
CHIP-FIRING ON GRAPHS: STABILITY, THE DOLLAR GAME,

AND THE TUTTE POLYNOMIAL

by

James Dylan Douthitt, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Mathematics
May 2019

Committee Members:

Anton Dochtermann, Chair

Eugene Curtin

Suho Oh

COPYRIGHT

by

James Dylan Douthitt

2019

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94–553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the author’s express written permission is not
allowed.

Duplication Permission

As the copyright holder of this work I, James Dylan Douthitt, refuse permission to
copy in excess of the “Fair Use” exemption without my written permission.

ACKNOWLEDGMENTS

Thank you to my advisor, Dr. Anton Dochtermann, for his assistance, guidance,

and patience throughout this thesis process as well as my mathematical studies as a

whole.

Thank you to Dr. Eugene Curtin for his instruction early in my

mathematics career and honest guidance throughout.

Thank you to Dr. Suho Oh for his knowledge and assistance on many of the

concepts we talk about here.

Thank you to the department of mathematics faculty involved in the algebra

and combinatorics seminar for the time spent exploring the material on which I

would eventually write this paper.

Thank you to Dr. Raymond Treinen for his encouragement, support, and

mentorship toward my graduate studies.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. iv

LIST OF FIGURES. vii

CHAPTER

I. INTRODUCTION . 1

II. DEFINITIONS AND BASIC OBJECTS OF STUDY 5

Graphs . 5
Chip-firing . 7
Matrix-Tree Theorem. 11

III. CLASSICAL CHIP-FIRING . 14

IV. RECURRENCE AND THE CRITICAL GROUP 20

Configuration Classes . 20
Rooted, Stable, and Recurrent . 21
The Critical Group . 24
q-reduced Configurations . 27
Superstables in Brief . 30
Dhar’s Burning Algorithm. 31

V. DOLLAR GAME AND RIEMANN-ROCH . 34

Dollar Game . 34
Riemann-Roch. 40

v

VI. APPLICATIONS TO CO-GRAPHIC MATROIDS 42

The Tutte Polynomial . 42
Merino’s Theorem. 45

VII. FINAL REMARKS AND FUTURE DIRECTIONS. 52

REFERENCES . 53

vi

LIST OF FIGURES

Figure Page

1 Basic Graph with Matrices . 6
2 Deletion-Contraction of a Graph . 7
3 Example of a Vertex Fire . 8
4 Spanning Trees of the Diamond Graph 12
5 Not Critical and Critical Configuration 23
6 Stable not q-Reduced . 29
7 Dhar’s Burning Algorithm on a Non-Superstable Configuration 33
8 Dhar’s Burning Algorithm on a Superstable configuration 33
9 Non-Winnable Configuration with Degree 0 36
10 External and Internal Activity of a Graph 44
11 Superstables of the Diamond Graph . 45

vii

I. INTRODUCTION

Chip-firing is a dynamical system defined by placing some number of ‘chips’ on

the vertices of a graph and distributing them according to a simple rule. We will

be looking at the use of chip-firing on graphs as a combinatorial structure and

some developments since 1991. Versions of the game have appeared in a variety of

contexts and we will look at some of the major results.

An early version of these games appeared in a couple of papers [14],[15]

written in 1977 and 1986 respectively by Joel Spencer. In these papers he wrote

of a two-person game played on vector spaces, where each person would take turns

making moves and the goal of the game was to get the vector as close to zero as

possible. He called this the ‘balancing game.’ In the latter paper he began thinking

of the vectors as extended graphical paths. This gave way to the series of papers

that we will explore.

We will begin the thesis by defining the basic structures that we will be

using. First we will define the object we will be operating on, graphs, and discuss

some basic properties of them such as the useful matrices and deletion/contraction.

We then move to defining how chip-firing works and how exactly we will be

referring to various aspects of our games. Then mixing the two we return to the

graph to talk about the Laplacian and how it impacts our chip-firing game. We

end the background material with one of the most notable and known results

in graph theory, Kirchhoff’s matrix-tree theorem. Throughout this paper much

of the notation and language will follow that of the book [7] recently written by

Scott Corry and David Perkinson and published in 2018. A reader with a strong

knowledge of graph theory and chip-firing can safely skip this section.

In the next section, we look at the classical chip-firing game originally

1

introduced in 1991 by Björner, Lovász, and Shor [6]. Here we allow only a

non-negative number of chips and using this they show that the long-term behavior

of our games fall in to three possibilities dictated by the total number of chips in

play. More precisely the main theorem is:

Theorem 6. (Björner, Lovász, Shor [6], 1991)

Let G be a graph with V vertices and E edges. Then legal games can be

categorized as follows:

(a) If c is a configuration with deg(c) > 2E − V then the game is infinite, and each

vertex is fired an infinite number of times.

(b) If N ∈ Z with E ≤ N ≤ 2E − V then there exists an initial configuration of

degree N guaranteeing finite termination and also a configuration of degree N

guaranteeing an infinite game.

(c) If c is a configuration with deg(c) < E then the game is finite.

In the finite case there is an ‘abelian’ property guaranteeing that the game

will terminate with the same final position after the same number of moves,

regardless of what order the moves occur. Here we will spend some time setting

language that is used in the context of this game. We will augment how we use this

specific language throughout the paper as to satisfy the need of each game we play.

We will then move to the more algebraic aspects of chip-firing including a

group structure present in the set of ‘stable’ and ‘recurrent’ configurations. Much

of this work is originally due to Biggs [5]. Here we will consider a variation of the

game discussed in the previous section where now we introduce the notion of a

fixed ‘root’ vertex and explore what was originally called the ‘dollar game.’ This

2

allows us to look at the graph as an economic model of sorts with a ‘bank.’ An

important result of [5] is the following:

Theorem 9. (Biggs [5], 1999)

The set K(G) of critical configurations on a connected graph G is in bijective

correspondence with the abelian group kerσ/ ImL.

Continuing in this general area we discuss some other notions of chip-firing

including ‘superstable’ configurations associated with the non-root set of vertices.

From these we will present various bijective type arguments including results

relating to the number of spanning trees of the underlying graph. This opens the

door to many other bijections between the underlying combinatorial objects that is

well explored in other literature. One of the main tools in this context is known as

Dhar’s algorithm. This algorithm is useful to check if a configuration is superstable,

as well as play the game more efficiently.

A related perspective of chip-firing, which we refer to as the dollar game,

involves placing any integer value of chips on all vertices and passing chips

attempting to get all players out of debt. We discuss various examples, including

an in-depth analysis of how the game plays out on trees and cycles. This leads

us to a generalization of ‘winnable’ that is made precise in the Riemann-Roch

theorem for graphs, due to Baker and Norine [4]. Here we define the ‘rank’ of a

configuration. The ‘genus’ of the graph plays an important role. The following is

the main theorem from [4]:

3

Theorem 18. (Baker, Norine [4], 2007)

Let c be a configuration on a graph G, free of loops, with genus g = E − V + 1, and

canonical configuration K. Then,

r(c) − r(K − c) = deg(c) + 1 − g.

We close the results of the paper by discussing a connection between

chip-firing and the Tutte polynomial. The Tutte polynomial is a well-studied

invariant of the graph characterized in many ways including a deletion-contraction

property. We discuss a theorem due to Merino [12] which provides a connection

between the superstable configurations of a graph and certain coefficients of the

Tutte polynomial. This theorem relates states of our game to the activity of

spanning trees. The version of Merino’s theorem given in this paper is slightly

different from the original, it in fact comes from the book [7]. An equivalent

definition of the Tutte polynomial allows us to interpret the degree of the

superstable configurations in terms of ‘activity’ of spanning trees.

We end with some final remarks about various topics not explored in this

thesis as well as further research on these topics.

4

II. DEFINITIONS AND BASIC OBJECTS OF STUDY

Graphs

A multigraph is a pair G = (V,E), where V is a set of vertices, often called nodes,

and E is a set of edges between vertices, often thought of as unordered pairs of

vertices. A multigraph differs from a simple graph by allowing for any pair of

vertices vi, vj ∈ V, the edge between them may appear multiple times representing

multiple edges connecting the same pair of vertices. We will often write vivj to

denote an edge {vi, vj} for convenience. Two vertices vi and vj are said to be

adjacent if {vi, vj} ∈ E. A vertex v is said to be incident to all edges containing

v. The degree of a vertex v, denoted deg(v), is equal to the total number of edges

incident to v. Frequently we may denote V = ∣V ∣ and E = ∣E∣ whenever the context

is appropriate. A graph G is said to be finite if both V < ∞ and E < ∞. A graph

is said to be connected if for any two vertices vi, vj ∈ V , there exists a sequence of

edges joining vi to vj.

At some point we may want to differentiate certain edges in the graph by

characteristics of the edges. A bridge or isthmus is an edge that, if removed, would

disconnect the graph. A loop is an edge that connects a vertex to itself. Unless

otherwise stated, graphs for the purpose of this paper will be considered to be

finite, connected, undirected multigraphs, free of loops.

We have a few ways to encode graphs in terms of matrices, each with its

own value to our system. There are three matrices we will use here, all derived

from the graph. First is the degree matrix, D(G). D(G) is defined to be a ∣V ∣ × ∣V ∣

diagonal matrix in which each of the diagonal entries are the degrees of the vertex

corresponding to that entry, dii = deg(vi). The second is the adjacency matrix,

A(G), defined also as a ∣V ∣ × ∣V ∣ matrix where each entry aij counts the number

5

of edges between vi and vj. Third we define the incidence matrix, B(G), to be a

∣V ∣ × ∣E∣ matrix with each column representing an edge and the entries are 1 if the

vertex is an endpoint of the edge and 0 if it is not. For a directed graph, the entries

in this matrix would be −1 if the edge leaves the vertex, 1 if the edge enters the

vertex, and 0 otherwise. For the purposes of this paper the incidence matrix will

have an arbitrary orientation so that each of the columns sum to 0. Another way to

think about the incidence matrix is as the boundary map of G where we consider

G as an (oriented) 1-dimensional simplex. The following figure shows a graph and

each of these corresponding matrices.

Figure 1: Basic Graph with Matrices

D(G) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A(G) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B(G) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 1 0
−1 1 0 0 0
0 −1 −1 0 1
0 0 0 −1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

When applying mathematics to a graph one of the most used tools is the

idea of edge deletion and contraction denoted G/e and G/e respectively. Deletion

is just that, simply delete the edge from the graph. Contraction on the other hand

is slightly more complicated in that when the edge is contracted both vertices are

identified as the same. This can be seen in the figure below.

6

Figure 2: Deletion-Contraction of a Graph

Chip-firing

Now we turn to some of our main definitions. Throughout this let G = (V,E) be a

multigraph.

Definition 1. A chip configuration, also called divisor, c on G is an element of the

free abelian group on the vertices:

Config(G) = ZV = {∑
v∈V

c(v)v ∶ c(v) ∈ Z}.

Another way to think of this is that each configuration is placing some

‘legal,’ depending on the game in question, number of chips on each vertex of

G, that is for each v ∈ V (G), c(v) ∈ Z. This can also be thought of as a

vector in ZV where the ith entry is the number of chips on vertex vi. Here we

would like to mention that in much of the literature the term configuration is

reserved to apply only with a fixed root in the graph, where the chips on that

fixed root are not allowed, and a divisor refers to other cases. We choose to call

them all configurations and define our games in such a way that it restricts the

configurations to match the way they are played in the literature.

7

Definition 2. The degree of a configuration c is the sum of all chips, that is:

deg(c) = ∑
v∈V

c(v).

Now that we have defined the chips part of chip-firing we must discuss what

it means to fire. If G is a graph and c a configuration on G, then informally firing a

vertex v can be thought of as lending chips to all of its neighbors. When a vertex

lends chips to its neighbors it must lend to all of them. That is to say that we

decrease the number of chips on v by the degree of v and increase the number of

chips on each adjacent vertex by the degree of their adjacency. An example of this

can be seen below where v∗1 denotes the firing of v1.

Figure 3: Example of a Vertex Fire

To define this more formally suppose c is a configuration on G, a new

configuration c′ is achieved by the following map:

c′(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(u) ;u ∉ N(v)

c(u) + k(uv) ;u ∈ N(v)

c(u) − deg(v) ;u = v.

8

Here k(uv) is the connectivity of the two vertices or said another way, the number

of edges between u and v. While this method shows a vertex lending to its

neighbors the idea of a vertex borrowing from its neighbors is also a legal move in

some contexts. When it is legal, it is the same as every other vertex in the graph

being fired so we will typically only refer to lending moves. One may notice that

this type of mapping can be computationally expensive since we are checking each

vertex one by one. This would lead us to another method of calculating the firing

map.

To do this we will first need to explore another classic graph theory tool, the

‘Laplacian matrix’ of a graph. The Laplacian matrix of a graph G, denoted L(G)

or just L, is a ∣V ∣ × ∣V ∣ matrix that can be computed by taking the degree matrix D

and subtracting the adjacency matrix A. That is

L(G) =D −A

In our example above using D(G) and A(G) we see that

L(G) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0 0

0 2 0 0

0 0 3 0

0 0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We will revisit this particular Laplacian momentarily.

Explicitly L(G) can be computed element wise as follows:

`i,j =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

deg(vi) ; i = j

−(# of edges between vi and vj) ; i ≠ j

9

Now to fire a vertex vi, take the column of L(G) corresponding to vi and subtract

it from the configuration c. Naturally the column vector that was taken from

L(G) was a vector in ZV and as defined earlier c is also a vector in ZV thus our

subtraction in this way is well defined and in fact leads to a new configuration

with the same degree. Once the Laplacian is in hand we can think of a sequence of

firings as a vector in ZV where the ith entry is the number of times a given vertex

say vi is fired. That is to say if x ∈ ZV is a vector encoding a firing sequence then a

configuration c′ can be obtained from c by

c′ = c − L(G)x.

Another equivalent way to compute the Laplacian of a graph is to use the (signed)

incidence matrix, B(G). Since we are working with undirected graphs, for the

purposes of the incidence matrix we will need to artificially impose an orientation

on the graph. The requirements for this orientation is only that the sum of each

column of B(G) be zero. That is to say that each edge either goes from vertex v to

vertex w or the converse and in particular an edge between two vertices cannot be

oriented out toward both its vertices or in from both of its vertices. The specific

orientation is not important as the result we are seeking is independent of this

choice. Using the incidence matrix B and its transpose Bt, we define the Laplacian

to be:

L(G) = BBt

One can check that these two definitions result in the same matrix, however, we

will not do that here.

10

Matrix-Tree Theorem

The matrix-tree theorem, also known as Kirchhoff’s matrix-tree theorem, states

that the total number of spanning trees of a graph G is equal to a specific

evaluation of the Laplacian of G. To make this more precise we will first more

clearly define what it means to be a spanning tree of a graph as well as talk about

some basic ideas from linear algebra. A spanning tree T of a graph G = (V,E) is a

connected collection of edges which satisfy the following two conditions:

1. T ⊆ E such that T contains no cycles (Tree)

2. All of the vertices in V are contained in T (Spanning)

Now that we have defined what a spanning tree is, we will proceed by delving into

our linear algebra toolbox. We begin with the notion of determinant. The overall

idea of a determinant is not difficult, but the precise definition is quite messy, and

we choose to spare the reader and say only that det(A) will denote the determinant

of a matrix A. We now define a cofactor of an entry aij to be

Cij = (−1)i+jdet(Mij)

where here Mij is the reduced matrix obtained by deleting the ith row and the jth

column from the full matrix M. We now have enough to formally write the matrix

tree theorem.

Theorem 3. (Matrix-Tree Theorem, [10])

The number of spanning trees of a connected graph G is equal to the absolute value

of any cofactor of the Laplacian of G.

Now we look at an example of applying this to the graph from above. Recall the

11

Laplacian of this graph as given below.

L(G) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For simplicity we will look at the cofactor of the entry in the first row, first column.

We begin by reducing the full Laplacian to the matrix M1,1, often in the literature

this matrix is called the reduced Laplacian and denoted L̃:

L̃ =M1,1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 0

−1 3 −1

0 −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here we see that det(M1,1) = 8 so according to the Matrix-Tree Theorem there are 8

spanning trees of G and indeed, they are as follows:

Figure 4: Spanning Trees of the Diamond Graph

One of the major tools used to prove the matrix-tree theorem came up

numerous times during our exploration of chip-firing. While it will not be used in

12

this paper, we feel inclined to include it. The following formula is known as the

Cauchy-Binet Formula. If A is an m × n matrix and B is an n ×m matrix. Then,

det(AB) = ∑

S∈([n]
m

)

det(A[m],S)det(BS,[m])

Where [n] denotes the set {1, . . . , n} and A[m],S denotes the m × m matrix with

columns of A at the indices of S. In the case of the matrix-tree theorem, using the

L = BBt definition of the Laplacian, we see that L̃ = B̃(B̃)t, where B̃ is found by

deleting a row from B. Applying the Cauchy-Binet formula to this gives

det(L̃) = ∑

S∈([n]
m

)

det(B̃[m],S)det((B̃S,[m])
t) = ∑

S∈([n]
m

)

det(B̃[m],S)
2.

It is then shown that det(B̃[m],S) is equal to 1 or −1 if and only if S induces a

spanning tree, and 0 otherwise.

13

III. CLASSICAL CHIP-FIRING

We will now begin with our first game which we will refer to as classical chip-firing,

in general this will be the game played and results from [6]. In this classical case we

restrict the configurations to have entries only in Z+, however this will be weakened

later. In the classical chip-firing game a vertex v is said to be ready to fire if c(v) ≥

deg(v). Here when we fire a vertex v we get a new configuration c′ as defined above

and such a vertex fire is legal if the vertex was ready to fire in the first place, that

is to say a firing would be illegal if the result of the firing would lead a vertex to

have a negative number of chips. We take the following definition in the classical

case under the pretense that it will change depending on the game at hand and for

the purpose of this paper will change in the following chapters.

Definition 4. A configuration c is said to be stable if no vertex is ready to fire,

that is for all v ∈ V (G), c(v) < deg(v).

A position in the game is any distribution of chips on the graph such that

∑v∈V (G) c(v) = deg(c0), where deg(c0) is the degree of the initial configuration on G.

A legal game is any sequence of legal vertex firings.

A natural question at this point is what finite initial configurations c on G

can be reduced to stable configurations? Furthermore, if it can be reduced to a

stable configuration what are the possible stable configurations? The answers to

these questions are major results of [6].

Theorem 5. (Björner, Lovász, Shor [6], 1991)

Given a connected graph and an initial configuration, either every legal game can

be continued indefinitely, or every legal game terminates after the same number of

moves with the same final position. The number of times a given vertex is fired is

14

the same in every legal game.

We omit the proof of the results in the finite case noting the proof is

thorough in [6], using the order of firings as a language with special exchange

properties.

It is also a result of [6] that if a game is infinite then each vertex is fired

infinitely many times. To see this, observe that at least one vertex is fired infinitely

many times. Since the graph is connected that vertex must have a set of neighbors.

Each of the neighbors receive chips infinitely often but since the degree of the

configuration was finite, each vertex cannot compile more than the degree of the

configuration number of chips and therefore must be fired infinitely often itself.

Again, the graph is connected so this process can be repeated indefinitely. This

leads us to the main result of the Björner, Lovász, Shor paper.

Theorem 6. Björner, Lovász, Shor [6], 1991

Let G be a graph with V vertices and E edges. Then legal games can be categorized

as follows:

(a) If c is a configuration with deg(c) > 2E − V then the game is infinite, and each

vertex is fired an infinite number of times.

(b) If N ∈ Z with E ≤ N ≤ 2E − V then there exists an initial configuration of

degree N guaranteeing finite termination and also a configuration of degree N

guaranteeing an infinite game.

(c) If c is a configuration with deg(c) < E then the game is finite.

The proof presented here will follow and expand on the proof presented in [6].

Proof. To prove (a), Let c be a configuration on G such that deg(c) > 2E − V. Using

the fact that ∑v∈V (G) deg(v) = 2E we see that it must be the case that there exists

15

at least one vertex v′ ∈ V (G) with c(v′) > deg(v′) and therefore v′ is ready to fire.

After v′ has been fired, since the total number of chips is unchanged it follows that

there is another vertex that is ready to fire. Since this will always be the case after

any number of firings, the game must be infinite.

To prove (b), we will be considering configurations c on G with E ≤ deg(c) ≤

2E − V. We will first show that that it is possible to have a finite game with

deg(c) = 2E − V. To do this place deg(v) − 1 chips on each vertex. Obviously from

this configuration c(v) = deg(v) − 1 < deg(v) so no vertex can be fired, and the game

terminates. Now,

∑
v∈V (G)

(deg(v) − 1) = ∑
v∈V (G)

deg(v) − ∑
v∈V (G)

1

= 2E − V

To show the infinite case it is enough to prove we can construct a

configuration c such that deg(c) = E that will lead to an infinite game. To do this

we consider an acyclic orientation, O on G. Note that it is always possible to induce

an acyclic orientation on any graph since we can order the vertices {v1, v2, . . . , vV }

and always direct each edge such that it is in the direction of the highest labeled

vertex. One could easily check that this orientation is acyclic. For the purposes

of this proof we will be using this specific orientation but the method is the same

for any acyclic orientation. Now denote outdeg(v) as the out degree of v and place

outdeg(v) chips on each vertex v. Since each edge is directed then

∑
v∈V (G)

outdeg(v) = E

Thus, our configuration has degree E.

16

Claim: This initial configuration will lead to an infinite game.

First consider v1. Since there does not exist a vertex in our ordering such

that vi → v1 we have that deg(v1) = outdeg(v1) and thus it is ready to fire. Fire

this vertex and reverse the orientation of all edges incident to it. The resulting

configuration and orientation could have been achieved by a different labeling.

That is let G′ be a graph isomorphic to G such that v1 = v′V and vi = v′i−1 for all

1 < i ≤ V. Once more our graph G′ has a vertex that can be fired. This process is

clearly non-terminating and thus our game is infinite.

For (c), Let c be a configuration on G such that deg(c) < E and fix an

acyclic orientation, O, on G. Consider the following quantity:

T = ∑
v∈V (G)

max{0, c(v) − outdeg(v)}

A vertex v with c(v) < outdeg(v) is said to be deficient, and since deg(c) < E

it must be the case that there is at least one deficient vertex. Our goal then is to

show that the orientation can be modified mid-game so that T does not increase

and in fact if our set of deficient vertices increases then T will actually decrease. If

the game is infinite, then it must be the case that every vertex gets fired infinitely

often and since a deficient vertex cannot be legally fired then the set of deficient

vertices must also be changing. Thus, if T cannot increase and cannot decrease

infinitely often, the game must terminate at some point.

First consider the case where the configuration is already stable. Then the

game is clearly finite.

Now suppose the configuration is not already stable. Therefore, there must

be a vertex v ∈ V (G) with c(v) ≥ deg(v). So, fire v and reverse the orientation

of all edges leaving v. Here the firing is still happening in the undirected sense.

17

The orientation is just giving us a way to count what is going on in the game. As

before, this does not create a cycle. In fact, T does not increase. To see this, denote

T ′ to be the new quantity after the vertex is fired. Then,

c′(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(u) ;u ∉ N(v)

c(u) + k(uv) ;u ∈ N(v)

c(u) − deg(v) ;u = v

and

outdeg′(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

outdeg(u) ;u ∉ N+(v)

outdeg(u) + k+(uv) ;u ∈ N+(v)

0 ;u = v

Here N+(v) represents the set of vertices that are adjacent to v by a directed edge

out of v. Consider the term corresponding to v in T. The difference from T to T ′ is

c(v) − c′(v) − (outdeg(v) − outdeg′(v)) = c(v) − (c(v) − deg(v)) − (outdeg(v) − 0)

= deg(v) − outdeg(v)

So, this term can only decrease or stay constant if deg(v) = outdeg(v).

Now consider a vertex w with w adjacent to v. If w ∈ N+(v) then the term in

T corresponding to w would be unchanged which can be shown using an equation

similar to the one above resulting in a difference of zero. However, if w ∉ N+(v)

the term is increased by 1, if it was not deficient before v was fired. Since there are

exactly deg(v) − outdeg(v) such vertices that may possibly increase by 1, we can see

that T cannot increase. If w was deficient then c(w) < outdeg(w) and thus c′(w) =

c(w) + k(wv) ≤ outdeg(w) = outdeg′(w) implying that c′(w) − outdeg′(w) ≤ 0. This

18

shows that the term corresponding to w in fact actually decreases if w was deficient

before v was fired. If none of the vertices adjacent to v were deficient before the

firing, T is unchanged, if there were deficient vertices then T is decreasing. This is

enough to prove our claim.

19

IV. RECURRENCE AND THE CRITICAL GROUP

Configuration Classes

Another useful way to think about the configurations is to consider them as

equivalence classes. To do this we must allow a vertices to have negative amounts

of chips. We then identify two configurations c ∼ c′ if there exists a sequence of

‘legal’ firings to get from c to c′, where the term legal is dependent on the game

being played. Using the Laplacian definition of firing using sequences, showing this

is an equivalence class is not difficult. We need to show that for all configurations

c, c′, c′′ on G we have:

1. c ∼ c, (reflexive)

2. If c ∼ c′ then c′ ∼ c, (symmetric)

3. If c ∼ c′ and c′ ∼ c′′, then c ∼ c′′ (transitive).

First let c be a configuration on G. Clearly c ∼ c where the sequence could be

realized by the vector x = 0 ∈ ZV .

Now suppose c and c′ are configurations with c ∼ c′ then there exists a firing

sequence x ∈ ZV such that

c′ = c − Lx

it then follows that

c = c′ + Lx = c′ − Ly

where here y = −x ∈ ZV . To negatively fire a vertex is the same as borrowing

from its neighbors or firing every other vertex in the graph. So, this is in fact a

well-defined firing sequence. Thus c′ ∼ c.

20

Finally let c, c′, c′′ be configurations such that c ∼ c′ and c′ ∼ c′′. Then we

have that there exists x, y ∈ ZV with

c′ = c − Lx and c′′ = c′ − Ly

It then follows that

c′′ = c − Lx − Ly

= c − (Lx + Ly)

= c − L(x + y)

As x, y ∈ ZV and ZV is a vector space, (x + y) ∈ ZV and therefore c ∼ c′′.

With this equivalence relation in hand we will define the configuration class

determined by c ∈ config(G) as

[c] = {c′ ∈ config(G) ∶ c′ ∼ c}

Rooted, Stable, and Recurrent

The following game has been referred to in many different ways, including

avalanche, snowfall, and dollar game to name a few. To differentiate this from the

dollar game we will work with later we shall refer to this game as the rooted dollar

game. We begin by identifying a root vertex q that is allowed to go into debt. We

will in fact keep this vertex in debt at all times and set the chips on q equal to the

negative of the sum of the chips on all of the other vertices combined. That is, a

21

configuration c in this game would be defined as follows:

c(w) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

c(w) ≥ 0 ;w ≠ q

−∑v∈V c(v) ;w = q.

If the game were being played with money, we would consider such a vertex q to be

a bank of sorts that can in some sense pump money into the ‘economy’ if and only

if it gets stuck. In the context of chip-firing, q can be fired if and only if no other

vertex in the graph can be fired. Since the debt of q is equal to the opposite of the

rest of the vertices, we can always assume the total number of chips is zero. This

leads us to another definition of ‘stable.’

Definition 7. Given a fixed vertex q a configuration c is said to be stable if

0 ≤ c(v) < deg(v) (v ≠ q).

Furthermore, a sequence of firings is said to be q-legal if and only if for every

time a vertex v is fired the prior configuration satisfied c(v) ≥ deg(v) when v ≠ q

and q is only fired if the configuration was stable before firing q. The only difference

between our classical game and this game is the allowance of debt on a specific

vertex and the inability to fire q until the configuration is stable away from q.

We now define the notion of ‘recurrence.’ A configuration c is said

to be recurrent if there exists a q-legal sequence of firings leading from a

specific configuration and returning to that same configuration. Furthermore, a

configuration is said to be critical if it both stable and recurrent. This definition

can be slightly misleading because we need q-legal firings for recurrence. In general,

we want to start from a stable position, fire q, and return to the same stable

22

position. It is important to note that not all stable configurations are critical,

and it is in fact very rare for a trivial, all 0, configuration to be critical. In the

following figure we see an example of the all zero configuration being stable but

not recurrent. After firing the root, we see our configuration becomes a critical

configuration.

Figure 5: Not Critical and Critical Configuration

Let K(G) be the set of all critical configurations on a graph G and it is

known the order of K(G) denoted κ, is equal to the number of spanning trees of

G. The following is one of the main results of [5].

Theorem 8. (Biggs [5],1999)

Let c be a configuration of the rooted dollar game on a connected graph G. Then

there is a unique critical configuration which can be reached by a q-legal sequence of

firings beginning with c.

23

The Critical Group

As we have said before we can consider the configurations and firing sequences

as vectors in ZV and we have implicitly stated that this is a group under vector

addition. Using this we can define a group structure on the set of critical

configurations. To allow for this we will again need to relax slightly our restriction

that c(v) ≥ 0 for all v ≠ q. Otherwise it is fairly clear that the way we have defined

our games and their relation to ZV is a group where we can add and subtract chip

configurations from one another.

Next, L(G), the Laplacian matrix of our graph, is a homomorphism from

ZV → ZV since it is a Z valued matrix. Let σ denote a function that takes a

configuration in the form of a vector, c ∈ ZV and outputs the degree of the

configuration by:

σ(c) = ∑
v∈V

c(v)

Algebraically this is the same thing as left multiplying a 1 × ∣V ∣ all 1’s vector by the

configuration and from that it follows that σ ∶ ZV → Z is a homomorphism.

Our hope now is to show that the set of critical configurations K(G) is in

bijection with the abelian group kerσ/ ImL, with a compatible group structure.

Before we can proceed with this, we need to show that ImL forms a normal

subgroup of kerσ. Since kerσ is itself an abelian group it suffices to only show that

ImL ⊆ kerσ. To see this let x ∈ ImL. Then there exists a vector y with x = Ly.

Using the definition L = BBt we can write x = BBt(y). Applying σ to both sides

gives σ(x) = σ(BBty). Now recall that the sum of each column of B is zero with

exactly two non-zero entries, 1 and -1. This gives that σ(B) = 0. Now, making

use of the associative property and the fact that σ is a homomorphism we have the

24

following:

σ(x) = σ(BBtc)

= σB(Btc)

= 0(Btc)

= 0.

Therefore, we have x ∈ kerσ and ImL ⊆ kerσ and therefore ImL ⊲ kerσ and it

makes sense to even consider kerσ/ ImL.

Theorem 9. (Biggs [5], 1999)

The set K(G) of critical configurations on a connected graph G is in bijective

correspondence with the abelian group kerσ/ ImL.

The proof presented here closely follows the original given by Biggs in [5].

Proof. To begin we will first establish that every coset of kerσ/ ImL contains a

(legal) configuration. Given f ∈ kerσ define a configuration c on all vertices v ≠ q

by

c(v) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

deg(v) − 1 ; f(v) ≥ 0

deg(v) − 1 − f(v) ; f(v) < 0

and c(q) = −∑v∈Ṽ c(v). Then there is a stable configuration c̄ that is reachable by

some sequence of q-legal firings. Take x to be the vector representing this sequence

of firings and it follows that c̄ = c − Lx. Finally define a vector f̄ = f + c − c̄, that is

f̄ = f + Lx. It is clear then that f̄ is in the same coset as f and

f̄(v) = f(v) + c(v) − c̄(v) ≥ deg(v) − 1 − c̄ ≥ 0.

25

Thus f̄ is a legal configuration representing the coset containing f.

Next, we must define a function that is well defined and in bijection from

kerσ/ ImL →K(G). To do this define

h ∶ kerσ/ ImL →K(G)

by h(α) = γ(c), where c is any legal configuration in the coset α and γ(c) is the

unique critical configuration ensured by Theorem 8. To show that this is well

defined suppose c1 and c2 are both configurations with [c1] = [c2] = α. It must be

the case that c1 − c2 = Lx for some x ∈ ZV . Thus, we can write x = x1 − x2 as

the difference of two legal firing sequences x1 and x2 so that x1(v) and x2(v) are

non-negative for all v. Then

c1 − c2 = Lx

= L(x1 − x2)

= Lx1 − Lx2

With this, let c0 = c1 − Lx1 = c2 − Lx2.

Now suppose γ(c1) = c̄1. Then there is a sequence of q-legal firings F1

starting from c1 and resulting in c̄1. Since c̄1 is recurrent we can ensure that F1 fires

each vertex v a minimum of x1(v) times. Now take the sequence F1 and remove

x1(v) occurrences of v resulting in F x1
1 , a q-legal sequence of firings on c0. It then

follows that F x1
1 applied to c0 yields the same result as F1 applied to c1, that is

to say γ(c1) = c̄1 = γ(c0). Following the same process for c2 shows that in fact

γ(c1) = γ(c0) = γ(c2), and thus our map is well defined.

It remains then only to show that there is a bijective correspondence

26

between our two sets. For surjectivity let c ∈ K(G). Clearly, c is a configuration

on G and therefore is itself in [c] ∈ kerσ/ ImL. Thus h([c]) = γ(c) = c.

To show injectivity let [c1], [c2] ∈ kerσ/ ImL with h([c1]) = h([c2]). Then

we have that γ(c1) = γ(c2) = c. Thus, there exists some q-legal sequences x1 and x2

such that c = c1−Lx1 and c = c2−Lx2. We have then that c1−c2 = Lx1−Lx2 = L(x1−

x2) and thus c1 and c2 are in the same coset of kerσ/ ImL and thus [c1] = [c2].

The abelian structure on kerσ/ ImL defined by [c1] + [c2] = [c1 + c2] would

imply that K(G) also has an abelian structure. Thus, using a binary operator ●

with h([c1]) ● h([c2]) = h([c1 + c2]) then γ(c1) ● γ(c2) = γ(c1 + c2) and for any two

critical configurations c̄1 and c̄2:

c̄1 ● c̄2 = γ(c̄1 + c̄2).

The set K(G) is called the critical group of G. We would like to describe slightly

more explicitly the structure of K(G). Suppose the operation in K(G) is denoted

by ⊕ . Now given two configurations c1, c2 ∈ K(G), then c1⊕ c2 is computed first by

adding the chips on each vertex to achieve a new configuration c′(v) = c1(v) + c2(v).

As above, we have that there exists a c̄ ∈ K(G) with c̄ ∈ [c′]. That is, we stabilize c′

and the stable configuration c̄ is recurrent and therefore critical.

In [5] it is shown that the map h ∶ kerσ/ ImL → K(G) is in fact a group

isomorphism.

q-reduced Configurations

While we are on the topic of these rooted configurations, we find it to be a good

time to introduce the idea of ‘q-reduced configurations’. To do this we will first

need to introduce a new notion of firing involving firing sets of vertices. Before

27

stating the formal definition, we need to set the following notation. If S ⊆ V, then

denote outdegS(v) to be the number of edges {v,w} with w ∉ S.

Definition 10. Let c be a configuration on G and let S ⊆ V. Suppose c′ is reached

by starting at c and firing all of the vertices in S at the same time. The impact on

a single vertex can be calculated by c′(v) = c(v) − outdegS(v) and such a map c
S
Ð→ c′

is said to be a legal set-fire if c′(v) ≥ 0 for all v ∈ V.

We use this definition of set firing to create an analogous definition to

stability.

Definition 11. Given a configuration c ∈ ZV , fix q ∈ V and denote Ṽ = V /{q}. The

configuration c is said to be q-reduced if

1. c(v) ≥ 0 for all vertices v ∈ Ṽ

2. For all non-empty S ⊆ Ṽ , it is not legal to fire S. That is, for all S ⊆ Ṽ there is

a v ∈ S with

c(v) < outdegS(v).

.

The following figure is an example of a configuration and graph that is

stable but not q-reduced.

28

Figure 6: Stable not q-Reduced

We can see that no single vertex can be fired since each has degree 4.

However, if we were to fire every non-root vertex this is a legal set fire since each

has c(v) ≥ 1 and outdegS(v) = 1. Where here S = {v1, v2, v3, v4}.

We would now like to show that there is also a bijection from these

q-reduced configurations to the critical group we defined above, originally shown in

[4]. To do this we will first need to establish some more notation. To do this define

c∗ =K+ − c for some configuration c on G. Here K+ is defined by:

K+ = ∑
v∈V

(deg(v) − 1)(v)

The definition of q-critical in [4] is slightly different from the definition of critical

in [5] but as stated in the prior, Lemma 2.6 of the latter shows that the two

definitions are in fact equivalent. Using this we then have the following result from

[4], which gives the desired bijection.

Theorem 12. (Baker, Norine [4], 2007) A configuration is q-reduced if and only if

the configuration c∗ =K+ − c is critical with respect to Ṽ = V /{q}.

29

Superstables in Brief

With the definition of q-reduced in hand we would like to introduce the idea of a

superstable configuration though it will not come up again until later in this paper.

Thus far we have always considered a configuration c to be an element of ZV where

each of the vertices receives some number of chips. In order to define what it means

for a configuration to be superstable we will need to change slightly what we mean

by configuration. When referring to these superstables we first fix a sink, say q

from above or maybe s for sink. With this vertex s fixed we define a configuration

c now only on the non-sink vertices of the graph. That is to say that c ∈ ZṼ =

Z(V /{s}). It can be slightly ambiguous as to what kind of configuration we are

working with, but we shall identify the type of configuration by the context it is

used in. This combined with the definition of set-firing above yields the following

notion of superstability.

Definition 13. Fix s ∈ V and denote Ṽ = V /{s}. A configuration c ∈ ZṼ is said to

be superstable if

1. c(v) ≥ 0 for all vertices v ∈ Ṽ

2. For all non-empty S ⊆ Ṽ , it is not legal to fire S. That is, for all S ⊆ Ṽ there is

a v ∈ S with

c(v) < outdegS(v).

where here we write outdegS(v) to be the number of edges {v,w} with w ∉ S.

We then observe the fact that a configuration c ∈ ZV is q-reduced if and only

if c restricted to Ṽ is superstable. This is quite clear from the relaxation given to

the chips allowed on q in the first place.

30

Dhar’s Burning Algorithm

Dhar’s burning algorithm (after Dhar [8]) is an extremely useful tool to determine

if a given configuration is superstable. While it has many other applications the

direct result of the algorithm is given a configuration it outputs a set that is

legal to fire. If the output is empty, the configuration was superstable. Let us

first explain in words what the algorithm does and then give a psuedoalgorithm

detailing the same.

To begin fix a vertex q and let c be a configuration on G. Our goal is to

determine if a configuration is superstable, but since the algorithm is the same

regardless whether the configuration is on V or Ṽ , we do not need to differentiate

between q-reduced and superstable here. Now imagine that our edges are wooden

bridges, our vertices are towns, and our chips are firefighters. We begin the

algorithm by setting fire to the root vertex. Once a town is on fire all of its

connecting bridges will also catch fire. Now a town that has a connecting bridge

on fire can only hold the fire off if it has enough firefighters to battle each bridge

fire. That is to say if 4 bridges are on fire and the town only has 3 firefighters then

the town will also go up in flames. Repeat this process until either no towns are

unburned, or all remaining unburned towns have enough fire fighters to constantly

fight the fires. If the entire graph is burned, then there were no sets that could be

chip-fired. If there is an unburned set then this set can in fact be chip-fired and

the algorithm can be run again. It is important to note that no firefighters were

harmed in the process of this algorithm.

Now we will attempt to formalize Dhar’s algorithm. For this suppose we

have a connected graph G, a fixed sink q, denote Ṽ = V /{q} and outdegS(v) is the

number of edges connecting v to vertices outside of S ⊆ Ṽ .

31

1 Data: a non-negative configuration c

2 Result: a legal firing set S ⊂ Ṽ , empty if and only if c is superstable

3 initialization: S = Ṽ ;

4 while S ≠ ∅ do

5 if c(v) < outdegS(v) for some v ∈ S then

6 S = S/{v};

else

7 return S

end

8 return S

end

Algorithm 1: Dhar’s Algorithm [7]

The following figures show an iteration of Dhar’s burning algorithm where

the configuration was not superstable and then the result of the algorithm after

firing the unburned set from the first figure.

32

Figure 7: Dhar’s Burning Algorithm on a Non-Superstable Configuration

Figure 8: Dhar’s Burning Algorithm on a Superstable configuration

Now, we would like to consider what happens if we fix an ordering on

the edges. If we look at specifically the figure with the configuration that was

superstable we could keep track of which edges caused the vertex to burn. Here

we see that {e1, e5, e3} are the edges that first lit each vertex. We also notice that

this set of edges is a spanning tree of G. This is not a coincidence. In fact, any time

Dhar’s algorithm is applied to a graph with a superstable configuration, a spanning

tree can be recovered. We have also passively placed an ordering on the edges.

The ordering does not appear to be useful in this case but if perhaps there was a

tie, two edges simultaneously causing a vertex to burn, convention is to record the

lower labeled edge as a member of our spanning tree. This establishes a bijection

from the superstables of a graph to the spanning trees.

33

V. DOLLAR GAME AND RIEMANN-ROCH

Dollar Game

As mentioned above, the next variation that we will consider is also called the

dollar game and has appeared in many places. A paper by Baker and Norine [4],

and the book by Corry and Perkinson [7] are both literature with this variation

of the game, as well as [1], a popular youtube channel “Numberphile.” The rules

here are very similar to the previous game but in this case, we allow all vertices to

be assigned any integer number of chips, allowing negative values. The goal of this

game is to get all vertices ‘out of debt,’ by making legal chip-firing moves as above.

A game is said to be winnable, or a configuration is said to be effective, if there is a

sequence of legal firings leading to a configuration such that c(v) ≥ 0 for all v ∈ V.

Before trying to characterize which configurations are winnable, we will first

make a few observations. Our first observation is that if the total number of chips

is negative then obviously the game is not winnable. Our second observation is that

if having a total of n chips guarantees a configuration is winnable then having a

total greater than n will also guarantees a configuration is winnable.

Proposition 14. Suppose T is a tree with a configuration c such that deg(c) = 0.

Then the dollar game played on this configuration is winnable.

Proof. Let T be a tree with configuration c of degree 0. Identify one degree 1

vertex as v1 and its lone neighbor v2. Note: Deleting a vertex of degree 1 will not

disconnect the graph nor will it create any cycles.

Case 1: (c(v1) ≥ 0) Fire v1, c(v1) times to result in v1 having no chips. Now

consider T ′ = T /{v1} with configuration c′, the result of zeroing out v1. Since T ′

is still a tree suppose inductively that c′ is a winnable configuration on T ′ with

34

some sequence of firings resulting in configuration c̄. Perform this same sequence of

firings on T after zeroing v1, since c′ was winnable in T ′ then it must be the case

that c̄(vi) = 0 for all i ≥ 3. Now recall deg(c) = 0, so it must be the case that

c̄(v1) + c̄(v2) = 0. Since v1 was not fired again after being reduced to zero it must

be the case that either c̄(v2) = 0 or c̄(v1) = −c̄(v2). In the former the game is won, in

the latter simply fire v1 to zero again which will also force v2 to zero.

Case 2: (c(v1) < 0) Borrow chips to get v1 out of debt thus reducing to case

1, this completes the proof.

Thus, there are graphs with the property that any configurations with

degree 0 leads to a winnable dollar game and we will see that trees are precisely the

graphs with this property. Consider a cycle G = Cn with a configuration of degree

zero. Obviously there does exist winning configurations of this type, namely a

trivial configuration such that c(v) = 0 for all v. While this is not the only example

on a cycle of a configuration with degree zero that is winnable it is an example

that in any graph there exists a configuration of degree zero that is winnable. The

question then is what the minimum configuration degree requirement should be for

a game to always be winnable. Continuing our exploration into cycle graphs, let us

go back for a moment to see if we can cook up an example of a cycle graph with a

configuration of degree zero that is not winnable. Our claim is that this is possible,

and the following figure is an example of just that. In the figure below, all of the

configurations have degree 0. We will fire all vertices with positive chips and see we

return to the same place. Since any number of these firings will lead us to one of

these configurations, this is enough to say that the game is unwinnable.

35

Figure 9: Non-Winnable Configuration with Degree 0

Hence, we must increase our minimum required number of chips to

guarantee that the configuration on a cycle is a winnable dollar game. Let G = Cn

be a cycle graph with n vertices. We have established a lower bound of 1 for the

minimum degree of our configuration to be winnable on a cycle graph. We will now

prove that it is in fact an upper bound as well.

Proposition 15. If c is a configuration on G = Cn with deg(c) > 0. Then, c is a

winnable configuration.

It suffices to show that this is true when deg(c) = 1.

First note if two adjacent vertices v and w with values n and −(n − 1)

respectively and zeros elsewhere then this game is winnable. To win this game,

fire v n − 1 times to clear the debt on w. However, v fired 2(n − 1) chips leaving

36

n − 2n + 2 = −(n − 2) on v and the adjacent vertex other than w now has n − 1

chips. Repeating this process n−1 more times will result in a winning configuration.

Our goal in this proof is to show that a cycle on n vertices with a configuration of

degree 1 can always be reduced to a cycle with all of the chips on a vertex and all

of the debt on a vertex adjacent to it.

Proof. Given an arbitrary cycle graph Cn with any initial configuration c such that

deg(c) = 1. Identify a vertex v1 with c(v1) odd, this is always possible since if all

of the vertices have an even number of chips just fire one of them and its neighbors

will have an odd number of chips.

Now observe the following algorithm to win the game.

1. Identify all of the vertices going clockwise around the cycle starting at v1 and

labeling the remaining vertices vi for i = 2, . . . , n.

2. Fire or borrow v1 until it has 1 chip. Now identify the number of chips on

each vertex such that vi has αi,1 chips. Here i identifies the vertex and 1

identifies that it is our first iteration.

3. Fire or borrow the set {vn, v1, v2} until v2 has zero chips. Notice that the

value of v1 does not change while the change in vn is equal to the change in

v2, that is:

αi,2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ; i = 1

0 ; i = 2

αi,1 + α2,1 ; i = 3, n − 1

αi,1 − α2,1 ; i = n

αi,1 ; i ≠ 2,3, n − 1, n

37

4. Continue this recursively resulting in the following equation:

αi,n−2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ; i = 1

0 ; i = 2, . . . , n − 2

αi,1 +∑
n−2
j=2 (n − 2 − j + 1)αj,1 +∑

n−2
j=2 αj,1 ; i = n − 1

αi,1 − (∑
n−2
j=2 (n − 2 − j + 1)αj,1) ; i = n

5. Fire or borrow using vn until vn−1 is left with zero chips. The result of this

move would be that:

αi,n−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (∑
n−2
j=2 (n − 2 − j + 1)αj,1 +∑

n−1
j=2 αj,1) ; i = 1

0 ; i = 2, . . . , n − 1

αi,1 +∑
n−2
j=2 (n − 2 − j + 1)αj,1 + 2∑

n−1
j=2 αj,1 ; i = n

Adding up the chips on the two vertices that are holding non-zero chips.

α1,n−1 + αn,n−1 = 1 +
n

∑
i=2
αi,1

= 1 + 0

= 1

Here we applied the fact that in our initial configuration α1,1 = 1 and therefore the

remainder of our configuration must sum to zero. Now we have that either v1 has

one more positive chip than vn does negative or vn has one more positive chip than

v1 does negative. In either case this proves that c was a winnable configuration on

G.

38

Therefore, we have established for a game to be winnable, the minimum

degree required for a tree is 0, whereas the minimum degree required for a cycle is

1. Recall, the genus, also called the cycle rank, of a graph is equal to g = E − V + 1.

Note that, in the case of a tree the genus is 0 and in the case of a cycle the genus is

1. This would lead us to believe that the minimum configuration degree required to

win any dollar game is equal to the genus of the graph. In fact, this is the case and

was one of the main results of [4].

Theorem 16. (Baker, Norine [4], 2007)

Let G be a graph with genus g. Then,

1. For any configuration c with deg(c) ≥ g the game is always winnable by some

sequence.

2. For each n < g there exists a configuration c with deg(c) = n that is

unwinnable.

There is actually a greedy algorithm to decide if a game is winnable. The

following algorithm, from [7], reads in a configuration and outputs true if the

configuration is winnable and false if it is not winnable. The greedy approach to

win a game that is used here is to borrow at every vertex that is in debt until it is

not in debt any longer. With a slight variation, the algorithm could be modified

to also output exact sequences for winning the game also. Using this we could also

show that any winnable configuration has a unique winning state after the same

number of moves. Stronger than that it shows that every vertex is in fact fired the

same number of times and that any two firing scripts starting from the same initial

configuration are the same up to rearrangement of the order of firing.

39

1 Data: c is a configuration on G

2 Result: TRUE if c is winnable; FALSE if not

3 initialization: M = ∅ ⊂ V, the set of marked vertices;

4 while c is not effective do

5 if M ≠ V then

6 choose any vertex in debt: v ∈ V such that c(v) < 0;

7 augment c by borrowing at v;

8 if v ∉M then

9 add v to M ;

else

10 return FALSE

end

11 return TRUE

end

Algorithm 2: Greedy algorithm for the dollar game [7]

While this algorithm shows that every configuration c with deg(c) ≥ g is

winnable this can also be seen as a corollary of a stronger theorem that we will

discuss next.

Riemann-Roch

Before discussing Riemann-Roch for graphs we need to review some more

background. Given a configuration c is winnable, we would like to in some sense

quantify how winnable a game is. That is to say, how many chips can be removed,

and the configuration remain winnable. This inquiry is the motivation for the

following definition.

40

Definition 17. The rank or dimension of a configuration, denoted r(c), to be

equal to the maximum number of chips that can be removed from a configuration

before it becomes ineffective, that is not winnable.

Obviously this definition only makes sense if the configuration was winnable

in the first place. To remedy this, define r(c) = −1 if the configuration is not

winnable. Further, we define the canonical configuration K such that K(v) =

deg(v) − 2 and that

deg(K) = ∑(deg(v) − 2),

we see that the degree of the canonical configuration is deg(K) = 2E − 2V = 2g − 2.

This now gives us all of the tools and definitions we need to make the statement of

the graphical analogue to Riemann-Roch.

Theorem 18. (Baker, Norine [4], 2007)

Let c be a configuration on a graph G, free of loops, with genus g = E − V + 1, and

canonical configuration K. Then,

r(c) − r(K − c) = deg(c) + 1 − g.

In particular,

r(c) ≥ deg(c) − g,

which provides a generalization of the theorem from above.

41

VI. APPLICATIONS TO CO-GRAPHIC MATROIDS

The Tutte Polynomial

We next describe a surprising connection between chip-firing and the Tutte

polynomial. The Tutte polynomial of a graph has many applications and many

forms. One of the most generally used versions is given a graph G, the Tutte

polynomial is as follows:

T (G;x, y) = ∑
A⊆E

xk(E)−k(a)yk(A)+∣A∣−∣E∣

Here k(A) denotes the number of connected components of A. While this one

may be the most familiar, we choose to consider an equivalent version, which is as

follows:

T (G;x, y) = ∑
i,j

tijx
iyj

Here tij is the number of spanning trees with internal activity i and external

activity j. For the exact definitions of internal and external activity see below. We

note that the concept of internal and external activity requires an ordering on the

edges, although their value has been proven to be independent of the ordering. For

now, we will consider an evaluation of this polynomial when x = 1. This reduces our

formula to:

T (G; 1, y) = ∑
j

tjy
j,

where now we need only consider external activity. Another useful characterization

of the Tutte polynomial involves recursive use of deletion-contraction of a graph.

42

This is done as follows:

(1) If G is a single vertex then: T (G;x, y) = 1

(2) If e is a loop, then: T (G;x, y) = yT (G/e;x, y)

(3) If e is a bridge, then: T (G;x, y) = xT (G/e;x, y)

(4) If e is neither a loop nor a bridge, then: T (G;x, y) = T (G/e;x, y) + T (G/e;x, y)

This deletion-contraction definition along with the form T (G; 1, y), considering

external activity, will motivate where we go next.

We choose to define internal activity in what may seem to be backwards. We

fix an ordering on the edges, although the ordering does not affect the result of the

count on the total number of these objects. Suppose T is a spanning tree of G, an

edge ei is said to be internally passive in T if:

1. ei ∈ T,

2. There exists an edge ej not in T such that j < i and (T /ei) ∪ {ej} is again, a

spanning tree of G.

Using this we say an edge ei is internally active if ei ∈ T and is not internally

passive. While we have reduced the Tutte polynomial in such a way that we need

not consider internal activity we find it useful to have this definition first.

For simplicity we will denote T c = G/T.

Definition 19. An edge ei is said to be externally passive for a spanning tree T if:

1. ei ∈ T c,

2. There exists an edge ej not in T c such that j < i and (T c/ei) ∪ {ej} is again

the complement of a spanning tree of G.

43

Once more we use this definition to say that an edge ei is externally active if ei ∈ T c

and is not externally passive. Using our favorite graph and a labeling on its edges,

the figure below shows all of the spanning trees of this graph. In addition to the

spanning trees it also details whether the edges of the tree are internally active or

passive and if the edges of its complement are externally active or passive.

Figure 10: External and Internal Activity of a Graph

Note: This graph and a similar table is presented in [2] with a different labeling on

the edges, with a slight error. This further supports that the specific labeling does

not affect the total count of the internal and external activity.

44

Merino’s Theorem

Now consider the following graph G with a sink s and corresponding superstables.

Figure 11: Superstables of the Diamond Graph

Using the internal-external definition of the Tutte polynomial we see that

this graph has the following Tutte polynomial.

T (G;x, y) = x + 2x2 + x3 + 2xy + y + y2 = x + 2x2 + x3 + (1 + 2x)y + y2

Evaluating this polynomial when x = 1 gives,

T (G; 1, y) = 4 + 3y + y2

We notice the coefficients are the same as the number of superstables of a given

degree in the graph above but in reverse order. This is part of the motivation

behind Merino’s theorem.

To formally state the theorem, we will need some facts regarding the degree

of superstable configurations. In particular, we note that for any graph G the

maximal superstables have degree g = E−V +1, the genus that we have already used

45

above. For this, note that any orientation O on G induces a configuration c(O) by

taking c(O)(v) = indegO(v) − 1. It is a result of [7] that this defines a bijection

between the acyclic orientations of G with unique source, given by the root, and

maximal superstables of G. Hence, the degree of such a configuration is as follows:

deg(c) = deg(c(O))

= ∑
v∈Ṽ

(indegO(v) − 1)

= ∑
v∈Ṽ

indegO(v) − ∑
v∈Ṽ

1

= E − (V − 1)

= g

It then follows that given a configuration c is superstable, it is maximal if and only

if deg(c) = g. As we stated above, we are only considering loop free graphs. If by

chance our graph contained loops then each loop would increase the genus by 1 but

would not affect the number of superstables. That is to say, if there are exactly `

loops in our graph, the maximal degree of a superstable would be g − ` ≤ g.

For i = 0, . . . , g let hi be the number of superstables of degree i and define

h = h(G) = (h0, h1, h2, . . . , hg)

to be the h-vector of a graph G. If we revisit the Tutte polynomial evaluation of

our graph above, we see that the following substitutions can occur.

T (G; 1, y) = 4 + 3y + y2 = h2y
0 + h1y

1 + h0y
2

46

This is precisely the case that we will prove now with Merino’s theorem.

Theorem 20. (Merino [12], 1997) Let G be an undirected multigraph, possibly with

loops and let T (x, y) = T (G;x, y) be the Tutte polynomial. Then

T (1, y) =
g

∑
i=0
hg−iy

i.

The proof presented here will follow and expand on the proof found in [7].

Proof. Let g be the genus of G and fix s as the sink vertex for all graphs appearing

below. The proof goes by induction on the number of edges. For these purposes we

define h0 = 1 when G has only the single vertex s (possibly with some loop edges).

Thus, in the case where G is a single vertex, we have T (1, y) = 1 = h0, and the result

holds.

Suppose that e is an edge of G incident to s. There are three cases to

consider.

Case 1. Suppose that e is a loop, then let G′ = G/e.

Claim: T (G;x, y) = yT (G/e;x, y), the cycle rank of G′ is g′ = g − 1, and the

superstables on G′ are the same as on G. T (G;x, y) = yT (G/e;x, y) is direct from

the definition of T (G;x, y). The fact that the cycle rank of G′ is g′ = g − 1 is fairly

clear since V (G′) = V (G), E(G′) = E(G) − 1, and g = ∣E(G)∣ − ∣V (G)∣ + 1 which

implies g′ = ∣E(G′)∣ − ∣V (G′)∣ + 1 = ∣E(G)∣ − 1 + ∣V (G)∣ + 1 = g − 1. Finally, since

the sink cannot be a part of a firing set, we see that removing the loop edge does

not change the firing on the non-sink vertices and therefore the superstables are

unchanged. Therefore, h′ = h(G′) = h. It then follows by induction and that hg = 0:

T (G;x, y) = yT (G/e;x, y) = y
g′

∑
i=0
hg−iy

i =

g

∑
i=0
hg−iy

i.

47

Case 2. Suppose that e is a bridge, and let G′ = G/e. Claim: The circuit rank of G′

is g′ = g, and h′ = h(G′) = h. The fact that the circuit rank does not change is clear

from the fact that contracting a bridge does not change the genus of a graph. To

see that h′ = h(G′) = h, consider the endpoints of the bridge. Clearly, s is one end

of the bridge, if v is the other vertex of the bridge and c(v) ≠ 0 then v was a legal

set-fire. Therefore, the h−vector is unchanged when contracting the edge. Again, by

induction and applying the definition of the Tutte polynomial we get the following:

T (G;x, y) = xT (G/e;x, y) = x
g′

∑
i=0
hg−iy

i =

g

∑
i=0
hg−iy

i.

Case 3. Suppose e = {s, v} is neither a loop nor a bridge. We divide the

superstables of G as follows:

A = {c ∶ c(v) = 0}

B = {c ∶ c(v) > 0}

Our goal is to show that the elements of A are in bijection with the superstables

of G/e and the elements of B are in bijection with the elements of G/e. In our set

A, we first contract e and identify the resulting vertex in G/e as s. We denote

the vertices of G/e as V ′ = V /{v}, the non-sink vertices of G as Ṽ = V /{s},

and the non-sink vertices of G/e as Ṽ ′ = Ṽ /{s}. Since we are considering only

the configurations c of G with c(v) = 0, it is obvious that they would still be

configurations on G/e. Now, let c be any configuration on G with c(v) = 0. If there

is a non-empty set W ⊆ Ṽ that can be legally fired then since v is adjacent to s,

with c(v) = 0, then it must be the case that v ∉ W. Thus, c is superstable if and

only if there does not exist a non-empty set W ⊆ Ṽ ′ that is legal to fire. Now since

48

the degree of any vertex of W is unchanged when considering it in G or G/e. It

is clear from this that c is superstable in G if and only if it is superstable in G/e.

Thus, the bijection holds from A to the superstables of G/e. Furthermore, under

this bijection, since c(v) = 0, the degree of the superstable is preserved.

Now we consider B and given a configuration c of G we define the following

c−(u) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

c(u) ;u ≠ v

c(v) − 1 ;u = v

Claim: c is superstable in G if and only if c− is superstable in G/e.

To see this, let c be a configuration on G. If it is legal to fire any set W ⊆ Ṽ ,

in G, it is the case that for all w ∈W ,

c(w) > outdegG
W (w).

Now for w ≠ v then it follows that outdegG
W (w) = outdeg

G/e
W (w) and by our

definition of c− we have that c−(w) = c(w) and therefore, c−(w) > outdeg
G/e
W (w).

If w = v then we have that outdegG
W (v) = outdeg

G/e
W (v) + 1. Therefore,

c(v) > outdegG
W (v) = outdeg

G/e
W (v) + 1.

It then follows that as c(v) − 1 = c−(v) we have

c−(v) > outdeg
G/e
W (v).

Hence, if W is a legal set fire on G with configuration c then W is a legal set fire on

G/e with configuration c−.

49

Now suppose c− is a configuration in G/e. If it is legal to fire any set W ⊆ Ṽ ,

in G/e, it is the case that for all w ∈W ,

c−(w) > outdeg
G/e
W (w).

Now for w ≠ v then it follows that outdeg
G/e
W (w) = outdegG

W (w) and by our

definition of c− we have that c−(w) = c(w) and therefore c(w) > outdegG
W (w).

If w = v then we have that outdeg
G/e
W (v) = outdegG

W (v) − 1. Therefore,

c−(v) > outdeg
G/e
W (v) = outdegG

W (v) − 1.

It then follows that as c(v) = c−(v) + 1 we have

c(v) > outdegG
W (v).

Again, we see that if W is a legal set fire on G/e with configuration c− then W is

a legal set fire on G with configuration c. Hence, c is superstable in G if and only

if c− is superstable in G/e. Furthermore, the degree of each superstable in c− is one

less than the degree of each corresponding superstable in c.

Let h′ and h′′ denote the h-vector of G/e and G/e respectively, then

hi = h
′
i + h

′′
i−1

for all i. All of these are well defined except i = 0. To resolve this, we set h′′−1 = 0.

Using the fact that the cycle rank of G/e is the same as that of G and the cycle

50

rank of G/e is one less than that of G, it follows by induction that:

T (G; 1, y) = T (G/e; 1, y) + T (G/e; 1, y)

=

g

∑
i=0
h′g−iy

i +

g

∑
i=0
h′′g−i−1y

i

=

g

∑
i=0

(h′g−i + h
′′
g−i−1)y

i

=

g

∑
i=0
hg−iy

i.

This result leads to a proof of Stanley’s conjecture regarding the h-vector

of matroids. In particular, it proves the conjecture for the class of ‘co-graphic’

matroids.

51

VII. FINAL REMARKS AND FUTURE DIRECTIONS

We have come to the end of the paper and while we did detail many of the

concepts and strong results that we found there is still more that can be done.

One possibility for work in the future would be to look at the idea of taking these

chip-firing concepts to higher dimensions. As we have seen, using the 1-dimensional

boundary map of a graph defines the Laplacian, which determines the firing rules

for our chip-firing games on graphs. One can mimic this construction with a

2-dimensional boundary map on a 2-dimensional simplicial complex, but in this

case the ‘chip-firing rule’ depends on how one picks the orientations on the 2-faces.

In another direction, one way to generalize chip-firing is through the theory

of ‘M-matrices,’ which mimic certain properties of the (reduced) Laplacian of

a graph [9]. An M-matrix is a square matrix with the property that a properly

defined notion of chip-firing is ‘avalanche-finite’ and many other characterizations

exits. M-matrices came up a few times while we made our way through different

papers and we think there are more interesting connections to be made there. As

an example of an M-matrix, the notion of an arithmetical graph [13] arises in the

study of degenerating curves in algebraic geometry. More recently, this approach

was taken in [3] in defining a ‘tropical Laplacian’ and the study of the Hodge

conjecture. This is certainly something we want to look at in the future.

Changing directions slightly, in the Corry and Perkinson book, they speak

on the geometry of sandpiles. For instance, the result of firing large numbers of

chips on the origin of the planar lattice creates a number of beautiful images known

as ‘Apollonian circle packing’ [11]. If we take the origin as our root this amounts to

finding the identity in the underlying critical group. In general, the identity is far

from trivial and itself can create some great images.

52

REFERENCES

[1] The Dollar Game - Numberphile. https://youtu.be/U33dsEcKgeQ. Accessed:

2019-02-21.

[2] F. Ardila, F. Castillo, and J. Samper. The topology of the external activity

complex of a matroid. Electronic Journal of Combinatorics, 23:8, 10 2014.

[3] F. Babaee and J. Huh. A tropical approach to a generalized hodge conjecture

for positive currents. Duke Mathematical Journal, 166(14):2749–2813, 10 2017.

[4] M. Baker and S. Norine. Riemann–roch and abel–jacobi theory on a finite

graph. Advances in Mathematics, 215:766–788, 11 2007.

[5] N. L. Biggs. Chip-firing and the critical group of a graph. Journal of Algebraic

Combinatorics, 9(1):25–45, January 1999.

[6] A. Björner, L. Lovász, and P. W. Shor. Chip-firing games on graphs. European

Journal Combinatorics, 12(4):283–291, July 1991.

[7] S. Corry and D. Perkinson. Divisors and Sandpiles : An Introduction to

Chip-Firing. Providence, Rhode Island : American Mathematical Society,

[2018], 2018.

[8] D. Dhar. Self-organized critical state of sandpile automaton models. Physical

Review Letters, 64:1613–1616, Apr 1990.

[9] J. Guzmán and C. Klivans. Chip-firing and energy minimization on

m-matrices. Journal of Combinatorial Theory, Series A, 132:14 – 31, 2015.

53

[10] G. Kirchhoff. Über die auflösung der gleichungen, auf welche man bei der

untersuchung der linearen vertheilung galvanischer ströme geführt wird.

Annalen der Physik, 148(12):497–508, 1847.

[11] L. Levine, W. Pegden, and C.K. Smart. Apollonian structure in the abelian

sandpile. Geometric and Functional Analysis, 26:306–336, 1 2016.

[12] C. Merino López. Chip firing and the tutte polynomial. Annals of

Combinatorics, 1(1):253–259, Dec 1997.

[13] D.J. Lorenzini. Arithmetical graphs. Mathematische Annalen, 285:481–501,

1989.

[14] J. Spencer. Balancing games. Journal of Combinatorial Theory, Series B,

23(1):68 – 74, 1977.

[15] J. Spencer. Balancing vectors in the max norm. Combinatorica, 6(1):55–65,

Mar 1986.

54

	ACKNOWLEDGEMENTS
	
	LIST OF FIGURES
	
	INTRODUCTION
	DEFINITIONS AND BASIC OBJECTS OF STUDY
	Graphs
	Chip-firing
	Matrix-Tree Theorem

	CLASSICAL CHIP-FIRING
	RECURRENCE AND THE CRITICAL GROUP
	Configuration Classes
	Rooted, Stable, and Recurrent
	The Critical Group
	q-reduced Configurations
	Superstables in Brief
	Dhar's Burning Algorithm

	DOLLAR GAME AND RIEMANN-ROCH
	Dollar Game
	Riemann-Roch

	APPLICATIONS TO CO-GRAPHIC MATROIDS
	The Tutte Polynomial
	Merino's Theorem

	FINAL REMARKS AND FUTURE DIRECTIONS
	REFERENCES

