Reducibility of zero curvature equations

dc.contributor.authorFlores-Espinoza, Ruben
dc.date.accessioned2021-04-13T17:17:24Z
dc.date.available2021-04-13T17:17:24Z
dc.date.issued2004-03-24
dc.description.abstractBy introducing a natural reducibility definition for zero curvature equations, we give a Floquet representation for such systems and show applications to the reducibility problem for quasiperiodic 2-dimensional linear systems and to fiberwise linear dynamical systems on trivial vector bundles.
dc.description.departmentMathematics
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationFlores-Espinoza, R. (2004). Reducibility of zero curvature equations. Electronic Journal of Differential Equations, 2004(43), pp. 1-12.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/13371
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.holderThis work is licensed under a Creative Commons Attribution 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectZero-curvature equation
dc.subjectReducibility
dc.subjectFloquet representation
dc.subjectQuasiperiodic linear systems
dc.subjectFiberwise linear dynamical system
dc.titleReducibility of zero curvature equations
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
flores.pdf
Size:
206.89 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: