Multiple positive solutions for nonhomogeneous Schrödinger-Poisson systems with Berestycki-Lions type conditions

dc.contributor.authorHuang, Lan-Xin
dc.contributor.authorWu, Xing-Ping
dc.contributor.authorTang, Chun-Lei
dc.date.accessioned2021-08-19T18:54:10Z
dc.date.available2021-08-19T18:54:10Z
dc.date.issued2021-01-07
dc.description.abstractIn this article, we consider the multiplicity of solutions for nonhomogeneous Schrödinger-Poisson systems under the Berestycki-Lions type conditions. With the aid of Ekeland's variational principle, the mountain pass theorem and a Pohozaev type identity, we prove that the system has at least two positive solutions.
dc.description.departmentMathematics
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationHuang, L. X., Wu, X. P., & Tang, C. L. (2021). Multiple positive solutions for nonhomogeneous Schrodinger-Poisson systems with Berestycki-Lions type conditions. Electronic Journal of Differential Equations, 2021(01), pp. 1-14.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/14398
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectNonhomogeneous Schrödinger-Poisson system
dc.subjectVariational methods
dc.subjectMultiple positive solutions
dc.subjectBerestycki-Lions type conditions
dc.titleMultiple positive solutions for nonhomogeneous Schrödinger-Poisson systems with Berestycki-Lions type conditions
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
huang.pdf
Size:
340.58 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: