). Then, for each T > 0, upq → u in C([0, T ];L2(0, 1)) as (p, q)→
(p0, q0), where u is a solution of

d

dt
u(t)− λ(|ux(t)|p0−2ux(t))x = |u(t)|q0−2u(t)(1 + |u(t)|r), t > 0
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u(0) = u0 ∈ L2(0, 1).

Proof. Throughout this proof we denote

fq(v(t)) = |v(t)|q−2v(t)(1 + |v(t)|r).

Since
‖upq(t)‖W 1,p

0 (0,1) ≤M

for all t > 0, (p, q) ∈ R with M independent of t ≥ 0 and (p, q) ∈ R, we ob-
tain that {upq(t)} is uniformly bounded in L∞(0, 1) for (p, q) ∈ R and t ∈ [0, T ].
Furthermore, from Lemma 3.1, {upq} converges in C([0, T ];L2(0, 1)) to a function
u : [0, T ]→ L2(0, 1), when p→ p0 and q → q0. Since fq(upq) is uniformly integrable
in L1([0, T ];L2(0, 1)) and

‖fq(upq(t))− fq0(v(t))‖ ≤ ‖fq(upq(t))− fq0(upq(t))‖+ ‖fq0(upq(t))− fq0(u(t))‖

≤ K̄|q − q0|+ K̃|upq(t)− u(t)|,

we obtain fq(upq(t))→ fq0(u(t)) in L2(0, 1) for each t > 0 when p→ p0 and q → q0.
Now, with the same arguments used in [2] we obtain that u is a weak solution of

d

dt
u(t)− λ(|ux(t)|p0−2ux(t))x = |u(t)|q0−2u(t)(1 + |u(t)|r), t > 0

u(0) = u0 ∈ L2(0, 1).

and we obtain the desired result. �

Corollary 3.3. The family of global attractors {Apq ⊂W 1,p
0 (0, 1)) : (p, q) ∈ R} of

problem (1.2) is upper semicontinuous at (p0, q0) in the L2(0, 1) topology.

Proof. The results in Section 2 imply that there exists a bounded set B ⊂ L2(0, 1)
such that Apq ⊂ B, for every (p, q) ∈ R. Since Ap0,q0 attracts bounded sets of
L2(0, 1), for every δ > 0, there is T1 > 0 in such way that

sup
ψpq∈Apq, (p,q)∈R

distL2(Ω)(up0,q0(T1;ψpq),Ap0,q0) ≤ δ

2
,

where up0q0(t;ψpq) is a solution of problem (1.2) when p = p0 and q = q0 with
initial condition ψpq.

Now, the previous results in this section imply that there exist δ0 > 0 and ε > 0
such that

‖upq(t;ψpq)− up0q0(t;ψpq)‖L2(0,1) <
δ

2
,

for |p− p0| < δ0, |q − q0| < ε and T ≥ t ≥ T1.
Thus, for |p− p0| < δ0, we obtain

distL2(0,1)(upq(T1;ψpq),Ap0q0)

≤ ‖upq(T1, ψpq)− up0q0(T1;ψpq)‖L2(0,1) + distL2(0,1)(up0q0(T1, ψpq),Ap0q0) < δ.

On the other hand, it follows from the invariance of the attractors that

distL2(0,1)(Apq,Ap0q0) ≤ δ,

for every |p−p0| < δ0 and q such that |q−q0| ≤ ε showing the upper semicontinuity
desired. �
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Remark 3.4. It follows from Theorem 2.6, Corollary 3.3, [3, Lemma 1.1] and
the compact immersion of W 1,2

0 (0, 1) in C([0, 1] that the family {Apq} is upper
semicontinuous at (p0, q0) in the topology of C([0, 1]).

Now we are interested in obtaining the upper semicontinuity of global attractors
of (1.2) in a stronger topology. To do that, we consider p fixed, and q → q0.

Theorem 3.5. For each (p0, q) ∈ R, let {up0q} ⊂W
1,p0
0 (0, 1) be a solution of

d

dt
up0q(t)− λ(|(up0q(t))x|p0−2(up0q(t))x)x

= |up0q(t)|q−2up0q(t)(1 + |u(t)p0q|r), t > 0

up0q(0) = u0 p0q ∈W
1,p0
0 (0, 1).

Suppose that ‖u0 p0q‖W 1,p0
0 (0,1)

≤ M for every (p0, q) ∈ R and u0 p0q → u0 in

L2(0, 1) as q → q0. Then, for each T > 0, up0q → u in C([0, T ];W 1,p0
0 (0, 1)) as

q → q0, where u is a solution of

d

dt
u(t)− λ(|(u(t))x|p0−2(u(t))x)x = |u(t)|q0−2u(t)(1 + |u(t)|r), t > 0

u(0) = u0 ∈W 1,p0
0 (0, 1).

The above theorem is a simple consequence of Tartar’s Inequality, Lemma 2.7
and Lemma 2.9.

With the same argument as in the proof of Corollary 3.3 we can prove the next
result.

Corollary 3.6. The family of global attractors {Apq ⊂ W 1,p0
0 (0, 1)) : (p0, q) ∈ R}

of problem (1.2) is upper semicontinuous at (p0, q0) in the topology of W 1,p0
0 (0, 1).

4. Continuity of equilibrium sets

In this section, considering p fixed, we prove the continuity of the family of
equilibrium points of the equation (1.2) when q goes to p. To analyze the continuity
of the equilibrium sets it is interesting to remember how the stationary solutions
are obtained in [13].

Let φαq be a solution of

λ(ψ)x + fq(φαq) = 0, in (0,∞)

φαq(0) = 0,

ψ(0) = α

(4.1)

where α is a parameter, ψ = |(φαq)x|p−2(φαq)x and fq(φ) = |φ|q−2φ(1− |φ|r). We
observe that, in order to a solution of (4.1) be an equilibrium point of (1.2), α must
be such that φαq(1) = 0.

We denote by X(α, p, q) the function that measure the x-time that the solution
φαq of (4.1) takes to reach the first maximum point. Because of the symmetry we
have that φ(2X(α, p, q)) = 0 or, more generally, φα,q(2kX(α, p, q)) = 0, k = 1, 2, . . ..
Also, we have that 2nX(α, p, q) = 1 is a sufficient condition to φαq be an equilibrium
point of (1.2) with n− 1 zeros in (0, 1) ⊂ R. Due to the symmetry of the problem,
we can only consider α > 0.
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The function X is

X(α, p, q) =
(λ(p− 1)

p

)1/p

I(p, q, φ̃α,q),

where φ̃α,q is the maximum value of φα,q and

I(p, q, a) =
∫ a

0

(Fq(a)− Fq(φ))−1/pdφ,

with Fq(φ) = F (φ, q) =
∫ φ

0
fq(s)ds = φq

q −
φq+r

q+r ∈ C
1((0,∞)× (2,∞)).

In [13], the authors studied the behavior of the function Y (p, q), which describes
the distance between two consecutive zeros of an equilibrium and, analyzing their
graphs for p > q, p = q and p < q, they obtain that if p > q there exists a
decreasing sequence λn(p, q), λn(p, q)→ 0 when n→∞ such that the equilibrium
set E = {0} ∪ ∪∞i=0E

±
i where E±i denote the equilibrium sets within the equilibria

with i zeros in (0, 1) and if λ < λn(p, q), the set E±i is diffeomorphic to [0, 1]i, for
1 ≤ i ≤ n. We observe that in this case there are equilibrium points with any
amount of zeros in (0, 1).

If p ≤ q there exist decreasing sequences λn(p, q) → 0 and λ∗n(p, q) → 0 such
that λ∗n(p, q) > λn(p, q). If p = q, for λM+1 ≤ λ < λM , the equilibrium set is given
by E = {0} ∪ ∪Mi=0E

±
i . If p < q, for λM+1 < λ ≤ λM the equilibrium set is given

by E = {0} ∪ ∪Mi=0(E±i ∪ {F
±
i }), where E±i denote the equilibrium sets containing

equilibria with i zeros in (0, 1) and F±i = {ψ±i } also is equilibrium with i zeros in
(0, 1). Furthermore, if p ≤ q and λ < λn(p, q), the set E±i is diffeomorphic to [0, 1]i,
for 1 ≤ i ≤ n. In any case, E±0 = {φ±0 } for λ < λ0(p, q).

About the stability of the equilibria, in [13, Theorems 4.2, 4.3], they obtain that
0 is asymptotically stable if p = q and λ ≥ λ0 or if p < q, 0 is unstable for p > q
or p = q and λ < λ0. The equilibrium φ+

0 is asymptotically stable if λ > λ∗0 and
attractive for λ ≤ λ∗0, and if q > p, ψ0 is unstable for λ ≤ λ0.

Since we deal with the dependence on the parameter q and there are qualita-
tive changes in the equilibrium sets depending on the relation between p and q, if
necessary, we will exhibit explicitly the parameters p and q.

To prove the continuity of the equilibrium set, we take a sequence of equilibria in
E±i with a fixed number of zeros and, analyzing the initial slopes of such stationary
solutions, we conclude through the continuity properties of problem (4.1), that this
sequence must converge to an equilibrium point of the limit problem with the same
amount of zeros in (0, 1) or, when it is not possible, the sequence converges to the
null stationary solution. We also prove that any sequence of equilibria taken in
{ψi} ⊂ F±i converges to zero.

We start with the analysis of the dependence of φ̃α,q on q and α. We know that
φ̃α,q is strictly increasing and C1 in α, α ∈ [0, α0) (see [2]). With respect to q, since
φ̃α,q is the maximum value of φα,q, then φ̃α,q satisfies

F (φ̃α,q, q) = λ
(p− 1)
p
|α|

p
p−1 .

Calculating
∂

∂q
F (φ, q) =

φq(q lnφ− 1)
q2

− φq+r((q + r) lnφ− 1)
(q + r)2

= β(q)− β(q + r),

where β(θ) = φθ(θ lnφ−1)
θ2 , for θ ≥ 2. As β′(θ) > 0, thus ∂

∂qF (φ, q) < 0.
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Also ∂
∂φF (φ, q) = φq−1 − φq+r−1 > 0, if φ ∈ (0, 1). Using the Implicit Function

Theorem, we obtain that the map φ̃αq is C1 on (α, q) . Also,

∂

∂q
φ̃αq = −

∂
∂qF (φ̃αq, q)
∂
∂φF (φ̃αq, q)

> 0,

then φ̃αq is strictly increasing on q.
Now we analyze the function I(p, q, a). In [13], the authors rewrite I(p, q, a) as

I = I(p, q, a) =
∫ a

0

(Fq(a)− Fq(φ))−1/pdφ = a1−q/p
∫ 1

0

Φq(s, a)−1/pds,

where Φq(s, a) = 1−sq
q − 1−sq+r

q+r ar. Then we obtain I(p, q, a) is C2 on (2,∞) ×
[2,∞) × (0, 1]. For each p fixed, we analyze the behavior of I(p, q, a) with respect
the parameter q. We study the behavior of I(p, q, a) with respect to q for a close
to zero because I(p, q, a) is C2 on (2,∞)× [2,∞)× (0, 1] and the major difference
in the cases occurs close to zero. We prove that I(p, q, a) is increasing with respect
to q for a near to zero.

Lemma 4.1. For 0 ≤ a < e−1/2 fixed, ∂
∂q I(p, q, a) > 0, for (p, q) ∈ (2,∞)× [2,∞).

Proof. In fact, since I(p, q, a) =
∫ a

0
(Fq(a)− Fq(φ))−1/pdφ, it follows that

∂

∂q
I(p, q, a) =

∫ a

0

∂

∂q
(Fq(a)− Fq(φ))−1/pdφ

=
∫ a

0

−1
p

(Fq(a)− Fq(φ))−1/p−1 ∂

∂q
(Fq(a)− Fq(φ))dφ

Since (Fq(a)− Fq(φ))−1/p−1 > 0, we only consider

∂

∂q
(Fq(a)− Fq(φ)) =

aq ln(a)
q

+
−aq

q2
− aq+r ln(a)

(q + r)
+

aq+r

(q + r)2

−
[φq ln(φ)

q
+
−φq

q2
− φq+r ln(φ)

(q + r)
+

φq+r

(q + r)2

]
Now we define ϕ(θ) = aθ

θ2 −
φθ

θ2 . Then ϕ′(θ) ≤ 0, thus ϕ(q+r)−ϕ(q) < 0. Define

also ψ(θ) = θq ln(θ)
q − θq+r ln(θ)

(q+r) . Then, for θ < e−1/2

ψ′(θ) ≤ [θq−1 − θq+r−1]
(

ln θ +
1

q + r

)
< 0,

thus ψ(a)− ψ(φ) < 0 for 0 < φ < a < e−1/2. Therefore,

∂

∂q
(Fq(a)− Fq(φ)) = ϕ(q + r)− ϕ(q) + ψ(a)− ψ(φ) < 0 (4.2)

Finally, we obtain

∂I

∂q
(p, q, a) =

∫ a

0

−1
p

(Fq(a)− Fq(φ))−1/p−1 ∂

∂q
(Fq(a)− Fq(φ))dφ > 0. (4.3)

�
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Now we consider p > q. In [13], the authors show that ∂I
∂a (p, q, a) > 0 for q < p,

then

∂X

∂q
(α, p, q) =

(λ(p− 1)
p

)1/p(∂I
∂q

(p, q, φ̃αq) +
∂I

∂a
(p, q, φ̃αq)

∂φ̃αq
∂q

)
> 0, p > q.

Fixed p and n, for each q < p, we consider αnq the initial condition such that the
x-time X(αnq , p, q) is kept constant and equal to 1/2n. We have that

0 =
dX

dq
(αnq , p, q) =

∂X

∂α
(αnq , p, q)

dα

dq
+
∂X

∂q
(αnq , p, q)

=
(λ(p− 1)

p

)1/p[∂I
∂a

(p, q, φ̃αq)
∂φ̃αq
∂α

dα

dq
+
∂I

∂q
(p, q, φ̃αq]) +

∂I

∂a
(p, q, φ̃αq)

∂φ̃αq
∂q

]
=
(λ(p− 1)

p

)1/p[∂I
∂a

(p, q, φ̃αq)(
∂φ̃αq
∂α

dα

dq
+
∂φ̃αq
∂q

) +
∂I

∂q
(p, q, φ̃αq)

]
.

Since d
dq (φ̃αq) = ∂φ̃αq

∂α
dα
dq + ∂φ̃αq

∂q , ∂I∂q > 0, ∂I
∂a > 0 for q < p, and ∂φ̃αq

∂α > 0, ∂φ̃αq∂q > 0
then we conclude that dα

dq < 0. We summarize the previous results in the following
lemma.

Lemma 4.2. If p > q, let α(q) be such that X(α(q), p, q) remains constant. Then
α(q) is decreasing with respect to q.

Now we can prove the following result.

Theorem 4.3. Suppose p > 2 fixed. Let M be the maximum number of zeros of an
equilibrium when q = p. Let φn(q) ∈ E±n for p > q. If n ≤M , then φn(q) converges
to another stationary solution, with the same amount of zeros when q → p−. If n
is greater than M , then ‖φn(q)‖C1(0,1) goes to zero when q → p−.

Proof. We rewrite (4.1) in the form

ż = h(z, q), (4.4)

where z = [φ, ψ] and h((φ, ψ), q) = (sign(ψ)|ψ|1/(p−1),−fq(φ)/λ). We have that
the map h depends continuously on q and its local Lipschitz constant with respect
to z is independent of q for q ∈ (q0, p], where q0 is close enough to p. As it is done
in [2], if αnq is such that X(αnq , p, q) = 1

2n , there is an open set U ⊂ R2 such that
(α, q) ∈ U and α is a C1 function of q. Then, once we have that the solution zq of
(4.4) depends continuously on q and on (φ(0), ψ(0)) = (0, αq), (see [7]), zq converges
to zp when q → p. If n > M , we obtain αnq → 0 when q → p−. In fact, since αnq
is decreasing and bounded, given a sequence qj , qj → p−, and αnj = αn(qj), there
exists αn such that αnj → αn. If αn > 0, by continuity, we obtain that when p = q
there exists an equilibrium point of (1.2) with n zeros in (0, 1). Since n > M , it
is not possible, then αn = 0. Therefore, from the continuous dependence of initial
data and parameters, we obtain ‖φj(q)‖C1(0,1) goes to zero when q → p−. �

Regarding the case q > p, since ∂I
∂a (p, q, a) < 0 when q > p and a is close to

zero it is not possible analyze the sign of ∂X
∂q . In [13], it was proved that for each

q, q > p there is only one a∗(q) such that a∗(q) is the minimum point of I(p, q, a),
that means, ∂I

∂a (q, a∗(q)) = 0 and ∂2I
∂a2 (q, a∗(q)) > 0. We will prove that a∗(q) goes

to zero when q goes to p+.
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First of all, using the Implicit Function Theorem for ∂I
∂a (q, a) = 0, we obtain that

a∗(q) is a C1 function. Then we have the following theorem.

Theorem 4.4. Suppose p > 2 fixed. Let φi(q) ∈ E±i for q > p. Then φi(q)
converges to another stationary solution, with the same amount of zeros when q →
p+. If ψi(q) ∈ F±i , then ‖ψi(q)‖C1(0,1) goes to zero when q → p+.

Proof. The first part of the statement follows as in the previous theorem.
Let qn be a sequence that qn → p+ and a∗n = a∗(qn). Since a∗n is a bounded se-

quence it contains a convergent subsequence a∗nk . Suppose that a∗nk → a∗ > 0. Then
I(p, p, a∗) = limk→∞ I(p, qnk , a

∗
nk

) and ∂I
∂a (p, p, a∗) = limk→∞

∂I
∂a (p, qnk , a

∗
nk

) = 0,
that means, a∗ is a critical point of I(p, p, a).

But, in [13] the authors have proved that I(p, p, a) is strictly increasing in [0, 1).
Then, it is only possible a∗ = 0 for any sequence a∗n. Thus, we conclude that a∗(qn)
goes to 0 when qn → p+. Therefore, since that each equilibrium point ψi(q) of
(1.2) is a solution of (4.1) with initial date φ(0) = 0 and ψ(0) = α̃nq, where α̃nq is
the α such that α̃nq < a∗(q), from the continuous dependence with respect initial
data and parameter q, we have that ψi(qn) converges to zero when qn → p+ in
C1[0, 1]. �

Now we join some results about I(p, q, a) for q > p in the following lemma.

Lemma 4.5. If q > p, then
(i) a∗(q)→ 0 when q → p+,

(ii) Ĩ(q) = I(p, q, a∗(q)) is increasing with respect to q,
(iii) Ĩ(q)→ I0 = I(p, p, 0), when q → p+.

Proof. Item (i) follows from the prior discussion.
(ii) Ĩ(q) = I(p, q, a∗(q)), with p fixed. We obtain

dĨ

dq
(q) =

∂I

∂a
(q, a∗(q))

da∗

dq
(q) +

∂I

∂q
(q, a∗(q)) =

∂I

∂q
(q, a∗(q)) > 0,

which means that the minimum value of I is increasing with q.
(iii) It follows by using (ii) and the continuity of I(p, p, a) in a = 0 and I(p, q, a)

for a > 0. �

Since the sequences λn(p, q) and λ∗n(p, q) depends on (p, q), even if λ is fixed it is
possible to occur changes in the relation between λ and λ∗n(p, q) and λn(p, q) when
q → p. Then, before proving the continuity of equilibrium sets E(p, q) in q = p we
analyze that the possibilities among λ, λn(p, q) and λ∗n(p, q).

Let {λn}, {λ∗n}, {λn(p, q)} and {λ∗n(p, q)} be defined as follows:

λ∗n
.=

p

p− 1
(2(n+ 1)I0)−p,

λ∗n(p, q) .=
p

p− 1
(2(n+ 1)I∗(q))−p, q > p,

where I∗(q) = I(p, q, a∗(q)) denotes the minimum value of I(p, q, a) with relation
to a, I0 = lima→0+I(p, p, a), and

λn
.= λn(p, p) =

p

p− 1
(2(n+ 1)I(p, p, 1))−p;λn(p, q) =

p

p− 1
(2(n+ 1)I(p, q, 1))−p.

Here {λ∗n}, {λ∗n(p, q)} are the sequence that determine the number of zeros allowed
to a stationary solution of (1.2) when p = q and p < q respectively, and {λn(p, q)}
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determines the existence of continuum components in Eλ(p, q). All details can be
found in [13].

Now we fix p and λ. We observe that there are only four possibilities
(1) λ 6= λi and λ 6= λ∗j for any i and any j;
(2) λ 6= λi and λ = λ∗j for any i and for some j;
(3) λ = λi and λ 6= λ∗j for some i and for any j;
(4) λ = λi and λ = λ∗j for some i and some j, i > j.

We have the following:
Case 1. Let j0 be the least index such that λ > λj0(p, p). Since I(p, q, 1) behaves
continuously on q, if q is close enough to p, than λ > λj0(p, q). By Lemma 4.5, we
also have that I∗(q) = min I(p, q, a) is increasing with q if q > p and I∗(q) → I0
when q ↓ p. So, if λ > λ∗i0 for some given i0, then λ > λ∗i0(p, q), if q is close enough
to p. Therefore, if p < q, q can be chosen in a neighborhood of p in such way that
the maximum number of zeros of any equilibrium in Eλ(p, q) is M and, in both case
p > q or p < q, components having equilibrium with the same amount of zeros,
namely k, are discrete or continuous according with the cardinality of Ekλ(p, p).
Thus, in this case there is no additional qualitative differences between the sets of
equilibrium beyond those which we deal in the prior discussion.
Case 2. To analyze this case, let us consider the variation of λ∗j (p, q) with respect
to q, q > p. By Lemma 4.5, I∗(q) is increasing with q if q > p and I∗(q)→ I0 when
q ↓ p, then λ∗j (p, q) < λ∗j . Thus, λ = λ∗j implies λ > λ∗j (p, q). This allows us to
conclude that if there exist stationary solutions in Eλ(p, q) having n zeros in (0, 1),
then there is also solutions in Eλ(p, p) having n zeros in (0, 1). In other words, once
λ = λ∗j there is no solution with j zeros in (0, 1) and, as λ∗j (p, q) < λ∗j = λ there
is no solution with j zeros in (0, 1) for q > p. Finally, if λ = λ∗j then λ < λ∗k, for
0 ≤ k ≤ j − 1 the analysis follows the Case 1, for solutions with k zeros in (0, 1).
Case 3. Once λi(p, q) = p

p−1 (2(i+ 1)I(p, q, 1))−p, using the continuity of I(p, q, 1)
we obtain λi(p, q) → λi when q → p. If I(p, q, 1) < I(p, p, 1) there exists a contin-
uum of solutions with i zeros for (p, q). In despite of this, we know that, if Xj(q) is
the “x-time” that an equilibrium φj(q) ∈ Ejλ(p, q) needs to reach its first maximum,
then Xj(q) → 1

2(j−1) as q → p. So we obtain that all sequence of stationary solu-

tions in the continuum sets Ejλ(p, q) converges to the same equilibrium in Ejλ(p, p),
when q → p. If I(p, q, 1) > I(p, p, 1) the solutions with i zeros do not reach the
maximum value equal 1 for (p, q). In this case, by the continuity of I the maximum
value goes to 1.
Case 4. This case follows from Cases 2 and 3.

Remark 4.6. Regarding the equilibria ±ψn that appear when q > p it is known
that with respect to parameter λ they arise as spontaneous bifurcations, [13], but
our analysis shows that with respect to q, ±ψn bifurcate from trivial solution.

Now we are ready to state our main result concerning to the continuity on q of
the equilibrium sets E(p, q). The upper semicontinuity in L2(0, 1) and W 1,p

0 (0, 1)
follows easily from Theorem 3.2 and Corollaries 3.3 and 3.6. From the prior analysis
presented in this section we can conclude the upper and lower semicontinuity in
C1[0, 1].

Theorem 4.7. The family E(p, q) is upper and lower semicontinuous on q as q
goes to p in C1[0, 1].
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Proof. If q ↓ p, given any sequence {ϕq}, ϕq ∈ E(p, q) for each q, there is a subse-
quence of {ϕq} containing only equilibria with the same amount of zeros in (0, 1).
Then we know from Theorem 4.4 that this subsequence converges to an equilibrium
in E(p, p).

If q ↑ p, given a sequence {φq}, φq ∈ E(p, q) for each q, which contains a
subsequence with the same amount of zeros, then we know from Theorem 4.3 that
this subsequence converges to an equilibrium in E(p, p). But in this case it is also
possible to find a sequence φq ∈ E(p, q) in such way that the number of zeros of φq
goes to infinity with q. In this case, we observe that this sequence goes to the null
solution.

So we conclude from [3, Lemma 1.1] that E(p, q) is upper semicontinuous at
q = p.

To prove the lower semicontinuity, let φp ∈ E(p, p). We have three possible
situations. If the maximum value of φp is less than 1 and n is the amount of
zeros of φp in (0, 1), the sequence φq ∈ E(p, q) containing only equilibria with
n zeros converges to φp according with Theorems 4.3 and 4.4. If φp achieves 1
but does not have flat cores we can repeat the prior argument (observe that it is
possible only if λ = λn and this situation was discussed in the Case 3). When
φp presents flat cores, then λ < λn and, from the continuity of λn(p, q) on q, we
conclude that equilibria with n zeros in E(p, q) present flat cores as well (we have
used an analogous argument in Case 1). In this case, we construct the approaching
sequence. Let fi be the length of the i-th flat core, for i = 1, . . . , n+1. For q close to
p, let X(p, q) the x-time spent to an equilibrium in En(p, q) achieve the maximum
value equals to 1. If X(p, q) > X(p, p) we pick in E(p, q) an equilibrium φq with n
zeros in (0, 1) such that the length of i-th flat core is fi − 2(X(p, q) −X(p, p)). If
X(p, q) < X(p, p) we choose an equilibrium φq with n zeros in (0, 1) such that the
length of i-th flat core is fi + 2(X(p, p)−X(p, q)). In any case φq → φp as q → p.

The lower semicontinuity follows from [3, Lemma 1.1]. �
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