Competitive exclusion in a multi-strain SIS epidemic model on complex networks

Date

2019-01-14

Authors

Yang, Junyuan
Kuniya, Toshikazu
Luo, Xiaofeng

Journal Title

Journal ISSN

Volume Title

Publisher

Texas State University, Department of Mathematics

Abstract

In this article, we propose an infection age-structured multi-strain SIS epidemic model on complex networks. We obtain the reproduction numbers for each strain by using the classical theory of renewal equations, and we define the basic reproduction number R0 for the whole system by the maximum of them. We prove that if R0 < 1, then the disease-free equilibrium of the model is globally asymptotically stable, whereas if R0 > 1, then there exists an endemic equilibrium in which only one strain with the largest reproduction number survives. Moreover, under an additional assumption that the recovery rate is homogeneous, we prove that such an endemic equilibrium is globally asymptotically stable. Interestingly, our theoretical results imply that the competitive exclusion can occur in a sense that only one strain with the largest reproduction number survives.

Description

Keywords

Multi-strain SIS epidemic model, Complex network, Infection age, Basic reproduction number, Global stability, Competitive exclusion

Citation

Yang, J., Kuniya, T., & Lu, X. (2019). Competitive exclusion in a multi-strain SIS epidemic model on complex networks. Electronic Journal of Differential Equations, 2019(06), pp. 1-30.

Rights

Attribution 4.0 International

Rights Holder

Rights License