Zeros of the Jost function for a class of exponentially decaying potentials

dc.contributor.authorGilbert, Daphne
dc.contributor.authorKerouanton, Alain
dc.date.accessioned2021-07-14T12:47:23Z
dc.date.available2021-07-14T12:47:23Z
dc.date.issued2005-12-08
dc.description.abstractWe investigate the properties of a series representing the Jost solution for the differential equation -y′′ + q(x)y = λy, x ≥ 0, q ∈ L(ℝ+). Sufficient conditions are determined on the real or complex-valued potential q for the series to converge and bounds are obtained for the sets of eigenvalues, resonances and spectral singularities associated with a corresponding class of Sturm-Liouville operators. In this paper, we restrict our investigations to the class of potentials q satisfying |q(x)| ≤ ce-αx, x ≥ 0, for some α > 0, and c > 0.
dc.description.departmentMathematics
dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationGilbert, D., & Kerouanton, A. (2005). Zeros of the Jost function for a class of exponentially decaying potentials. Electronic Journal of Differential Equations, 2005(145), pp. 1-9.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/13870
dc.language.isoen
dc.publisherTexas State University-San Marcos, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectJost solution
dc.subjectSturm-Liouville operators
dc.subjectResonances
dc.subjectEigenvalues
dc.subjectSpectral singularities
dc.titleZeros of the Jost function for a class of exponentially decaying potentials
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gilbert.pdf
Size:
206.76 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: