Explicit limit cycles of a family of polynomial differential systems

dc.contributor.authorBoukoucha, Rachid
dc.date.accessioned2022-06-13T17:01:53Z
dc.date.available2022-06-13T17:01:53Z
dc.date.issued2017-09-13
dc.description.abstractWe consider the family of polynomial differential systems x' = x + (αy - βx) (αx2 - bxy + αy2)n, y' = y - (βy + αx) (αx2 - bxy + αy2)n, where α, b, ɑ, β are real constants and n is positive integer. We prove that these systems are Liouville integrable. Moreover, we determine sufficient conditions for the existence of an explicit algebraic or non-algebraic limit cycle. Examples exhibiting the applicability of our result are introduced.
dc.description.departmentMathematics
dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationBoukoucha, R. (2017). Explicit limit cycles of a family of polynomial differential systems. Electronic Journal of Differential Equations, 2017(217), pp. 1-7.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15911
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectPlanar polynomial differential system
dc.subjectFirst integral
dc.subjectAlgebraic limit cycles
dc.subjectNon-algebraic limit cycle
dc.titleExplicit limit cycles of a family of polynomial differential systems
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
boukoucha.pdf
Size:
194.69 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: