Optimal bilinear control for Gross-Pitaevskii equations with singular potentials

dc.contributor.authorWang, Kai
dc.contributor.authorZhao, Dun
dc.date.accessioned2021-12-06T15:14:40Z
dc.date.available2021-12-06T15:14:40Z
dc.date.issued2019-10-13
dc.description.abstractWe study the optimal bilinear control problem of the generalized Gross-Pitaevskii equation i∂tu = -∆u + U(x)u + φ(t) 1/|x|α u + λ|u|2σu, x ∈ ℝ3, where U(x) is the given external potential, φ(t) is the control function. The existence of an optimal control and the optimality condition are presented for suitable α and σ. In particular, when 1 ≤ α < 3/2, the Fréchet-differentiability of the objective functional is proved for two cases: (i) λ < 0, 0 < σ < 2/3; (ii) λ > 0, 0 < σ < 2. Comparing with the previous studies in [6], the results fill the gap for σ ∈ (0, 1/2).
dc.description.departmentMathematics
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationWang, K., & Zhao, D. (2019). Optimal bilinear control for Gross-Pitaevskii equations with singular potentials. Electronic Journal of Differential Equations, 2019(115), pp. 1-13.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15009
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectOptimal bilinear control
dc.subjectGross-Pitaevskii equation
dc.subjectObjective functional
dc.subjectFrechet-differentiability
dc.subjectOptimal condition
dc.titleOptimal bilinear control for Gross-Pitaevskii equations with singular potentials
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wang.pdf
Size:
346.39 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: