Blow up of solutions to semilinear wave equations

dc.contributor.authorGuedda, Mohammed
dc.date.accessioned2020-11-23T21:10:35Z
dc.date.available2020-11-23T21:10:35Z
dc.date.issued2003-05-03
dc.description.abstractThis work shows the absence of global solutions to the equation utt = ∆u + p-k |u|m, in the Minkowski space M0 = ℝ x ℝN, where m > 1, (N - 1)m < N + 1, and p is a conformal factor approaching 0 at infinity. Using a modification of the method of conformal compactification, we prove that any solution develops a singularity at a finite time.
dc.description.departmentMathematics
dc.formatText
dc.format.extent5 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationGuedda, M. (2003). Blow up of solutions to semilinear wave equations. Electronic Journal of Differential Equations, 2003(53), pp. 1-5.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/12993
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectBlow up
dc.subjectConformal compactification
dc.titleBlow up of solutions to semilinear wave equations
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
guedda.pdf
Size:
176.63 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: