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Abstract

A crucial task for electric power companies consists of the continuous monitoring

of their power network. This monitoring can be efficiently accomplished by placing phase

measurement units (PMUs) at selected network locations. However, due to the high cost

of the PMUs, their number must be minimized [1]. Finding the minimum number of

PMUs needed to monitor a given power network, as well as to determine the locations

where the PMUs should be placed, give rise to the power domination problem in graph

theory [8].

The power dominating problem is NP-complete, that is, there is no efficient way

of finding a minimal power dominating set for a graph. However, closed formulas for

the power domination number of certain families of graphs, such as rectangular grids [5]

have been found.
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Chapter 1

Introduction

A crucial task for electric power companies consists of the continuous monitoring

of their power network. This monitoring can be efficiently accomplished by placing phase

measurement units (PMUs) at selected network locations. However, due to the high cost

of the PMUs, the number of PMUs used to monitor the network must be minimized [1].

Finding the minimum number of PMUs needed to monitor a given power network, as

well as determining the locations where the PMUs should be placed, gives rise to the

power domination problem in graph theory [8].

The power domination problem is a relatively new problem in graph theory. The

power dominating problem is NP-complete. However, closed formulas for the power

domination number of certain families of graphs, such as rectangular grids [5] have been

found.

We begin by first defining a graph. This is followed by the definitions that are

needed in order to understand the power domination problem in graphs. In essence, the

first chapter will be a brief excursion through the fundamentals of graph theory.

In the following chapter, the power domination problem will formally be intro-

duced in terms of graph theory. The definition of the power domination number of a

graph will be presented. This will be followed by giving some known results on the power
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domination problem. Structural results are given followed by some known bounds and

equalities on the power domination number for various families of graph.

Next, a discussion on the Generalized Petersen Graphs will be given. The def-

inition and a characterization of the isomorphism classes of the Generalized Petersen

Graphs are recalled. Conjectures about the power domination number for the General-

ized Petersen Graphs are also presented.

The corona, a binary operation between graphs, is recalled. Some identities that

relate the power domination number to the (regular) domination number are shown,

followed by a corollary that, with further investigation, may lead to some insight on the

power domination problem.

An extension of power domination, k−power domination, in graphs is then de-

fined. Some of the results from power domination are also extended into k−power

domination.

Lastly, some open problems that one might want to explore are presented. These

problems are either extensions of known results or are problems that may lead to further

insight on the power domination problem.
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Chapter 2

Definitions and Notation

Denote the cardinality of a set S as |S|. A graph is a pair G = (V,E) where V

is the vertex set of G and E is a set of doubleton subsets of V called the edge set of G.

The elements of V are called vertices. The elements of E are called edges. The edge

e = {u, v} ∈ E is frequently abbreviated as either e or uv, whichever is more convenient

for the discussion. Note that the edge uv is the same as the edge vu. As an example,

define the graph G as G = (V, E) where V = {a, b, c, d} and E = {ab, bc, cd, da, bd}. The

following figure gives a representation of the graph G and will be used to illustrate many

of the upcoming definitions.

Fig. 2.1 G, an example of a graph

a b

d c

If e = uv is an edge of G then u and v are said to be adjacent vertices and that

e joins u and v. The vertex u and edge e are said to be incident with each other, as are

v and e. Two edges e and f are adjacent if they are incident with a common vertex. To
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demonstrate this, in Fig 1.1 a is adjacent to b, ab joins a and b, a is incident to ab, and

ab is adjacent to bc.

The neighborhood of a vertex v in the graph G, denoted NG(v), is the set NG(v) =

{u ∈ V : uv ∈ E}. The members of NG(v) are called the neighbors of v. The closed

neighborhood of a vertex v, denoted NG[v], is the set NG[v] = NG(v) ∪ {v}. If the

graph under discussion is clear then we can omit the subscript and simply write the

neighborhood and closed neighborhood of a vertex v as N(v) and N [v] respectively.

If S ⊆ V , then the neighborhood of S is the set NG(S) =
⋃

s∈S N(s) and the closed

neighborhood of S is the set NG[S] =
⋃

s∈S N [s]. The degree of a vertex v in G, denoted

degG(v), is defined as degG(v) = |NG(v)|. We can omit the subscript if there is no

ambiguity of which graph is under discussion. Define the maximum and minimum degrees

of the graph G to be ∆(G) = max{deg(v) : v ∈ V } and δ(G) = min{deg(v) : v ∈ V }

respectively. If all the vertices of G have the same degree r, then G is said to be

r−regular. A 3−regular graph is called cubic. Referring back to Fig. 1.1, NG(a) = {b, d}

and NG[a] = {a, b, d} where as NG(b) = {a, c, d} and NG[b] = {a, b, c, d}. So degG(a) = 2

and degG(b) = 3. It can also be seen that ∆(G) = 3 and δ(G) = 2.

The complete graph with n vertices Kn has each vertex adjacent to every other

vertex. Thus Kn has
(
n
2

)
edges and is (n − 1)−regular. A bipartite graph G is a graph

whose vertex set V can be partition into two subsets V1 and V2 so that each edge of G

has an end vertex in each of V1 and V2. If each vertex of V1 is adjacent to each vertex in

V2 where V1 has m vertices and V2 has n vertices, then G is a complete bipartite graph,

denoted Km,n. A u − v path of order n, denoted Pn, is a sequence of distinct vertices

Pn : u = v1, . . . , vn = v beginning with u and ending with v such that vivi+1 ∈ E, for
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i = 1, 2, . . . , n − 1. If we add the edge vnv1 to the path Pn then we call the resulting

graph a cycle of order n, denoted Cn. If for each pair of vertices, u and v of G, there is

a u − v path, then G is said to be connected. A maximal connected subgraph of G is

called a component. A tree is a connected graph with no cycles.

(a) P4 (b) C4

(c) bipartite graph (d) K3,3

Fig. 2.2 Interesting Families of Graphs

Two graphs G and H are isomorphic, denoted G ∼= H, if there is a labeling of

the vertices in such a way that there is a bijection ϕ : V (G) → V (H) that preserves

adjacency; that is, uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). Intuitively, two graphs

are isomorphic if the vertices of one graph can be moved and the edges stretched in such

a way that the two graphs look identical.
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(a) K4 (b) K4 (c) K4

Fig. 2.3 Three isomorphic K4 graphs

A graph H = (V (H), E(H)) is a subgraph of the graph G = (V (G), E(G)),

denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph H ⊆ G is an

induced subgraph of G, denoted G[V (H)], provided if u, v ∈ V (H) and uv ∈ E(G), then

uv ∈ E(H).

(a) Graph G (b) Subgraph of G

(c) Induced Subgraph of G

Fig. 2.4 A subgraph and an induced subgraph
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The complement of a graph G = (V, E), denoted G, is the graph G = (V,E)

where uv ∈ E if and only if uv /∈ E.

(a) Graph G (b) G

Fig. 2.5 A graph and its complement

The union of two graphs G and H is the graph G∪H with vertex set V (G)∪V (H)

and edge set E(G) ∪ E(H). If the graphs G and H are disjoint, then the union is said

to be a disjoint union and denoted G + H. To denote the graph of n copies of a graph

G, the notation nG is used to describe the graph.

Let G be a graph with n vertices and H be a graph. The corona G ¯ H of G

and H is the graph obtained by taking G with n copies of H and joining the ith vertex

of G to every vertex of the ith copy of H. The following figure illustrates the corona

operation and also shows that the corona is not a commutative operation.

(a) K3 (b)

K1

(c) K3 ¯K1 (d) K1 ¯K3

Fig. 2.6 The Coronas of K3 and K1
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A subdivision of an edge uv in G gives a new graph G′ where V (G′) = V (G)∪{w}

and E(G′) = E(G) \ {uv} ∪ {uw, vw}. A subdivision of a graph is obtained by a finite

sequence of subdivisions of edges of the graph. Below we illustrate the idea of subdivisions

of graphs.

(a) K4 (b) Subdivision of K4

Fig. 2.7 A Subdivision of K4

Two graphs G and H are homeomorphic if there exists a subdivision of G and and

a subdivision of H so that the subdivision of G is isomorphic to the subdivision of H.

Intuitively, the graph G is homeomorphic to the graph H if the graphs are homeomorphic

in the topological sense. We give examples of homeomorphic graphs below.
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(a) K3,3 (b) Homeomorphic to K3,3 (c) Homeomorphic to

K3,3

Fig. 2.8 Graphs Homeomorphic to K3,3

Let G1 = (V1, E1) and G2 = (V2, E2) each be a graph. The Cartesian product

of G1 and G2, denoted G1 × G2, is the graph G = (V, E) where V = V1 × V2 (i.e. the

Cartesian product of the vertex sets), and the vertices u = (u1, u2) and v = (v1, v2) are

adjacent if u1 = v1 and u2v2 ∈ E2 or if u1v1 ∈ E1 and u2 = v2. Note that the cartesian

product is a commutative operation on graphs.

(a) P6 (b) P4 (c) P6 × P4

Fig. 2.9 The Cartesian Product of P6 and P4
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In a graph G, a set S ⊆ V (G) is a dominating set of G if N [S] = V (G). A vertex

v ∈ N [S] is said to be dominated by S. A minimal dominating set is a dominating set

of minimum cardinality. The cardinality of a minimal dominating set is the domination

number of G, denoted γ(G). To show this graphically, the circled dark vertices will be

the vertices in the dominating set and the dark vertices will be the vertices dominated

by the dominating set.

(a) Petersen Graph (b) Dominating Set

(c) The Petersen Graph is

dominated

Fig. 2.10 An Example of Domination in Graphs
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Chapter 3

Power Domination

An electric power network consists of electrical nodes (loads and generators) and

transmission lines joining the electrical nodes. Electric power companies need to monitor

the state of their networks continually. The state of the network is defined by a set of

variables: the voltage magnitude at loads and the machine phase angle at generators [1].

One method of monitoring these variables is to place Phase Measurement Units (PMUs)

at selected locations in the system. Because of the high cost of a PMU, it is important

to minimize the number of PMUs used while still maintaining the ability of monitoring

the entire system.

This problem was first studied in terms of graphs by T.W. Haynes, S.M. Hedet-

niemi, S.T. Hedetniemi and M.A. Henning in 2002 [8]. Indeed, an electric power network

can be modeled by a graph where the vertices represent the electric nodes and the edges

are associated with the transmission lines joining two electrical nodes. In this model,

the power domination problem in graphs consists of finding a minimal set of vertices

from where the entire graph can be observed according to certain rules. In terms of the

physical network, those vertices will provide the locations where the PMUs should be

placed in order to monitor the entire graph at the minimal cost.

A PMU measures the voltage and phase angle at the vertex where it is located,

but also at other vertices or edges, according with the following propagation rules:
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1. Any vertex that is incident to an observed edge is observed.

2. Any edge joining two observed vertices is observed.

3. If a vertex is incident to a total of k edges, k > 1, and if k − 1 of these edges are

observed, then all k of these edges are observed.

Note that we followed the rules as presented in [8]. In [4] the authors present the

propagation rules in a different way, that ultimately, as observed in [5], is equivalent to

those above.

Algorithmically, given a graph G = (V,E) and set of vertices P ⊂ V , we are going

to construct a set of vertices C that can be observed from P and a set of edges F that

are observed by P [5].

1. Initialize C = P and F = {e ∈ E : e is incident to a vertex in P}.

2. Add to C any vertex in V − C which is incident to an edge in F .

3. Add to F any edge e in E − F which satisfies one of the following conditions:

a) both end-vertices of e are in C.

b) e is incident to a vertex v of degree greater than one, for which all the other

edges incident to v are already in F .

4. If steps 2 and 3 fail to locate any new edges or vertices for inclusion, stop. Other-

wise, go to step 2.

The final state of the sets C and F give the set of vertices and edges observed

by the set P . The power domination problem for a given graph G consists of finding
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a minimal power dominating set (PDS) for G. The cardinality of a minimal PDS in

G is called the power domination number of G, and it is denoted as γP (G). A power

dominating set of G with cardinality γP (G) is sometimes referred to as a γP − set.

The problem of finding γP (G) for a given graph G has been proven to be NP-

complete even when reduced to certain classes of graphs, such as bipartite graphs and

chordal graphs [8], or even split graphs [10], a subclass of chordal graphs. However, Liao

and Lee [10] presented a linear time algorithm for finding the PDS of interval graphs,

if the interval ordering of the graph is provided. If the interval order is not given, they

provided an algorithm of O(nlogn) and proved that it is asymptotically optimal. Other

efficient algorithms have been presented for trees [9] and more generally, for graphs with

bounded treewidth [9]. On block graphs [13] and claw-free graphs [14] there exists upper

bounds given for the power domination number.

3.1 Structural Properties Related to γP

We begin by noting that there is a more simplified rule for propagation that is

equivalent to those that are presented above. The equivalent propagation rule is the

iterated process:

• If a vertex has a total of k neighbors, k > 1, and if k − 1 of these neighbors are

observed, then all k of these neighbors are observed.

That is, if PMUs are placed on the vertices in S ⊂ V (G) for a graph G, then

N [S] is observed. Next if v is observed and deg(v) = k with k − 1 neighbors of v being

observed, then all of the neighbors of v are observed. We repeat this process until no new
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vertices are observed, and the resulting set of observed vertices is the set of vertices that

S observes. A demonstration of the propagation rules will now be given. The transparent

vertices are unobserved while the darkened vertices are observed. The darkened vertices

that are circled are vertices in the set where the PMUs have been placed.
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(a) Graph G (b) PMU is placed on a vertex

(c) Neighborhood is observed (d) Propagation Occurs

(e) Propagation Occurs (f) End of Propagation

Fig. 3.1 Propagation Rules Illustrated
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In [8], the authors present many results on power domination and some will be

utilized in showing new results.

Theorem 3.1.1. [8] For any graph G, 1 ≤ γP (G) ≤ γ(G). ¤

This bound should to be clear since any dominating set is also a power dominating

set.

It was also pointed out in [8] that every graph H is the induced subgraph of a graph

G satisfying γ(G) = γP (G). The example that is considered in [8] is G = H ¯K2, which

has H as an induced subgraph and γ(G) = γP (G). The authors of [8] also point out that

the difference γ(G)−γP (G) can be arbitrarily large. To show this, we let G = K1,k¯K1.

Then γP (G) = 1 < k + 1 = γ(G) and so as k −→∞ we have γ(G)− γP (G) −→∞.

The next theorem is a nice result that allows us to restrict the vertices that will

be considered when looking at a power dominating set of a graph.

Theorem 3.1.2. [8] Let G be a graph with ∆(G) ≥ 3. Then there is a γP − set S in

which each vertex in S has degree at least 3. ¤

It should be noted that it is not necessarily true that if G is homeomorphic

to G
′, then γP (G) = γP (G′). To illustrate this, Fig 3.2 shows two graphs that are

homeomorphic but have different power domination numbers.

(a) γP (T ) = 2 (b) γP (T ′) = 3

Fig. 3.2 Homeomorphic Graphs With Different Power Domination Numbers
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Trees are studied extensively in [8] and the authors characterize all trees T satis-

fying γP (T ) = γ(T ).

3.2 Known Bounds and Equalities for γP

In this section, known results for the power domination number for some families

of graphs will be discussed. In [8], the authors present many observations on the power

domination number for common families of graphs and we recall some of them here.

Theorem 3.2.1. For the graph G where G ∈ {Kn, Cn, Pn,K1,n,K2,n}, γP (G) = 1. ¤

All trees T with γP (T ) = 1 have been characterized.

Theorem 3.2.2. For any tree T , γP (T ) = 1 if and only if T is homeomorphic to the

graph K1,n for some positive integer n. ¤

As noted earlier, the authors of [8] studied the power domination numbers of trees.

For a tree T , define the spider number of T , denoted sp(T ), to be the minimum number

of subsets V (T ) can be partitioned so that each subset induces a graph homeomorphic

to K1,k for some k ∈ N (graphs homeomorphic to K1,k are sometimes called spiders).

Theorem 3.2.3. For any tree T , sp(T ) = γP (T ). ¤

The following sharp upper bound for the power domination number of a graph

was initially shown for trees in [8] and was later generalized to all graphs in [14]. Define

T to be the family of graphs obtained from connected graphs H by adding two new

vertices v
′ and v

′′ to each vertex v of H and new edges vv
′ and vv

′′.

Theorem 3.2.4. If G is a connected graph of order n ≥ 3, then γP (G) ≤ n
3 with equality

if and only if G ∈ T ∪ {K3,3}. ¤
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An elusive problem in the domination problem in graphs is finding a closed formula

for the domination number of a grid graph, Pn × Pm for some m,n ∈ N.

Fig. 3.3 The 8× 10 grid, P8 × P10

In [5], a surprising result was found. A closed formula for the power domination

number of a grid graph Pn × Pm was found. What makes this surprising is that the

(regular) domination problem for grids is still an open problem.

Theorem [5] If G is an n×m grid graph, m ≥ n ≥ 1 then

γP (G) =





dn+1
4 e , if m ≡ 4 mod 8

dn
4 e , otherwise. ¤

The power domination numbers for cylinders Pn × Cm for integers n ≥ 2,m ≥ 3,

tori Cn × Cm for integers n, m ≥ 3, and generalized Petersen graphs have also been

studied. Tight upper bounds have been given for the power domination numbers of each

of these families of graphs.
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Theorem 3.2.5. [2] The power domination number for the cylinder G = Pn × Cm is

γP (G) ≤





min{dm+1
4 e, dn+1

2 e} , if n ≡ 4 mod 8

min{dm
4 e, dn+1

2 e} , otherwise. ¤

The following corollary establishes the tightness of the bound given in the above

result.

Corollary 3.2.6. [2] The power domination number for the cylinder Pn×Cm for n ≥ 2

is

γP (Pn × Cm) =





2 if n = 2, 3 and 4 ≤ m

2 if 4 ≤ n and 4 ≤ m ≤ 8. ¤

Theorem 3.2.7. [2] The power domination number for the torus G = Cn×Cm, n ≤ m,

is

γP (G) ≤





dn
2 e if n ≡ 0 mod 4

dn+1
2 e otherwise. ¤

The discussion on the generalized Petersen graphs will be saved for the next

chapter.
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Chapter 4

The Generalized Petersen Graph γP (P (m, k))

To begin, we recall the definition of a Generalized Petersen graph. For m ≥ 3, k <

m, k ≥ 1, and gcd(m, k) = 1, the Generalized Petersen graph P (m, k) is the graph with

vertex set {v0, v1, . . . , vm−1} ∪ {w0, w1, . . . , wm−1} and edges {viwi}, {vivi+1}, {wiwi+k}

for every i = 0, 1, . . . , m − 1, where the subscript sum is in modulo m. The vi vertices

will be referred to as the “outside” vertices and the wi vertices will be referred to as

“inside” vertices. The viwi edges will be referred to as “spokes”. The following figure is

an example of a Generalized Petersen graph.

Fig. 4.1 The Generalized Petersen Graph P (8, 3)

There are indeed positive integers k and l such that P (m, k) ∼= P (m, l). It should

be clear that if l = m−k then P (m, k) ∼= P (m, l). There are further characterizations of

isomorphic generalized Petersen graphs. The following was first shown by Watkins [12]

and then by Steimle and Staton [11].
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Theorem [11; 12] Let m > 3 and gcd(m, k) = 1, gcd(m, l) = 1, and kl ≡

1 mod m. Then P (m, k) ∼= P (m, l). ¤

We will recall the isomorphism function used in the proof of the above Theorem.

Label P (m, k) with the outer vertices as {vi}
m−1

i=0
and the inner cycle {wi}

m−1

i=0
with vi

adjacent to vi+1, wi adjacent to wi+k, and vi adjacent to wi for all i and subscripts in

modulo m. Label P (m, l) with the outer vertices as {xi}
m−1

i=0
and the inner cycle {yi}

m−1

i=0

with xi adjacent to xi+1, yi adjacent to yi+k, and xi adjacent to yi for all i and subscripts

in modulo m. Define the function ϕ : V (P (m, k)) → V (P (m, l)) by ϕ(vi) = y1+(i−1)l

and ϕ(wi) = x1+(i−1)l. Then ϕ is the desired isomorphism. The isomorphism classes of

generalized Petersen graphs are further characterized in [11].

Theorem [11] Let m ≥ 5. Let gcd(k, m) = 1 and gcd(l, m) = 1, and 2 ≤ k, l ≤

m− 2. If P (m, k) ∼= P (m, l), then either l ≡ ±k mod m or kl ≡ ±1 mod m. ¤

In [11], the authors continue to show that the number of isomorphism classes of

P (m, k) is ϕ(m)+κ
4 where ϕ is the Euler phi-function and κ is the number of solutions to

x
2 ≡ ±1 mod m. The following theorem is the known tight upper bound for the power

domination number for the generalized Petersen graph.

Theorem 4.0.8. The power domination number for the generalized Petersen graph

P (m, k) is bounded above by γP (P (m, k)) ≤ l
′ where l

′ = min{l : P (m, k) ∼= P (m, l)}. ¤

To improve the known bound, the next statement is believed to be true but this

still remains to be shown.
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Conjecture 4.0.9. If the vertices {v0, v1, . . . , vk, vk+1, vk+2} are observed, then the graph

P (m, k) is observed.

If the above conjecture holds, it would then imply the following improvement on

the power domination number for a generalized Petersen graph.

Conjecture 4.0.10. The power domination number for the generalized Petersen graph

P (m, k) is bounded above by γP (P (m, k)) ≤ ⌈
l′
3

⌉
+ 1 where l

′ = min{l : P (m, k) ∼=

P (m, l)}.
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Chapter 5

The Corona and the Power Domination Number

Recall that the corona of G and H, G¯H, is the graph that results when we take

one copy of G and |V (G)| copies of H and connect every vertex in the ith copy of H to

the ith vertex in G.

In this chapter some properties that relate the power domination number of a

graph to the corona of graphs will be given. Earlier it was mentioned that every graph

H is the induced subgraph of a graph G satisfying γ(G) = γP (G) [8]. The family of

graphs that were presented in [8] as an example of graphs where this equality is satisfied

were G = H ¯K2. We present a similar result with a graph G and G¯K1.

Theorem 5.0.11. Let G be a graph. Then γP (G¯K1) = γ(G).

Proof: Note that deg(v) ≥ 2 for each v ∈ V (G) of G¯K1.

First, let us prove γP (G¯K1) ≤ γ(G). Let S be a dominating set for the graph

G. Then N [S] = V (G).

Now, let us prove γP (G¯K1) ≥ γ(G). Let S be a power dominating set for the

graph G ¯ K1 with |S| < γ(G). We can let each s ∈ S be such that s ∈ V (G) since

deg(v) > 2 only if v ∈ V (G). Since |S| < γ(G), there is some u ∈ N(S) such that there

is a v ∈ G adjacent to u where v /∈ N(S). Furthermore, u has one more unobserved

neighbor, its “spike”. Thus, u has two unobserved neighbors and propagation does not
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occur. Since this holds for each such u, then there is some vertex v ∈ G so that v is not

observed in G¯K1. ¤

The results that give relations between the corona of graphs and the power domi-

nation number depend largely on the fact that the degree of a vertex is increased, making

propagation more difficult to occur in some instances. The idea of increasing the degree

of a vertex by introducing a new edge in the graph gives the next result.

Corollary 5.0.12. If G = (V,E) is a graph then γP (G∪e) ≤ γP (G)+1 where e is some

edge not in G. Furthermore, this bound is tight.

Proof: Let S be a γP − set for G and let e = uv for some u, v ∈ V . Then S ∪ u is a

power dominating set as is S ∪ {v}. Thus γP (G ∪ e) ≤ γP (G) + 1.

To show that this bound is tight, let the graph G = K1,n with one edge, say e = uv,

subdivided exactly once into the edges ux, xv. Then γP (2G) = 2. But, γP (2G∪xx
′) = 3.

¤

(a) γP = 2 (b) γP = 3

Fig. 5.1 A Specific Case of the Class of Graphs Defined in Corollary 5.0.4

It is the hope that some investigation of Corollary 5.0.12 will lead to some further

insight on the power domination problem. Perhaps the dynamics of randomly adding

edges to a graph will reveal some information on the behavior of power domination.
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Chapter 6

An Extension of Power Domination

In power domination, propagation occurs if all but one neighbor of an observed

vertex are observed. A generalization of the propagation rules will be given, which will

then be followed by some extensions of the known results for power domination.

6.1 k−Power Domination

A generalization of power domination will be given in this section. In power

domination, propagation occurs on an observed vertex v provided that all but one of the

neighbors of v neighbors are observed. This comes from the fact that we can determine

the unobserved neighbor’s information by solving a system of equation. We forget that

restriction and generalize power domination into k−power domination.

Let S ⊆ V be a set. The vertices that are observed by S in k−power domination

are:

1. N [S] is observed.

2. Repeat the following until no new vertices are observed:

(a) if v ∈ V is observed with at most k neighbors of v begin unobserved, then

N [v] is observed.
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Analogous definitions to those of power domination follow. For a graph G =

(V, E), if a set S ⊆ V observes V then S is called a k−power dominating set. The size of

a k−power dominating set of minimum cardinality will be denoted as γk(G). A k−power

dominating set of minimum cardinality may be referred to as a γk − set.

Notice that k−power domination only becomes interesting when ∆(G) ≥ k + 2.

Indeed, power domination is the special case for when k = 1 and regular domination is

the special case for when k = 0. The following results will not be too meaningful for

the case when k = 0 though. To demonstrate a specific case of k−power domination, an

illustration of the propagation rules will be given for when k = 3.
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(a) Graph G (b) PMU is placed on a vertex

(c) Neighborhood is observed (d) Propagation Occurs

(e) Propagation Occurs (f) End of Propagation

Fig. 6.1 Propagation Rules Illustrated for 3−Power Domination

For the remainder of this chapter, k−power domination will be under discussion.

6.2 Extensions of Results from Power Domination

An extension of Theorem 3.1.2 will be given. The proof is analogous to the proof

of Theorem 3.1.2 that is presented in [8].
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Theorem 6.2.1. If G is a graph with ∆(G) ≥ k + 2 for some integer k ≥ 1, then G

contains a γk − set S where deg(v) ≥ k + 2 for each v ∈ V .

Proof: Let S be a γk−set and let v ∈ S such that deg(v) < k+2. Let u be a vertex with

deg≥ k+2 with minimum distance from v. Then S−{v}∪{u} is a k−power dominating

set. ¤

This result is particularly nice for the same reason the analogous statement is

in power domination. Theorem 6.2.1 gives a restriction on what vertices need to be

considered as members of a γk−set. Like in power domination, this result will be used

to show the following identity.

Theorem 6.2.2. If G is a graph then γ(G) = γk(G)¯Kk.

Proof: First let us prove γ(G) ≤ γk(G¯Kk). Let S be a dominating set in G. Then S

observes γk(G¯Kk).

Now let us prove γ(G) ≥ γk(G ¯ Kk). Let S be a k−power dominating set for

the graph G¯Kk with |S| < γ(G). We can let each s ∈ S be such that s ∈ V (G) since

deg(v) > 2 only if v ∈ V (G). Let u ∈ N(S). Then there is a v ∈ G adjacent to u such

that v /∈ N(S). Furthermore, u has k unobserved neighbors, namely the k “spikes”.

Thus u has k + 1 neighbors unobserved. Since this holds for each such u, then there is

some vertex v ∈ G so that v is not observed in G¯Kk. ¤

Along with Theorem 6.2.2, there are numerous other identities with power dom-

ination numbers one can make involving the corona operation. Some do not give any

more information on what is going on in the graph or the power dominating sets. The
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identity presented above does give some insight about k−power domination when one

wants to stop propagation.

The last result that will be extended is the upper bound for a general graph.

Before continuing, recall that for a graph G = (V, E), ω(G) is the number of connected

components of G. If X ⊆ V , the X−private neighborhood of a vertex v ∈ X is the set

pn(v,X) = N(v) \N(X \ {v}). External X−private neighbors are X−private neighbors

not in X. The proof is analogous to the proof of Theorem 3.2.4 in [14].

Theorem 6.2.3. If G = (V, E) is a connected graph of order n ≥ k+2 then γk(G) ≤ n
k+2

Proof: If ∆(G) ≤ k + 1, then γk(G) = 1.

Assume ∆(G) ≥ k + 2. Then G contains a γk−set where each vertex has degree

at least k + 2. Let S be a γk−set so that ω(G[S]) is minimum.

Claim: For each vertex v ∈ S, |pn(v, S) \ S| ≥ k + 1.

Suppose otherwise. That is, suppose some vertex v ∈ S is such that |pn(v, S)\S| ≤

k. If v is adjacent to some vertex in S, let S
′ = S \ {v}. Note that v and its neighbors

neighbors except for possibly k are all observed by S
′. These points are then observed

by v. Hence, S
′ is a power dominating set of G and |S′| < |S|, a contradiction.

It must then be that v is an isolated vertex in G[S]. That is, N(v) ⊆ V \ S and

|N(v) \S| ≥ k +2. Choose u ∈ N(v)\pn(v, S) and let S
′′ = (S \{v})∪{u}. Then v and

its neighbors except for possibly k are observed by S
′′. These vertices, if they exist, are

then observed by v. Thus S
′′ is a γk−set with ω(G[S′′]) < ω(G[S]), which contradicts S

being chosen with ω(G[S]) being minimum.

It follows that G has at least (k + 2)|S| vertices and so γk(G) ≤ n
k+2 . ¤
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Chapter 7

Conclusion

Finally, some open problems that may shed some light on the properties behind

power domination will be discussed.

Graphs with square meshes have been studied for many families of graphs. Grids,

cylinders, and tori are amongst those studied. The technique to observe each of these

families of graphs is to arrange the vertices in the power dominating set in “knight

moves” apart from each other. An analog may exist for triangular meshes and hexagonal

meshes. Similar arguments to those of square meshes may be followed to find the power

domination numbers of hexagonal or triangular grids, cylinders, and tori.

The best known bound for the power domination number of a graph G of order

n is n
3 . This bound depends on the number of vertices of G. There are many examples

of arbitrarily large graphs (grids, cylinders, tori, etc.) with small power domination

numbers. For example, we can have a grid P6 × Pm. We know that γP (P6 × Pm) = 2

for all integers m ≥ 5. So we can have the same power dominating set for a graph with

arbitrarily large order. The endeavor would be to find a better upper bound for general

graphs that does not depend on the order of the graph.

The endeavor with exploring k−power domination is to hopefully shed some light

on the power domination problem. What is meant by this is that by altering what vertices

become observed through propagation, perhaps some property will shine through and
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reveal what really happens during power domination. Power domination does seem to

be a way of studying the more general k−power domination though. As shown in the

chapter on k−power domination, some of the structural properties of power domination

are easily extended into k−power domination.

Another approach one may want to take is to randomly add edges to a graph

and see how some invariants change with the addition of edges. This may lead to some

property being revealed about what power domination depends on.

It was mentioned earlier on that if G and H are homeomorphic graphs, it is not

necessarily true that γP (G) = γP (H). It may be the case though, that there is a family

of graphs F so that if G and H are homeomorphic and there is not some F ∈ F such

that F ⊆ G or F ⊆ H, then γP (G) = γP (H). The problem then becomes finding the

family of forbidden subgraphs F so that if there is no subgraph of two homeomorphic

graphs, G and H, in F , then γP (G) = γP (H).
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