Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem
dc.contributor.author | Chu, Khanh Duc | |
dc.contributor.author | Hai, Dang Dinh | |
dc.date.accessioned | 2022-01-31T19:22:41Z | |
dc.date.available | 2022-01-31T19:22:41Z | |
dc.date.issued | 2018-04-17 | |
dc.description.abstract | We prove the existence of positive classical solutions for the p-Laplacian problem -(r(t)φ(u′))′ = ƒ(t, u), t ∈ (0, 1), au(0) - bφ-1 (r(0))u′(0) = 0, cu(1) + dφ-1 (r(1))u′(1) = 0, where φ(s) = |s|p-2s, p > 1, ƒ : (0, 1) x [0, ∞) → ℝ is a Carathéodory function satisfying lim supz → 0+ ƒ(t, z)/zp-1 < λ1 < lim infz → ∞ ƒ(t, z)/zp-1 uniformly for a.e. t ∈ (0, 1), where λ1 denotes the principal eigenvalue of -(r(t)φ(u′))′ with Sturm-Liouville boundary conditions. Our result extends a previous work by Manásevich, Njoku, and Zanolin to the Sturm-Liouville boundary conditions with more general operator. | |
dc.description.department | Mathematics | |
dc.format | Text | |
dc.format.extent | 14 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.identifier.citation | Chu, K. D., & Hai, D. D. (2018). Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem. Electronic Journal of Differential Equations, 2018(92), pp. 1-14. | |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://hdl.handle.net/10877/15259 | |
dc.language.iso | en | |
dc.publisher | Texas State University, Department of Mathematics | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Electronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | p-Laplacian | |
dc.subject | Superlinear | |
dc.subject | Positive solutions | |
dc.title | Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem | |
dc.type | Article |