User Perception of Differences in Recommender Algorithms




Ekstrand, Michael D.
Harper, F. Maxwell
Willemsen, Martijn C.
Konstan, Joseph A.

Journal Title

Journal ISSN

Volume Title


Association for Computing Machinery


Recent developments in user evaluation of recommender systems have brought forth powerful new tools for understanding what makes recommendations effective and useful. We apply these methods to understand how users evaluate recommendation lists for the purpose of selecting an algorithm for finding movies. This paper reports on an experiment in which we asked users to compare lists produced by three common collaborative filtering algorithms on the dimensions of novelty, diversity, accuracy, satisfaction, and degree of personalization, and to select a recommender that they would like to use in the future. We find that satisfaction is negatively dependent on novelty and positively dependent on diversity in this setting, and that satisfaction predicts the user's final selection. We also compare users' subjective perceptions of recommendation properties with objective measures of those same characteristics. To our knowledge, this is the first study that applies modern survey design and analysis techniques to a within-subjects, direct comparison study of recommender algorithms.



recommender systems, human-computer interaction, user study, Computer Science


Ekstrand, M. D., Harper, F. M., Willemsen, M. C., & Konstan, J. A. (2014). User perception of differences in recommender algorithms. Proceedings of the 8th ACM Conference on Recommender Systems, pp. 161-168.


Rights Holder

Rights License

Rights URI