Linear type global centers of cubic Hamiltonian systems symmetric with respect to the x-axis
dc.contributor.author | Barreira, Luis | |
dc.contributor.author | Llibre, Jaume | |
dc.contributor.author | Valls, Claudia | |
dc.date.accessioned | 2021-09-29T20:26:15Z | |
dc.date.available | 2021-09-29T20:26:15Z | |
dc.date.issued | 2020-06-08 | |
dc.description.abstract | A polynomial differential system of degree 2 has no global centers (that is, centers defined in all the plane except the fixed point). In this paper we characterize the global centers of cubic Hamiltonian systems symmetric with respect to the x-axis, and such that the center has purely imaginary eigenvalues. | |
dc.description.department | Mathematics | |
dc.format | Text | |
dc.format.extent | 14 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.identifier.citation | Barreira, L., Llibre, J., & Valls, C. (2020). Linear type global centers of cubic Hamiltonian systems symmetric with respect to the x-axis. Electronic Journal of Differential Equations, 2020(57), pp. 1-14. | |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://hdl.handle.net/10877/14564 | |
dc.language.iso | en | |
dc.publisher | Texas State University, Department of Mathematics | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Electronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | Center | |
dc.subject | Global center | |
dc.subject | Hamiltonian system | |
dc.subject | Symmetry with respect to the x-axis | |
dc.subject | Cubic polynomial differential system | |
dc.title | Linear type global centers of cubic Hamiltonian systems symmetric with respect to the x-axis | en_US |
dc.type | Article |