Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem

dc.contributor.authorChu, Khanh Duc
dc.contributor.authorHai, Dang Dinh
dc.date.accessioned2022-01-31T19:22:41Z
dc.date.available2022-01-31T19:22:41Z
dc.date.issued2018-04-17
dc.description.abstractWe prove the existence of positive classical solutions for the p-Laplacian problem -(r(t)φ(u′))′ = ƒ(t, u), t ∈ (0, 1), au(0) - bφ-1 (r(0))u′(0) = 0, cu(1) + dφ-1 (r(1))u′(1) = 0, where φ(s) = |s|p-2s, p > 1, ƒ : (0, 1) x [0, ∞) → ℝ is a Carathéodory function satisfying lim supz → 0+ ƒ(t, z)/zp-1 < λ1 < lim infz → ∞ ƒ(t, z)/zp-1 uniformly for a.e. t ∈ (0, 1), where λ1 denotes the principal eigenvalue of -(r(t)φ(u′))′ with Sturm-Liouville boundary conditions. Our result extends a previous work by Manásevich, Njoku, and Zanolin to the Sturm-Liouville boundary conditions with more general operator.
dc.description.departmentMathematics
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationChu, K. D., & Hai, D. D. (2018). Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem. Electronic Journal of Differential Equations, 2018(92), pp. 1-14.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15259
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectp-Laplacian
dc.subjectSuperlinear
dc.subjectPositive solutions
dc.titlePositive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
chu.pdf
Size:
263.75 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: