Remarks on least energy solutions for quasilinear elliptic problems in ℝN

dc.contributor.authordo O, Joao Marcos
dc.contributor.authorMedeiros, Everaldo S.
dc.date.accessioned2021-01-08T16:39:34Z
dc.date.available2021-01-08T16:39:34Z
dc.date.issued2003-08-11
dc.description.abstractIn this work we establish some properties of the solutions to the quasilinear second-order problem -∆pw = g(w) in ℝN where ∆pu = div(|∇u|p-2 ∇u) is the p-Laplacian operator and 1 < p ≤ N. We study a mountain pass characterization of least energy solutions of this problem. Without assuming the monotonicity of the function t1-pg(t), we show that the Mountain-Pass value gives the least energy level. We also prove the exponential decay of the derivatives of the solutions.
dc.description.departmentMathematics
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationdo O, J. M., & Medeiros, E. S. (2003). Remarks on least energy solutions for quasilinear elliptic problems in ℝN. Electronic Journal of Differential Equations, 2003(83), pp. 1-14.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/13091
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectVariational methods
dc.subjectMinimax methods
dc.subjectSuperlinear elliptic problems
dc.subjectp-Laplacian
dc.subjectGround-states
dc.subjectMountain-pass solutions
dc.titleRemarks on least energy solutions for quasilinear elliptic problems in ℝN
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
doo.pdf
Size:
247.86 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: