Stokes' Theorem: Calculus of Differential Forms

Date

2004-12

Authors

Johnson, Christopher E.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis connects a number of fields of mathematics in relation to Euclidean n-space. It defines the meanings of differentiation for functions between these spaces and gives an exposition of the inverse function theorem. One also finds the definition for integration of real valued function defined on a Euclidean n-space. These definitions of differentiation and integration are precursors to the topics of differential forms and integration of forms over chains that stand out as the main ideas developed herein. A great deal of effort is spent on developing the algebraic structure of differential forms including the non-trivial associative property of the wedge product. The final chapter ties the previous chapters together nicely in a result known as Stokes’ Theorem.

Description

Keywords

Stokes' theorem, differential forms

Citation

Johnson, C. E. (2004). Stokes' theorem: Calculus of differential forms (Unpublished thesis). Texas State University-San Marcos, San Marcos, Texas.

Rights

Rights Holder

Rights License

Rights URI