Existence of solutions to fractional Hamiltonian systems with combined nonlinearities

dc.contributor.authorZhang, Ziheng
dc.contributor.authorYuan, Rong
dc.date.accessioned2023-06-12T17:25:12Z
dc.date.available2023-06-12T17:25:12Z
dc.date.issued2016-01-27
dc.description.abstractThis article concerns the existence of solutions for the fractional Hamiltonian system -tDα∞(-∞Dtαu(t)) - L(t)u(t) + ∇W(t, u(t)) = 0, u ∈ Hα(ℝ, Rn), where α ∈ (1/2, 1), L ∈ C(ℝ, ℝn2) is a symmetric and positive definite matrix. The novelty of this article is that if τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 and the non-linearity W(t, u) involves a combination of superquadratic and subquadratic terms, the Hamiltonian system possesses at least two nontrivial solutions.
dc.description.departmentMathematics
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationZhang, Z., & Yuan, R. (2016). Existence of solutions to fractional Hamiltonian systems with combined nonlinearities. Electronic Journal of Differential Equations, 2016(40), pp. 1-13.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16914
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.holderThis work is licensed under a Creative Commons Attribution 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2016, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional Hamiltonian systems
dc.subjectCritical point
dc.subjectVariational methods
dc.subjectMountain pass theorem
dc.titleExistence of solutions to fractional Hamiltonian systems with combined nonlinearities
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
zhang.pdf
Size:
262.74 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: