Existence results for Hamiltonian elliptic systems with nonlinear boundary conditions

dc.contributor.authorFernandez Bonder, Julian
dc.contributor.authorPinasco, Juan Pablo
dc.contributor.authorRossi, Julio D.
dc.date.accessioned2019-11-21T15:55:41Z
dc.date.available2019-11-21T15:55:41Z
dc.date.issued1999-10-07
dc.description.abstractWe prove the existence of nontrivial solutions to the system Δu = u, Δv = v, on a bounded set of ℝN, with nonlinear coupling at the boundary given by ϑu / ϑn = Hv, ϑv / ϑn = Hu. The proof is done under suitable assumptions on the Hamiltonian H, and based on a variational argument that is a generalization of the mountain pass theorem. Under further assumptions on the Hamiltonian, we prove the existence of positive solutions.
dc.description.departmentMathematics
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationBonder, J. F., Pinasco, J. P., & Rossi, J. D. (1999). Existence results for Hamiltonian elliptic systems with nonlinear boundary conditions. Electronic Journal of Differential Equations, 1999(40), pp. 1-15.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/8854
dc.language.isoen
dc.publisherSouthwest Texas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 1999, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectElliptic systems
dc.subjectNonlinear boundary conditions
dc.subjectVariational problems
dc.titleExistence results for Hamiltonian elliptic systems with nonlinear boundary conditions
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1999-Fernandez-Pinasco-Rossi.pdf
Size:
161.68 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: