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ABSTRACT 

Protection of endangered species requires continuous monitoring and updated 

information about the existence, location, and behavioral alterations in their habitat. 

Remotely activated camera or “camera traps” represent a reliable and effective photo 

documentation method of local population size, locomotion, and predator-prey 

relationships of wild species. However, Species recognition from gathered images is a 

challenging assignment due to a large amount of intra-class variability, viewpoint 

variation, lighting illumination, occlusion, background clutter, and deformation. Manual 

data processing from large volume of images and captured video is laborious, time-

consuming, and expensive. There is an urgent need to establish a framework of 

automated wildlife species recognition by image classification. The recent advancement 

of deep learning methods has demonstrated significant outcomes for object and species 

identification in images. This thesis proposes an automated animal species recognition 

system by image classification using computer vision algorithms and machine learning 

techniques. The goal is to train and validate a convolutional neural network (CNN) 

architecture that will classify three herpetofauna species: snake, lizard, and toad from the 

camera trap samples. 

The proposed solution offers two self-trained deep convolutional neural network 

(DCNN) classification algorithms CNN-1 and CNN-2, to solve binary and multiclass 

problem. The machine learning block of both architectures is same for the CNN-1 and 

CNN-2, while CNN-2 has been incorporated with several data augmentation processes 
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such as rotation, zoom, flip, and shift to the existing samples during the training period. 

Also, the impact of changing CNN parameters, optimizers, and regularization techniques 

on classification accuracy is investigated in this study. The initial experiment implies 

building a flexible binary and multiclass CNN architecture with labeled images 

accumulated from several online sources. Once the baseline model is formulated and 

tested with satisfactory accuracy, new camera trap imagery data is executed to the model 

for recognition purpose. All three species have classified individually regarding 

background samples to distinguish the presence of target species in a camera trap dataset. 

The performance is evaluated based on the classification accuracy within their group 

using two separate sets of validation and testing data. In the end, both models have tested 

to predict the category of a new example to compare the models' generalization ability 

with a challenging camera trap data. 
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1. INTRODUCTION 

1.1 Motivation of The Research Work 

Anthropogenic acquisition of natural resources and unplanned urbanization causes 

substantial changes in geographical patterns and earth’s ecosystems. Due to massive 

landscape fragmentation, the overall habitat structure changes, which harms wildlife 

populations, habitat, and behavior. The two vertebrate classes, amphibia, and reptilia 

collectively referred to as the herpetofauna [1], are among the globally endangered 

species in conservation biology [2].  

Since 1980, more than 120 species have been driven to extinction, and nearly one-

third of amphibian species are now considered threatened worldwide [2]. Twenty years 

ago, researchers warned of habitat loss, and degradation as a primary threat to both 

amphibian and reptile populations [1] [24]. The author in [1] also cited habitat 

modification, introduced invasive species, disease, pollution, unsustainable use, and 

climate change as the six significant threats to reptile populations. In 2013, researchers 

presented the first global estimation of the conservation status conducted on 1,500 

random reptile samples from all over the world [3]. Their assessment shown in Figure 1 

indicates that agriculture (74% of threatened species affected), biological resource use 

(64%), urban expansion (34%), natural system alteration (25%), and invasive or 

problematic native species (22%) played as threats to reptile biodiversity [3]. 
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Figure 1: The percentage of threats by category impacting terrestrial reptiles estimated from 1,500 random 

sample from all over the world [3].  

  

Several wild animal monitoring technologies have been developed by engineers 

and wildlife researchers, including radio-tracking [4], wireless sensor network tracking 

[5], and animal voice pattern recognition [6]. Very-high frequency (VHF) radio tracking, 

satellite tracking, and global positioning system (GPS) tracking are different forms of 

radio-tracking where information is transmitted through radio signals using devices [4].  

Very-high frequency (VHF) provides good accuracy but has labor and weather 

dependencies [4]. Satellite tracking is less labor-intensive, but it is costly and 

comparatively less durable [4]. Moreover, all these methods are invasive as target species 

have to carry devices attached as collar or leg bend [4]. Furthermore, radio-tracking 

methods are not particularly applicable for the small species such as reptiles due to the 

body structure and difficulty in monitoring sufficient individuals. While very successful, 

voice pattern recognition can only be functional for toads/frogs as snakes and lizards 

(squamates) do not vocalize. 
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Data providing population size, dispersal, and the predator-prey relationships for 

endangered species are required to understand their distribution, as well as the threat 

processes’ distribution [3]. Wildlife researchers have experienced that visual information 

provides definitive evidence of an animal’s presence and activity analysis against 

environmental context [7]. The Department of Biology and The Ingram School of 

Engineering at Texas State University, and Texas A&M University work together in a 

“camera trap” project to identify species from images around the Texas. This thesis’s 

outcome develops the basis of a mechanical structure to identify three broad groups of 

herpetofauna, toads/frogs, lizards, and snakes in camera trap images using computer 

vision and machine learning techniques.   

1.2. Camera Traps in Wildlife Monitoring 

Recent advancements in technology have allowed researchers to widespread the 

adoption of minimally invasive camera trap monitoring system. Motion-triggered remote 

cameras, commonly known as “camera traps,” are gaining popularity for reliable and 

cost-effective applications [8]. Generally, camera traps are a static motion-sensor 

framework attached with some structure or trees in the field, pointing towards animal 

movement path [7]. The camera setup requires low labor engagement as it is quite simple 

to deploy, flexible to operate, and easy to maintain in the field [8]. Most importantly, the 

arrangement allows tracing the species secretly and continuously without disturbing their 

surroundings [5]. This powerful tool captures a rich set of information about animal 

appearance, actions, biometric features and provides critical evidence such as size can 

indicate the age of the animal, or entry angle reveals the direction of the animal’s 

movement [7]. Additionally, camera traps enable associated metadata, such as date, time, 
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ambient temperature reading in images at the time of detection. Furthermore, even after 

data collection, the raw image data can be stored for future investigation. Below 

photograph in Figure 2 is an example of camera trap setup in Bastrop county using the 

Compact T70 camera.   

(a)                  (b)   

Figure 2: (a) A camera trap setup in Bastrop County, Texas, USA, (b) Compact T70 Camera that has been 

used to collect image data in Bastrop County, Texas. 

 

1.3. Camera Traps in Herpetofauna Observation 

Assessments of the camera trapping literature demonstrate that the camera trap 

has been primarily used for mammals, birds [9] [10], and fish [10]. The utility of camera      

traps for herpetofauna inspection is limited, especially for squamates (snake and lizards 

as a group). However, the camera trap monitoring for squamates has recently expanded 

[9] and is often used to supervise behavior or habitat [10]. Authors in [11] reviewed 266 

studies published on camera trapping between 2008 and 2013 and observed that till then, 

only five studies were focused on herpetofauna species [10]. The below table 1 depicts 

the comparison of camera trap execution according to the target species where studies 

were focused on mammal species 94.8%, birds represented 11.9%, a few studies included 

reptiles (11%), amphibians (74%), and plants (74%) [11]. 
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Table 1: Percentages of camera trap publication focused on certain group of species from 226 sample study 

[11]. 

 

Target Group Percentage of publication about certain group of species 

among 226 camera trapping publication 

Mammal 94.80% 

Birds 11.90% 

Reptiles 1.10% 

Amphibians 0.74% 

Plants 0.74% 

 

Among the species group, amphibians have been monitored on a small scale for 

their ectothermy (relatively small or quite negligible internal physiological sources of 

heat) attribute and small body size [10]. Usually, trail cameras use a passive infrared 

(PIR) sensor designed to detect species based on a combination of heat and motion [12]. 

A PIR trigger requires a minimum thermal contrast between the target and the 

background [9,12]. Normally, the temperature between the ectothermic animal and their 

surrounding environment seldom varies greater than 3˚C [12], which may hinder the 

detection process of herpetofauna species via PIR mode.  

Furthermore, body mass and the distance between animals and cameras determine 

the magnitude of infrared radiation, influencing the camera trigger to capture images 

[12]. The monitoring of squamate group faces a similar limitation [10], but it overcomes 

the problem by programming the camera to trigger time-lapse instead of the PIR system. 

In a time-lapse system, the camera is programmed to capture images over a scheduled 

time interval. Researchers have also adopted new techniques such as deploying cameras 

near drift fences with pitfall traps [10], as shown in Figure 3. The drift fence concept 

stands with the assumption that it will allow squamates to move slowly across the target 

area [25].  
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(a)       (b)  

 

Figure 3: (a) An example of drift fence setup deployed in Bastrop County, Texas, and (b) a snake 

is passing through a drift fence. 

 

1.4. Challenges with Camera Trap Images 

Despite various advantages of camera trap data, getting a quality image is 

challenging due to significant intra-class variation of species, unpredictable pose, lighting 

brightness variation, motion blurriness, and cluttered background [13] [14]. The waving 

trees, moving shadows, and sunspots make images dynamic, which leads to difficulties in 

distinguishing the animals from leaves, grass, and branches [7] [14]. Moreover, the 

appearance of several species in one single image, partially displayed or cropped out the 

body and extremely far or close from the camera, creates high complexity to recognize 

the desired object [15]. Furthermore, most of the species have natural camouflage 

capability that create an obstacle to collect objective features [14]. Therefore, it is a 

challenge to process the recorded images and identify the species from a photograph [15]. 

The images in Figure 4 display some examples of the challenges associated with the 

camera trap dataset collected from Foxhunter’s Hill in the Sabine National Forest in 

eastern Texas, USA [25]. 
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(a)  (b)  

(c)  (d)  

 

Figure 4: Some of the challenging pictures from camera trap data, (a) night vision image of toad having 

lighting brightness variation, (b) a lizard image having natural camouflage, (c) image of a snake displaying 

partial body in highly cluttered background, and (d) target species is very small to detect in background. 

Also, manual species identification methods are debatable as the process may 

suffer unavoidable bias when analyzed by a human from camera trap data [16]. The 

automatic classification of camera trap images has been emphasized in research in the 

field of computer vision and machine learning to address these concerns. 

1.5 Camera Trap Data Processing with DCNN   

This research proposes a deep learning approach that can execute an optimized 

machine vision assignment with a large camera trap image dataset. With the recent 

advancement in computation and deep learning, a modern machine learning technique 

demonstrates promise for automating the data analysis in computer vision tasks. Deep 

CNN has high feature learning capacity and has shown robustness to classify objects in 
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challenging images. This method offers tremendous opportunities for automated species 

identification from a high volume of biological image data.  

The aim of the thesis is to build a structure that will recognize and classify 

frogs/toads, snakes, and lizards from a given set of a large camera trap dataset collected 

from different locations within Texas. Building a machine learning model involves 

following steps, as shown in Figure 5. 

 
 

Figure 5: An overall workflow diagram of the research work having four major steps of image 

classification procedure using DCNN algorithm. 

 

1.6 Thesis Outline 

This thesis is organized as follows. Chapter II describes about the previous 

initiatives taken by Texas State University to protect endangered species, a little 

introduction about citizen science projects and ImageNet challenges. In Chapter III, a 

detailed literature review based on the previous work related to species classification with 

DCNN has been highlighted. In Chapter IV, thesis design approach and classification 

pipeline have been explained in short. Chapter V talks about data accusation, and 

characteristic of both datasets: online and camera trap with some example images. 

Chapter VI entails all about DCNN building block and architecture. Chapter VII is the 

methodology chapter of the research work that describes data preprocessing, data 

partitioning and the model architectures. Chapter VIII discusses the experiment and 

results analysis. Finally, Chapter IX summarizes the overall research contributions, and 

the possible future research.  
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2. BACKGROUND 

2.1 Camera Trap Project Initialization by Texas State University  

An array of research conducted by the Department of Biology of Texas State 

University pursues the inventory of the relative density, distribution of herpetofauna 

community, and herpetological assemblage using standard sampling technique within 

Texas [19]. The researchers of the Biology department have actively performed several 

investigations to understand the motive behind herpetofauna population decline; such as 

Allee effects of a correlation between population density and the mean individual fitness 

in the conservation of endangered anurans, [20] or the impact of natural calamities such 

as drought and wildfire on herpetofauna species [21]. In the past few years, they are 

experimenting with ‘Toad Phone’ development projects in collaboration with the Ingram 

School of Engineering. That project aims to trace the Houston toad (Bufo houstonensis) 

breeding activity using Automated Recording Devices (ARD’s) that store environmental 

information and send notifications in near real-time [22][23]. However, only male 

amphibians chorus. Therefore, image data collected by the camera traps presents new 

diagnostic opportunities to detect and monitor species, including females of the 

amphibians and other herpetofauna. 

The camera trap data has been utilized since 2004 to complement the amphibian 

and other species detection process. In 2019, fourteen cameras were attached near drift 

fence arrays in Bastrop County, Texas, where data was collected five times from 

September to December. Each camera captured roughly 10,000 images stored in a 32 GB 

SD card resulting in millions of images. Though these cameras provide a large volume of 

serialized data, less than 1% of the images are likely to have valuable information such as 
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species’ presence, and the remaining images only contain background environmental 

information. Among those species’ images, it can be expected that about one-tenth of the 

images might have any of the three target groups of interest. Due to the unavailability of 

computation framework, data had to be analyzed manually. Distinguishing empty frames 

and target species from a vast dataset are still done by human reviewers, which is a 

monotonous and time-consuming task. For the assessment of the extensive database, an 

automatic system should be established, allowing researchers to focus only on essential 

analyses and evaluation of animal detections.  

A reliable object recognition framework is needed to provide substantial time 

saving procedures to manage large image datasets. The modern machine learning 

approach is gradually paving into the field of species identification. The theory and the 

mathematical foundations for neural network were laid several decades ago [17]. The 

availability of massive datasets, advancement of raw compute power, and efficient 

parallel hardware have contributed to the rise of machine learning applications [17] [18]. 

The potentiality of computer vision technology and deep neural network to classify 

images has provided an improved wildlife monitoring system reducing classification time 

and manual effort.  

2.2 Citizen Science Projects  

Researchers seek data to evaluate the biodiversity crisis and to understand the 

impacts of human actions or natural environmental changes to create effective resource 

management decisions and stewardship of wildlife species. In recent years, ecologists, 

biologists, engineers, researchers, and volunteers collaborate in citizen science (also 

known as crowd-sourced) projects to support wildlife monitoring and research. For 
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example, ‘Zooniverse’ is the largest people-powered research community where millions 

of volunteers assist professional researchers in producing reliable and accurate data by 

labeling, and analyzing images [27]. This online platform provides standard guidelines 

and annotation tools to the researcher to extract information more quickly and accurately 

[26]. Until October 2019, Zooniverse has hosted 111 camera trap projects, producing 

millions of images of wild species worldwide, and citizen scientists are analyzing data 

remotely via web-based image classification systems [27]. The first camera trap project 

Snapshot Serengeti (SS) contains images of 48 animal species acquired from 225 cameras 

placed in Serengeti National Park, Tanzania [26].  

Traditionally, species classification is being conducted by morphological 

diagnostic process provided by taxonomic studies specialists which requires skills 

obtained through extensive experience [28]. However, the researchers realized the need 

for automated and accurate identification methods over time [28]. The modern artificial 

intelligence systems are providing an alternative tool for identification tasks [28]. A 

couple of studies have been done with a crowdsourced camera trap dataset applying deep 

neural network in the last few years. The outcome portrays the ability to extract valuable 

knowledge from camera trap images using deep neural networks (DNNs). Some of the 

studies regarding the camera trap citizen science project will be highlighted in the 

literature review chapter 

2.3 Pre-trained Deep Learning Models 

In the machine vision research field, an organized large-scale image database is 

necessary with the facility of web-based data storage. The “ImageNet” project facilitates 

millions of labeled and categorized images for the computer vision and deep learning 
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communities [17]. This platform has recently hosted the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) annual competition from 2010 to 2017. The main 

challenges were image classification, single-object localization, and object detection 

using 1,000 categories from the ImageNet dataset [17]. The accuracy of the winning 

ILSVRC has improved significantly every year, showcasing the progress in terms of 

state-of-the-art performance. The deep convolutional neural networks (DCNNs) 

architectures achieved tremendous success overtime in object classification, object 

localization, and object detection as represented in the below Figure 6 [29][30][39]. 

AlexNet, ZF Net, GoogLenet, VGGNet, and ResNets architectures were developed by 

the winner or runner up teams of the ImageNet competition from ILSVRC2012 to 

ILSVRC2015 consecutively [31][39]. Considerable research has been performed with 

camera trap dataset applying pre-trained architectures (transfer learning techniques) in the 

last few years as described in literature review section. 

 

Figure 6: Performance improvement of winning participants of ILSVRC2010-2014 competitions for three 

tasks; Image classification, Single-object localization, and Object detection illustrating the reduction of 

error for 1.2 million training images having 1000 object categories [39].  
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3. LITERATURE REVIEW 

This chapter provides a literature survey of research work that focuses on 

identifying species using machine vision techniques and deep learning technique 

published in various conference and journal papers. The majority of the research work on 

plant or animal species recognition have been performed with image samples taken by 

digital cameras in labs or natural habitats. However, numerous species recognition 

experiments with camera trap image have been conducted recently, mostly for mammals 

and bird group, and more research is getting published with gradual improvement over 

time. In the subsequent paragraphs, some of the academic research for camera trap image 

identification using the different techniques are discussed. Also, some of the experiments 

with target species using online data have been considered for review.  

3.1 Species Identification Using Feature Extractor and Classifier 

Most of the camera-based wildlife experiments are done to identify individual 

animals with unique coat patterns such as spots, stripes [32], shape, and texture [33]. In 

past years, different algorithms were used as feature extractors or image descriptors to 

obtain features such as shape, texture, color from input images, and quantify the 

individual aspect with statistical analysis [33, 16]. The traditional image classification 

process consists of a hand-defined feature extraction algorithm, followed by a machine 

learning classifier [33]. On the other hand, the deep learning networks approach 

automatically learns features from input images in the training process, eliminating rules 

and algorithms to extract features [33]. 

Studies suggest that ten years ago, bag-of-features (BoF) was the utmost popular 

image categorization task [34, 35]. Authors in [34, 35] classified BOF along with spatial 
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pyramid matching (SPM) as a state-of-the-art image classification system. In 2013, the 

first complete analysis with a camera trap dataset was done by authors in [32] using the 

Scale-Invariant Feature Transformation (SIFT) algorithm in combination with a Support 

Vector Machine (SVM) to classify species. The researchers collected seven thousand 

camera trap images of 18 species from two different field sites for the experiment that 

achieved an average classification accuracy of 82%. The authors applied improved sparse 

coding spatial pyramid matching (ScSPM), SIFT descriptor, and cell-structured local 

binary patterns (cLBP). Feature generation was done by weighted sparse coding and max 

pooling using multi-scale pyramid kernel, and classification of the images was done by 

linear support vector machine (SVM) algorithm. 

3.2. Camera Trap Dataset with Deep Neural Network 

In 2014, the first CNN application can be observed in [5] where the authors 

presented a comparison of results between two-image classification algorithms, Bag of 

Visual Words (BOW) and DCNN. The dataset contains 20 species having 14,346 training 

images and 9,530 testing images. In the BOW method, a 128-dimensional Scale-invariant 

feature transform (SIFT) algorithm was used to extract the feature, and linear SVM was 

used as a classifier. On the other hand, three convolutional layers and three max-pooling 

layers were implemented in the DCNN method with a data augmentation step in the 

training stage. With a very challenging noisy dataset, DCCN showed promising results 

with 38.315% accuracy, where BOW’s accuracy was 33.507%.  

The ILSVRC DCNN model architecture from ImageNet competition has provided 

a dominant win over traditional algorithms [5]. Moreover, the publicly available citizen 

science dataset has opened an opportunity to do more research for camera trap data using 
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DCNN. In 2016, eight variations of CNN frameworks AlexNet, VGGNet, GoogLenet, 

and ResNets were used to identify 26 classes of animal species from highly unbalanced 

Snapshot Serengeti dataset [15]. The number of layers of the mentioned CNN 

architectures varied from eight (AlexNet) to 152 (ResNet-152), where ResNet-101 

architecture achieved the best performance [15].  

In the research found in [36], the authors also experimented with nine 

independent architectures, including AlexNet, NiN, VGG, GoogLeNet, and numerous 

variations of ResNets with 48 species in the 3.2-million-images of Snapshot Serengeti 

dataset. Also, to detect species, authors have trained the model to identify further 

attributes; presence, counting, and behaviors (the presence of young). Similar work has 

been found in [29], where authors reviewed different CNN architecture (AlexNet, 

VGGNet, and ResNets) in automatic identification for two subsequent tasks: (a) filter 

images containing animal from a set of Wildlife Spotter project dataset, (b) then 

classifying species automatically. The model achieved more than 96% in recognizing 

animals in images and close to 90% in identifying three common animals (bird, rat, 

bandicoot). 

In 2018, authors in [16] compared the performance of two algorithms Faster 

Region-Convolutional Neural Network and You-Only-Look-Once v2.0, to identify and 

quantify animal species on two different datasets; Reconyx Camera Trap and the self-

labeled Gold Standard Snapshot Serengeti data sets. The findings demonstrated that 

YOLO has speed advantages and can be used in real-time performance, whereas Faster 

R-CNN represented promising results with average accuracy of 76.7% and 93.0%, 

respectively.  
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Authors in [37] trained 3,367,383 camera trap images from five states across the 

United States with convolutional neural networks with the ResNet-18 architecture 

providing 98%, which is the highest accuracy to date. Recently authors in [38] have 

trained 8,368 images having six categories: badger, bird, cat, fox, rat, and rabbit with two 

different networks; a self‐trained framework (CNN‐1) and pre-trained model AlexNet 

(CNN-2) where CNN-2 outperformed CNN-1.  

3.3 Target Species Recognition Using Deep Neural Network 

Most Recently, few recognition experiments of target species (snake and lizard) 

have been conducted using online dataset applying deep learning techniques. So far, no 

work has been found focusing on toad/frog detection from images using deep learning 

technique.  

In the research found in [14], lizard was detected and counted from drone images 

applying pixel-wise image segmentation deep learning approach “U-Net”. The author had 

to train the model with 600 online datasets as the captured images by drone did not 

provide sufficient sample to do the experiment. The highest validation accuracy the 

model achieved is 98.63% using a batch normalization in atrous blocks of the U-Net 

model. 

In 2018, authors in [76] classified five venomous snake species in Indonesia with 

415 samples. The authors performed the experiment with three different self-trained CNN 

models; shallow, medium, and deep CNN architectures by changing filter size and by 

adding more layers. With the five-fold cross-validation process, the medium architecture 

offered the best performance with an average accuracy of 82%.  
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For the work in [77], experiments have been performed a real-time identification 

of snakes of the Galápagos Islands, Ecuador by applying object detection and image 

classification approach. Four region-based convolutional neural network (R-CNN) 

architectures have been tested for object detection: Inception V2, ResNet, MobileNet, and 

VGG16. The experiment studied 247 snake images of 9 species where ResNet achieved 

the best classification accuracy of 75%, Inception V2, and VGG16 scored 70% for the 

given dataset. 

In 2020, the LifeCLEF research platform arranged a four round SnakeCLEF 2020 

challenge focusing on the automated snake identification from large online dataset [78]. 

The task of this experiment was to distinguish 783 different snake species from 245,185 

training and 14,029 validation samples [78]. As an object detection method, the 

researchers in paper [78] used Mask Region-based Convolutional Neural Network (Mask 

R-CNN) with EfficientNets for classification and associated location information of the 

samples. The initial result with the best model achieved a macro-averaging F1-score of 

0.404 that has been improved afterword with a macro-averaging F1-score of 0.594. 

3.4 Thesis Contributions 

After research, it can state that this is the first attempt to recognize herpetofauna, 

especially snake, frog/toad, with a DCNN approach from camera trap images. This 

project intends to work with different CNN architectures with both online datasets 

(collected from the internet) and a camera trap dataset (collected from the field). Previous 

experiments, assessment, and analysis of the works suggest that DCNN is a suitable 

technique to extract valuable knowledge from images.  
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The goals of this study are - 

 (a) To present an automated framework of photo identification for animal species 

by constructing, testing, refining an image classification algorithm for both sample sets; 

online dataset and camera trap dataset. 

 (b) To investigate several image pre-processing solutions to mitigate challenges 

in the dataset by applying image augmentation techniques.  
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4. THESIS IMPLEMENTATION STRATEGY 

The ultimate thesis’s objective is to develop a computer vision and machine 

learning solution that will classify all three species (snakes, lizards, and frogs) 

individually and separately in different pictures. In image classification, the core task is 

to assign a label to an image from a predefined set of possible categories. The workflow 

of methodology starts with collecting samples, preprocessing datasets, training a CNN 

model architecture, and evaluating the classifier on a withheld set of test images. Figure 7 

shows an overview process of the proposed design approach. 

 
Figure 7:  An image classification pipeline using DCNN techniques representing four main steps.  

Two different CNN architecture referred as CNN-1 and CNN-2 have been 

constructed and later have been trained, evaluated, and compared under the given 

datasets. The fundamental building block of the DCNN framework, which is layers, 

parameters are the same for both models. The only difference between the two models is 

applying several data augmentation techniques in the second model to artificially enlarge 

the size of a training dataset by creating modified versions of images. The basic idea is to 
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compare the generalization ability of two models for a new set of the testing dataset in the 

evaluation period. An elaborate explanation of sample augmentation methods has been 

described in Chapter VII. The main building block of the two models is picturized in 

Figure 8.  

 
 

Figure 8:  Building blocks of CNN-1 and CNN-2 where CNN-2 have an added augmentation step for 

the training data with different transformation techniques. 

 

For the convenience of the experiment, the model implementation is divided into 

two phases as defined below. 

Phase one: The first phase comprises developing a baseline model from scratch to 

classify species from images, not necessarily camera trap data. This phase applies the 

dataset of 13,500 target species samples collected from various web database sources. The 

first phase is a primary learning stage where two basic CNN architecture has formed with 

several layers and combination of hyperparameters. Both the models have been trained 

with the assembled dataset and were evaluated by the ability to separate species into their 

category. Through several analysis and performance testing, gradual improvements have 

been made in the model construction over time. 
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The model design was formed into several techniques to accomplish the 

identification process in an efficient way.  

(a) combinations of any two species: Both architectures have been designed to solve 

a classical binary classification problem where the prediction result was measured for any 

two classes, such as snake-lizard or toad-snake. This task involves training, validation, 

and testing photos containing only two animal species at a time. 

(b) combination of all three species: This structure considers a multiclass recognition 

formation with all three species. The algorithm has trained with single labeled three 

category images altogether, and the output provides classification accuracy for three 

species. The models have experienced necessary changes, especially in hyperparameters 

such as loss function, learning rate, and other network parameters.   

Phase two: In the second phase, both the models were equipped with imagery camera 

trap data. Here, the previous models were used to train new data where several 

hyperparameter adjustments have been made according to the camera trap image 

identification process. Similar to phase one; first the execution was tested with the 

combinations of any two species, and later each of the models was performed for all three 

species.  

For each technique, every architecture will be customized to show a high 

prediction probability for the test dataset. The network architecture needed to tune with 

several hyperparameters such as learning rate, activation fiction, epoch size, batch size, 

number of units, and other parameters to obtain optimal performance. The final model was 

chosen carefully considering the highest classification accuracy for all their species 
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together model approach. Figure 9 provides an overall frame of the thesis implementation 

approach. 

 
 

Figure 9: Thesis implementation strategy overview for phase one (pictures from [43], [44]) and phase two 

that will be implemented for two models (CNN-1 and CNN-2). 

 

 

 

 

 

 

 



 

23 

5. DATASET 

For image classification problem, the dataset refers to a collection of images 

where each image is a data point [33]. Machine learning algorithms are heavily 

dependent on the size of dataset [40]. Elaborately, the algorithm's learning ability is 

determined by the amount of quality information that holds the key factor of an image 

[33]. A useful dataset is essential to prepare a CNN model to perform the classification 

task when unobserved data is given. In this project, most of the research time is allocated 

to accumulate and preprocess datasets. The subsequent subsections describe data 

gathering process, sources, characteristics, and changes of two kinds of dataset: online 

dataset (phase one) and camera trap dataset (phase two). 

5.1 Online Dataset (Phase One) 

5.1.1 Data Accumulation 

For this project's initial experiment, 13,500 photographs of snake, lizard, and 

toad/frog were collected from various online sources. Most of the images have been 

collected from standard benchmark datasets such as Caltech, CalPhotos, and Open 

Images. In contrast, some photos have been collected from image classification challenge 

[67] and the online photo archive [44], [75]. “CalPhotos,” is an online image database 

specialized in plants, animals, and natural history [41]. This database is a project of 

Berkeley Natural History Museums and the University of California, where images are 

stored with descriptive information about scientific and common names, locations, dates, 

and contributor’s information [41].  

Open Image is one of the largest online databases released by google dedicated to 

image classification and object detection. The web portal contains 600 object categories 
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of images annotated with labels, object bounding boxes, object segmentation masks, and 

localized narratives [42]. Around 2,000 snake, toad and lizard images have been 

downloaded from Open Images V6 following their instructions. Also, 500 snake and frog 

image data were stored from Caltech, a standard public dataset [43]. 

Nearly 1,000 images were accumulated from the Bing Image Search API that 

facilitates custom search images provided by the Microsoft Bing web portal [45]. 

Another 1,000 images have been gathered from a crowdsourced online website Unsplash 

and Pixabay [44], [75]. However, acquired images from Microsoft Bing needed manual 

examination to clean unwanted samples of target species such as animation, graphics, or 

sketch.    

5.1.2 Specifications of Online Dataset 

The downloaded dataset portrays that most of the subject species are free-living 

animals where images are captured in an open environment. Some of the pictures are 

captured in laboratory settings. In phase one, target animal species have been chosen with 

numerous variations of color, size, and background to let the model learn the features 

properly. The animal body was visible about 20-80% of the whole pixelated area of an 

image. However, those images suffer from dynamic object position, light illumination, 

occlusion, complex animal poses, and significant intra-class variation within their group. 

Below samples in Figure 10, 11, 12, 13 show some of the attributes that have been 

considered while building the CNN model. 
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Figure 10: Samples of (a) snake, (b) lizard, (c) frog/toad images collected from Pixabay, Unsplash, and 

Caltech database [43], [44], [75]. The examples have high intra-class variation with different body size, 

color, shape, texture, lighting illumination and dynamic animal pose. 

 

(a)  (b)  (c)  

 

Figure 11: Samples of (a) frog/toad, (b) snake, (c) lizard images from online dataset [43], [44], [75] 

presenting challenges such as confusing body color with nature having high camouflage effect. 

 

(a)  (b)  (c)  

 

Figure 12: Samples of (a) frog/toad, (b) snake, (c) lizard images from online dataset [43], [44], [75] 

showing partially body size and occlusion by leaf or background. 
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(a)  (b)  (c)  

Figure 13: Samples of (a) frog/toad, (b) snake, (c) lizard images from online dataset [43], [44], [75] 

displaying inter class similarities of species. 

 

5.2 Camera Trap Dataset (Phase Two) 

5.2.1 Data Accumulation 

Researchers at Texas A&M University have conducted camera trap experiment to 

study the diversity of animal species, primarily terrestrial squamate. Images were 

captured in time-lapse triggered mode in two suitable locations in the area known as 

Foxhunter’s Hill in the Sabine National Forest in eastern Texas, USA [25]. The 

RECONYX PC800TM model camera was used to collect photos [25]. The camera was 

attached with a 3 m (~10 ft) piece of metal conduit, positioning the lens down towards 

the background [25] as in Figure 14. Each camera was operated by twelve Energizer 

Lithium-Ion batteries [25]. The data was stored with Verbatim Premium 32 gigabyte SD 

cards [25]. 

 
 

Figure 14. An example of camera trap design deployed in longleaf pine habitat, Texas [25]. 
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The cameras were programmed to capture an image in every 30 seconds, that 

produced thousands of images [25]. However, the given dataset for this project has ~ 700 

snake, ~ 600 toad, and ~ 2,000 lizard images. Among those images, sometimes, a single 

target species was found in 5-150 consecutive pictures, especially lizard and toad data. 

Table 2 provides several toad/frog, snake, and lizard individuals with their scientific 

names that have been used as the dataset for phase two. 

Table 2: Camera trap data of toad/frog, lizard, snake with their variety of taxon provided for phase two 

dataset including data quantity for each target group. 

 

Target Species Scientific name Number of animal species 

approximate 

Toad/Frog Bufonidae 

Incilius nebulifer 

Ranidae 

Lithobates sphenocephala 

600 

Lizard Anolis carolinensis 

Aspidoscelis sexlineata 

Scincella lateralis 

Scincidae 

Unknown lizard 

Sceloporus consobrinus 

2,000 

Snake Virginia striatula 

Micrurus tener 

Masticophis flagellum 

Pantherophis obsoletus 

Storeria dekayi 

Pantherophis obsoletus 

Storeria dekayi 

Thamnophis proximus 

Pantherophis slowinskii 

Coluber constrictor 

Heterodon platirhinos 

Lampropeltis calligaster 

Agkistrodon piscivorus 

Heterodon platirhinos 

700 

 

The Table 2 illustrates the diversity of samples in the camera trap dataset. From 

the above table it can be noticed that the dataset poses a wide variation of 15 categories 

snake species. All the snake categories contain a variety of body shape, size, color, and 
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background. On the other hand, there are four kinds of toad species which consist nearly 

similar body size, shape, and color. Though the lizard dataset comprises numerous 

categories, only Anolis carolinensis was considered for the classification experiment. The 

reason is that the other lizard taxon exhibits severe difficulty to distinguish from 

background due to the confusing body size and color. Among the 2,000 Anolis 

carolinensis lizard, around 1,800 samples were chosen for experiment where the lizards 

were noticeable in the background.  

5.2.2. Specifications of Camera Trap Dataset 

The camera trap dataset of three species has many divergences according to their 

body shape, size, habitual trait, and behavioral attribute. In some cases, three of the 

species pictures shares some typical pattern too. Below notes shows the collective 

attributes of the dataset, which makes the dataset diverse and challenging - 

1.   Most of the camera trap images have a resolution of 1,920x1,080 or 2,048x1,536 

for the three species. Among them, snakes cover 5% to 15% pixelated of the whole 

images depending on their body size. The lizards have a dynamic body poster 

consuming 0.025% - 0.35% of the whole image background. On the other hand, 

almost all the toad has a similar body shape in the images containing 0.7% - 0.16% 

representation area.  

2. Most of the imagery data captured by the camera traps are serialized image of 

same species within their background, specially lizard and toad. A snake appears 

in images with the sequence length ranging from 3 - 15 frames where toad and 

lizard occupy 20 - 150 frames in a row in the dataset. 
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3.   Day images have more alteration in the background due to changing brightness 

illumination over the day. Night vision pictures provide an advantage of less 

cluttered background as IR mode produces grayscale images offering less lighting 

intensity variation.   

Some of the sample images of camera trap dataset are attached below in Figure 15, 

16, 17 for better understanding.  

 
 

Figure 15: Samples of frog/toad from camera trap images having different challenges such as small body 

size, cluttered background, confusing body color with nature, or hiding body part behind leaf. 
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Figure 16: Samples of snake from camera trap images dataset having different body size, confusing body 

color with nature, or hiding body part behind leaf. 

 

 
 

Figure 17: Samples of lizard from camera trap images having different challenges such as small body size, 

cluttered background, confusing body color with nature, or hiding body part behind leaf 
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6. DEEP LEARNING 

6.1 Artificial Neural Network 

Artificial neural network (ANN) is a supervised learning technique built with 

many of artificial unit components named “neurons.” Neurons are organized in 

interconnected layers where each neuron can make simple decisions and transfer those 

decisions to other neurons. The architecture uses different layers to learn aspects, 

recognize patterns, and analyze different factors similar to the human neural system [46]. 

Machine learning (ML) algorithms, neural networks, and deep learning fall into the 

domain of Artificial intelligence (AI) as shown in the Figure 18. 

 

Figure 18. A Venn diagram describing relationship between artificial intelligence, machine learning, neural 

networks, and deep learning. 

 

Artificial intelligence (AI): AI is a broader concept which builds intelligent programs 

and machines that can creatively solve problems [46]. 

 Machine learning (ML): ML is a subfield of AI providing a system to learn and 

improve automatically from experience through an explicit program with minimal human 

interaction [46]. The algorithm can understand the relationship between input-output data 

and predict the value or the class when a new data point is given [47]. In ML, a neural 
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network or deep neural network is a widely used technique to handle large parameter 

problems in a non-linear approach. 

Neural Networks: Neural networks are a subfield of machine learning that works 

excellent where the volume of data and the number of variables or diversity of the data is 

massive [48]. The basic idea of a neural network is that it can depict associations and 

discover consistencies within a set of patterns from data. 

Deep Learning: Deep learning is nothing but a richer structure of a neural network. 

Deep learning is considered as the new state of the art in the territory of artificial 

intelligence [47]. These are multi-level structures that extract detailed information from 

input data such as patterns, speech, images, and other applications. 

There are a few reasons behind the growth of ANNs over other ML techniques on 

substantial and complex problems [50]. A tremendous improvement can be noticed in the 

device capabilities such as memory capacity, power consumption, image sensor 

resolution, and optics [52]. Since the 1990’s, computing power surged incredibly, making 

it feasible to train large neural networks in a reasonable amount of time [50]. Moreover, 

powerful GPU cards are available due to the progression of the gaming industry [50]. 

Deep neural networks can drastically reduce model execution time by taking advantage 

of GPU for computation. Furthermore, the data availability in huge quantities adds an 

impact to train a neural network. All the factors together lead researchers to focus more 

on DNN, which eventually improves the training algorithm over time. Thus, the deep 

learning performance has been upgraded, providing cost-efficiency and speed 

acceleration of vision-based applications [50]. 
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The structure of neural networks is simulated by the information processing 

patterns of the human brain [33,49]. A typical brain contains millions of neurons (basic 

computational unit) connected with synapses. A neuron receives input signals from 

numerous dendrites and produces output signals towards the axon. The end of axon 

branches is out to connect with dendrites of other neurons via synapses. The neuron only 

triggers and sends a spike through the axon when the combination of input signals from 

dendrites reaches some threshold condition. Figure 19 compares a biological neuron with 

a basic mathematical model [49]. 

 
 

Figure 19: Illustration of a biological neuron (left) and its mathematical model (right) [49]. 

 

The ANN computational model follows a similar process to pass signals from one 

neuron to another. The x0 signals travel along the axons and multiplicatively interact in 

the point of dendrite (w0x0). Based on the synaptic strength at that synapse w0, the signal 

will pass with the dendrites. Synaptic weights can learn and control the strength of the 

influence of one neuron or another [49]. All of the dendrites carry a signal to the cell 

body and make a summation. The neuron fires if the final sum is above a specified 

threshold and sends a spike towards the axon.  

Neural networks are typically organized in layers made up of several 

interconnected nodes. In a neural network, the information is transferred from one layer 

to another over connecting channels. Each neuron has a unique number called bias, and 
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each of the channels has an attached value called weight. The bias is added to the 

weighted sum of inputs and reaches the neuron, and an activation function is applied at 

that point. The strength of the function determines if the neuron will get activated. Only 

activated neuron passes information to the following layers and continues up to the 

second last layer. By weighing the input data evidence, each of the nodes are making 

simple decisions. Depending on the weighing up results from the previous layer, each of 

those neurons makes a more complex decision. In this way, a multi-layer network of 

neurons can engage in a sophisticated decision-making procedure. The last layer 

produces outputs for the program as in Figure 20. 

 
 

Figure 20: Neural network architectures with neurons and layers [46]. 

 

6.2 Deep Neural Network for Image Processing  

There are numerous reasons to use deep learning methods such as convolutional 

neural networks over other traditional machine learning models. A hand-designed feature 

extractor gathers relevant information from the input images in the traditional method and 

eliminates irrelevant variabilities [33]. A particular component, such as shape, color, 

texture, is being considered to quantify an image [33]. The extractor is then followed by a 

trainable machine learner classifier such as SVM or a standard neural network that 

classifies feature vectors into classes as in Figure 21 [33].  
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Figure 21: Up: Traditional images classification process by applying hand-designed feature extraction 

algorithms followed by training a machine learning classifier. Down: Deep learning approach of stacking 

layers that automatically learn more intricate, abstract, and discriminating features. [46] 

 

On the contrary, CNNs are end-to-end models where convolution layers play the 

role of feature extractor. DCNNs structure functions in a hierarchical way to gradually 

pull out from low level features to most significant patterns. Neural networks scoop all 

the available motifs at a time and assign them random weights [54]. The network reflects 

importance patterns by adjusting weights during the training process. A pattern with 

higher weight will appear frequently and will be considered as the most useful features. 

The network output will provide a probability distribution within the assigned class 

labels, as shown in Figure 22.   
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Figure 22:  Stacking layers on top of each other that automatically learn more intricate, abstract, and 

discriminating patterns in deep learning approach. 

 

In a CNN architecture, lower hidden layers formulates low-level structures (e.g., 

line segments of various shapes, orientations, edge), intermediate hidden layers combine 

these previous structures to model intermediate-level structures (e.g., squares, circles), 

and the highest hidden layers and the output layer combine these intermediate structures 

to model high-level structures [33]. 

6.3 The Architecture of Deep Convolutional Neural Network  

The convolutional neural network (CNN) is a specialized type of neural network 

designed to do “convolution” operation of one-dimensional data, two-dimensional data, 

and three-dimensional image data [53]. CNN is a mathematical concept composed of 

three types of layers convolution, pooling, and fully connected layers. Typically, the 

convolution and pooling layers perform feature extraction, whereas the fully connected 
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layer does classification by mapping the extracted features into final output as like Figure 

23 [61] [64]. This section will discuss various layers that have been used for convolution 

operation, CNN-1, and CNN-2.  

 

Figure 23: A CNN architecture to classify different type of vehicles using a set of layers where the 

convolution and pooling layers pull out patterns and the fully connected layer does classification by 

mapping the extracted features into final output [64]. 

 

6.3.1 Building Block of Convolution Layer  

The key component of CNN architecture is the convolutional layer (CONV layer), 

which performs a linear operation like traditional neural networks [53]. These layers 

include a set of square-shaped learnable filters called “kernels” that act as feature 

detectors. Typically, the filters are a 3×3 matrix, but sometimes a 5×5 or a 7×7 matrix is 

used as a feature detector.  

Each color image has three channels represented as a 3D matrix with a width, 

height, and depth dimension. A mathematical operation is applied to the input pixel data 

using the filter to produce a feature map in convolution. The operation is conducted by 

sliding this filter over the input matrix. At every location, an element-wise matrix 

multiplication occurs between the pixel value with filter size and creates a sum as a 

result. Next, this sum goes into the feature map, as shown in Figure 24. 
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Figure 24: The mathematical operation in a convolutional layer where each filter convolves over the input 

volume producing stack of feature maps [64]. 

 

The above image illustrates that the kernel is getting into position at the top-left 

corner of the input image matrix. Then it starts moving from the left to the right, 

calculating the dot product and saving it to a new matrix until it has reached the last 

column. Next, kernel resets its position at the first column but from the 2nd-row sliding 

slides one row to the bottom. In that way, multiple convolutions are performed on each 

input, using a different filter, and resulting in a distinct feature map [64]. These feature 

maps are stacked together and become the final output of the convolution layer.  

Three parameters control the size of an output volume: depth, stride, and padding 

size [33]. The depth of an output volume controls the number of neurons or filters 

connected to a local region of the input volume in the CONV layer [33]. As the size of 

feature map is always smaller than the input matrix, padding is applied to prevent the 

feature map from shrinking [33]. In the convolution operation, the stride denotes the 

number of pixels by which the filter window moves into the input matrix in each 
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operation. Stride decides by what step the kernel will move; for example, the stride of 

one makes kernel slide by one row/column at a time, and stride of two moves kernel by 

two rows/columns as like Figure 25.  

 
 

Figure 25: A movement of filters in the input matrix with a stride size is 2 [74]. 

 

Activation Function 

A CNN operation relies on a non-linear “trigger” function to signal the distinctive 

identification of possible features on each hidden layer. In an activation layer, no 

parameters or weights are given to learn from images [33], rather it activates the specific 

type of feature at a given spatial location in the input volume. There are a variety of 

specific functions, such as rectified linear units (ReLUs) and continuous trigger (non-

linear) functions, to efficiently implement this non-linear triggering [33]. Compared to 

the other non-linear functions used in CNNs (e.g., hyperbolic tangent, absolute of 

hyperbolic tangent, and sigmoid), the advantage of a ReLU is that the network trains 

many times faster. Plots of different activation functions with their corresponding 

mathematical function are shown in Figure 26. 

 

Figure 26. Plots of different activation functions with their computation behavior [65] 
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Pooling Layers 

The pooling/subsampling layer reduces the features' resolution by progressively 

shrinking the spatial size of the input volume [61]. In that way, pulling operation reduces 

the number of parameters and computational complexity in the network [33]. Moreover, 

it helps to control overfitting [33] and makes the features robust against noise and 

distortion [51]. There are two ways to do pooling: max pooling and average pooling. As 

seen in Figure 27, the reduction in input size depends on the pooling layer's size and 

stride.  

 

Figure 27. Pictorial representation of max pooling and average pooling [51] 

Batch Normalization  

Batch Normalization is a technique for training a very deep neural network by 

adjusting and scaling the input layer's activations for each mini batch [66]. This layer 

normalizes the distribution of features coming out of a CONV layer [33]. Using batch 

normalization shows several benefits to the model, such as effectively reducing the 

number of epochs while training time by making the learning rate and regularization less 

volatile to the model. Moreover, Batch normalization layers help to make a stable 
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training process that allows a large variety of learning rates and regularization strengths 

in the model [33]. Furthermore, a more stable loss curve can be noticed by introducing 

batch normalization in the networks 

Fully Connected Layer 

The output of both convolution and pooling layers are 3D volumes. The final 

convolution or pooling layer's output feature maps are typically flattened and transformed 

into a one-dimensional (1D) array of the vector [61]. The flatten output vectors becomes 

the input to a dense layer, denoted as a fully connected layer. Fully connected layers are 

often used as the final layers of a CNN. This layer mathematically sums the weight of the 

previous layer of features to determine a specific output result [51]. 

6.4 Regularization Methods 

A common struggle working with a small dataset is that the neural network 

performs incredibly well on the training set but not nearly as good on the test set. This is 

a sign of overfitting where the model cannot generalize well to the unknown samples. 

Adding more data is a solution that is quite unobtainable for real-world dataset. In that 

case, regularization is a standard method to reduce overfitting and improve the model’s 

performance. It ensures a balanced training and testing performance by controlling model 

capacity [33]. Among several regularization options, this section includes those 

techniques that have been used in the experiment of this research work.   

Dropout Layer 

A Dropout is a regularization technique that aims to prevent overfitting by 

increasing testing accuracy [33]. While training a model, dropout layers randomly 

disconnect inputs from the preceding layer to the next layer for each mini batch set in the 
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network architecture [33]. A neuron is temporarily disabled in each iteration by setting a 

dropout value with a probability p [33]. The hyperparameter p is the dropout rate that can 

initiate a number (e.g., 0.3 as 30% p-value) in the code. To activate the dropped-out 

neurons alternatively at every training step, the dropped-out neurons are resampled with 

probability p as in Figure 28.  

 

Figure 28. Pictorial representation of drop out layers [69]. 

Early Stopping 

A callback function monitors the model’s performance for a given set of 

operations or a given number of epochs [68]. After a certain number of iterations, the 

model might start to overfit the training data. This function halts the training process 

when the model stops improving its accuracy and restores the best weights after stopping 

the training as in Figure 29 [68]. 

 

Figure 29. Early stopping breaks the training procedure after reaching a particular accuracy/loss score [60] 
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7.  METHODOLOGY 

7.1 Data Preprocessing 

7.1.1 Cleaning and Scaling 

It is essential to prepare data before applying towards a machine learning model 

to make the computation efficient. The neural network model requires careful 

consideration of the input data, especially for images, as the dataset differs in resolution, 

scale, and format. For this research work, preprocessing has been started with examining 

and standardizing the dataset. As the online dataset accumulated from various sources, a 

careful inspection was needed to remove unrepresentative data such as graphics and 

animation. On the other hand, camera trap data was required to scrutinize to confirm that 

each image contains the target species.  

One crucial preprocessing step for CNN architecture is to resize all the images in 

the dataset to a unified dimension: identical widths and heights. The scaling process 

needs to maintain the aspect ratio of images to avoid compression and distortion [33]. 

The samples have been resized and scaled appropriately by providing the instructions in 

the script.  

7.1.2 Oversampling  

Real-world data often endure class imbalance where samples from one class or 

multi classes are overrepresented in a dataset. Class imbalance influences biasness 

towards the heavily represented categories among the classes [33]. The popular strategies 

for dealing with the class imbalance is up-sampling the minority class, down-sampling 

the majority class, and generating synthetic training samples [56]. Down-sampling 

randomly removes data from sufficient observations to establish a comparative ratio of 
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classes with significant data [57]. On the other hand, oversampling creates copies of 

samples of the minority class to maintain the same number of data distribution as the 

majority class [57]. 

For the online dataset, samples of each group have been collected carefully to 

avoid data imbalance. However, the camera trap dataset suffers from class imbalance 

with 700 snake images, 600 toad images, and 1,800 lizard images. As the project deals 

with a small camera trap dataset, the oversampling technique has been applied to equalize 

the sample size of all the classes. The sample selection differs for CNN-1 and CNN-2 due 

to the algorithmic behavior and data specifications. Additionally, the data count for a 

binary problem (e.g., snake vs. background) is different from a multiclass problem (e.g., 

all three classes). According to the experiment requirement for CNN-1 and CNN-2, the 

number of snake and toad samples were increased by rotating 180-degree angles of the 

original images. Figure 30 shows how snake and toad samples were enhanced for the 

multiclass classification computation- 

 

Figure 30: An illustration of balancing samples of all species by oversampling snake and toad images. 

Oversampling has been done using data augmentation by180 degree angle rotation. 
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7.1.3 Augmentation 

The image augmentation technique creates data variations synthetically in existing 

images to represent a comprehensive set of possible changes [58]. Augmentation will 

provide the model a wide range of transformation so that the model learns objects in 

various forms and shapes in the training phase [58,59]. This technique also helps to 

increase the model’s generalization ability to predict an unseen image of target classes. 

Moreover, in some cases, augmentation helps to reduce the overfitting problem [58,59].  

Data augmentation can be applied as a pre-processing step in two options: dataset 

generation and enlarging an existing dataset, and on-the-fly data augmentation [59]. The 

difference between the two methods relies on the data enlargement procedure and the 

implementation time. The dataset generation is an additive process to expand the existing 

dataset whereas, on-the-fly data augmentation using Keras ImageDataGenerator does not 

combine the transformed data into the original dataset. It just performed with the 

modified data while training time.  

To achieve a relative class balance and to improve the generalization ability of a 

model, both the augmentation actions have been applied in the thesis work. Although, on-

the-fly data augmentation has been introduced only in CNN-2, which distinguish the 

computation behavior between two models. Below subsections describe two 

augmentation process elaborately.  

Data generation:  In this method, the dataset is expanded by adding slightly transformed 

samples to the existing directory. This is an offline process that is usually applied for a small 

dataset. The steps are – 
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▪ Loading the original input image from the folder. 

▪ Applying random transformation in the original images such as rotation, cropping. 

▪ Adding the transformed image in the existing dataset. 

For this project, offline augmentation has been employed in the oversampling 

phase to balance the same number of examples of all three species. As mentioned in the 

oversampling section, this is accomplished by applying the 180-degree phase shift rotation 

of the original images and then adding together in the directory. Both CNN-1 and CNN-2 

have operated with the expanded dataset.  

On-the-fly data augmentation using Keras ImageDataGenerator:  

The CNN-2 utilizes this augmentation technique in the training phase by using 

Keras ImageDataGenerator. This is an online or real-time augmentation where 

transformations occur in the training session as in Figure 31. This process ensures that the 

network sees a new set of samples with slight variations at every epoch while training the 

model. This is done by applying different transformation techniques like zooming, 

shearing, and rotating the existing image by a few degrees. The process follows the 

following steps-  

▪ Presenting an input batch of images to the ImageDataGenerator. 

▪ Transforming each image in the batch by a series of random translations, 

rotations, and other types of transformation. 

▪ Replacing the original batch with the new, randomly transformed batch.  

▪ Training the CNN on this randomly transformed batch. 
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Figure 31: On-the-fly augmentation process in CNN-2 using image batch manipulations [59]. This process 

configures random transformations of samples during training time by using keras ImageDataGenerator. 

 

Data augmentation implementation using keras 

Augmentation parameters and range have been selected keeping in mind the 

complexity of target species size, shape, and image quality, such as the brightness level. 

It has been noticed that snake and lizard can appear in corners of an image, where toad 

has been mostly seen near the background. That is why snake and lizard images have 

given 30% zoom range, while toad images have 70% shown in Table 3. Moreover, only 

toad images have tuned with brightness alteration options as most of the toad images are 

night vision images having black and white pixel intensity. Table 3 summarizes 

parameters and ranges of augmentations that has been applied for different species. 

Table 3: Several augmentation techniques used in CNN-2 model using Keras ImageDataGenerator. 

Augmentation Techniques 
Parameters and 

Range 
Applied for species 

Rotation 40 Degree Snake, Toad, Lizard 

Flipping 0.2 Snake, Toad, Lizard 

Shearing 30 Snake, Toad, Lizard 

Shift horizontal TRUE Snake, Toad, Lizard 

Zoom in  
0.3 Snake & Lizard 

0.7 Toad 

Changing brightness or contrast 

(by changing height, width, and 

color channel dimensions) 

100 Toad 
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Example of several augmentation techniques is represented in Figure 32.  

▪ Rotation: Rotation range: 40 degree 

 
 

▪ Flipping: Horizontal 

 
 

▪ Shift: Height and width 

 

 
 

▪ Shearing: Shearing transformation is shifting one part of the image like a 

parallelogram; fixing one axis and stretching the image in a certain angle [63].  

Shear range=30 
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▪ Zoom in: Zoom range for snake and lizard = 0.3, for toad = 0.7 

 

 
 

▪ Changing brightness or contrast: The color brightness was altered by changing the 

value of color channel. This technique has been applied only to the toad images.  

 

 

Figure 32: Several augmentation examples applied in CNN-2 to transform images in training phase. 
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7.1.4 Data Partitioning 

The DCNN models estimate the statistical trends in the data, such as the features in 

an image. Therefore, it is essential to follow a similar statistical allocation for training and 

evaluation purposes [62]. The network learns relevant features in the training session and 

is monitored on the validation part to reduce overfitting problem. Afterward, the model is 

tested on an entirely separate set of samples from the overall dataset that the model did 

not use during the training or validation phase. 

While dividing samples, it has been ensured that the split was developed randomly 

and was not overlapped with each other. Otherwise, using the testing samples as part of 

training data might take an unfair advantage as it has already learned sample 

characteristics while training [33]. A separate set of test data was kept aside for each target 

species that have been utilized in both phases (online and camera trap data), and for both 

models (CNN-1 and CNN-2). The rest of the samples were divided into training and 

validation set.   

Training and validation data separation for CNN-1 and CNN-2 differs from their 

distinct data loading framework. In CNN-1, training and validation data are in the same 

directory, and they are divided randomly in the code as per given instruction (e.g., 70/30 

or 80/20). On the other hand, in CNN-2, training and validation data partitioning was done 

manually, and data is loaded separately from two distinct directories. Table 4, 5 and 6 

listed the sample partitioning quantity for both models for both datasets. 
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Table 4: Balanced dataset partitioning of online images 

 

Online data splitting 
CNN-1 CNN- 2 

Train & Validation Test Train Validation Test 

Snake 4,000 500 3,000 1000 500 

Toad 4,000 500 3,000 1000 500 

Lizard 4,000 500 3,000 1000 500 

 

 

Table 5: Balanced dataset partitioning for CNN-1 of camera trap images 

 

Camera-trap data splitting for CNN-1 (without augmentation)  

  Snake vs Background Toad vs Background Lizard vs Background 

Snake vs 

lizard vs 

toad vs 

Background 

  Snake  Background Toad  Background Lizard Background 
All four 

class 

Train & 

Validation 
1300 1300 1300 1300 1700 1700 

1700 of each 

species 

Test 100 100 100 100 100 100 
100 of each 

species 

 

Table 6: Balanced dataset partitioning for CNN-2 of camera trap images 

Camera-trap data splitting for CNN-2 (with augmentation)  

  Snake vs Background Toad vs Background Lizard vs Background 

Snake vs 

lizard vs toad 

vs 

Background 

  Snake  Background Toad  Background Lizard Background All four class 

Train  2,500 2,500 1,000 1,000 1,450 1,450 
1350 of each 

species 

Validation 500 500 300 300 350 350 
350 of each 

species 

Test 100 100 100 100 100 100 
100 of each 

species 
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7.2 CNN Model Configuration 

In the current study, two self-trained CNN frameworks named CNN-1 and CNN-2 

have been developed and tested considering the amount of available training data and the 

data quality. First, the CNN-1 has been constructed and trained for both datasets (online 

and camera trap data). CNN-2 has been established by introducing several data 

augmentation processes to optimize the performance, as discussed in section 7.1.3 in the 

preprocessing stage. As mentioned before, the sequential convolutional part of CNN 

algorithm is the same for both of the models. However, substantial differences have been 

noticed by implanting the data augmentation process in CNN-2, especially in the 

experiment of camera trap data.  

The purpose of applying two separate models is to explore the influence of the 

augmentation technique in the camera trap dataset and compare the performance to 

pursuit a better recognition solution. Figure 33 portrays an overall recognition structure 

that has been followed while designing the CNN model.  

 

Figure 33: An overall concept of training and testing processes of a DCNN recognition framework [38]  

The architecture of the CNN network is composed of assembling a sequence of 

several Convolutional layers (CONV) and subsampling layers (Batch Normalization, 

Activation, Pooling, and Dropout), followed by Fully Connected (FC) layers at the end. 



 

53 

The CONV layer is the core building block of CNN, consisting of learnable filters that 

extract local features from images. Batch Normalization (BN) layers are also included 

after every CONV layer, which will normalize each training mini-batch by using higher 

learning rates [33] to improve accuracy and speed up the training process [34]. Every BN 

layer is followed by an Activation layer ReLU to introduce non-linearity, which will 

allow the architecture to learn complex relationships in the data. Next to the Activation 

layer, Max pooling (Max Pool) layers are added to compress or generalize feature 

representations by taking the maximum of the input values. After that, Dropout layers are 

incorporated to reduce overfitting and improve generalization in deep neural networks 

[23]. The 2D images are flattened into a one-dimensional vector for the convenience of a 

Fully Connected layer. In the end, two Dense layers have been added along with the 

Dropout layer and sigmoid activation function. Below Figure 34 depicts a CNN model 

configuration.  

 

Figure 34: An example of four layers CONV architecture for snake, lizard, and toad classification.  

Before confirming the final CNN model, different model parameters have 

changed in each experiment, and the subsequent result has then compared to obtain a 

high performing model accuracy value. Architecture of phase one differs with number of 
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layers and parameters as it compute with more data than phase two. Model design for 

phase one and phase two are described in the following sections.  

7.2.1 Model Architecture for Phase One (Online Dataset) 

Phase one aims at dealing with high-resolution target species images collected 

from various online sources. Two CNN architectures with different depths are employed 

to solve a binary and multiclass problem. At first, a set of four 2-D convolutional layers 

with subsequent Batch Normalization, Activation, Pooling, and Dropout layers has been 

built to run a binary problem with 9,000 images. Later on, the model was modified with 

more filters and fine-tuned parameters to add enough complexity to the architecture to 

train 13,500 images of three classes of species. A list of parameters and hyperparameters 

in of CNN architecture for the online dataset are presented below- 

• CNN layers: 4 set of convolution layer- Convolution>>BN>>Activation>>Pooling 

>>Dropout layers, respectively.  

• CNN layer depth: The number of filters of first two layers are 32, and rest two 

layers are 64. For the multi-classification CNN architecture, the first two layers 

have 32 filters, third layer has 64, and the fourth layer has 128 filters. 

• Filter size: All the convolution layers have a kernel size of 3×3, and all the Pooling 

layers have a pool size of 2×2.  

• Stride and padding: Stride was kept at the default value 1, and padding size was 

chosen valid padding for the final architecture. 

• Dense layer: Dense layer filter size is set at 128 and 512 for the binary model and 

the multiclass model consecutively.   
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• Activation function: Each convolutional layer is associated with the ReLU 

activation function right after the BN layer.  

For output layer, CNN-1 uses sigmoid and softmax function for the binary model   

and the multiclass model consecutively. For CNN-2, SoftMax has been used for both 

binary model and the multiclass model.  

• Dropout layer: 50% dropout probability showed considerable results for the 

convolutional neural network.  

• Initializer: Each layer is initialized with glorot_uniform. 

7.2.2 Model Architecture for Phase Two (Camera Trap Dataset) 

While designing and evaluating automatic classification for camera trap images, 

two different scenarios were considered:  

(a) Binary classification to identify a target class (snake, or lizard, or toad) with 

respect to the background image.  

(b) Multi-classification to distinguish three animal species with respect to the 

background image.  

Such planning is that three of the class images have a distinct attribute within the 

background, and snakes get an advantage due to larger body shape than lizards and toad. 

Background images have been considered a standard reference to construct binary and 

multiclass classification frameworks to avoid any impartiality within the classes. A list of 

parameters and hyperparameters of CNN-1 and CNN-2 for the camera trap dataset are 

given below- 

• CNN layers: 3 set of convolution layer- Convolution >> BN>Activation>>Pooling 

>>Dropout layers respectively  
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• CNN layer depth: For the binary and multiclass problem, the number of filters of 

first two layers is 32, and the third layers are 64.  

• Filter size: All the convolution layers have a kernel size of 3×3, and all the Pooling 

layers have a pool size of 2×2.  

• Stride and padding: Stride was kept at the default value 1, and padding size was 

chosen valid-padding for the final architecture. 

• Dense layer: Dense layer filter size is set at 64 for the binary model and 128 for the 

multiclass CNN consecutively.   

• Activation function: Similar to the phase one, each set of CONV layers is associated 

with the ReLU activation function.  

For output layer, CNN-1 uses sigmoid and softmax function for the binary model 

and the multiclass model consecutively. For CNN-2, the class mode has been 

chosen ‘Categorical’ as an autoencoder in the script for one-hot encoded labeling, 

which returns a 2D one-hot encoded labels of the classes instead of their class name 

[71]. SoftMax has been used for both binary model and the multiclass model.  

• Dropout layer: CNN-1 utilized 25% dropout probability, CNN-2 was incorporated 

with 50%  dropout value.  

• Initializer: Each layer is initialized with glorot_uniform. 
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7.3 Optimizing the CNN Model  

As deep learning is an iterative process, various parameters can be adjusted to 

enhance the training speed and efficiency of learning procedure. Some parameters can be 

tuned, for instance, epochs, learning rate, batch size, and Dropout value to improve CNN 

model performance. For this research work, much experiment has been done to determine 

the suitable parameters to measure accuracy, or to obtain a reasonable learning curve. In 

this section, the most impactful hyperparameters are discussed that have been utilized 

throughout the experiments. 

Batch size 

The given batch size selects a set of samples from the training dataset to work 

through before the internal parameters of a model are updated [72]. Mini-batch training 

reduces training time and makes convergence faster. The batch size ranged from 32, 64 

and 128 was tested in the mzodel where the best result was provided by a batch value 32.  

Number of epochs 

The number of times the entire training set pass through the neural network is 

denoted as the number of epochs [72]. A CNN model usually runs until the validation 

error become very close to the training error. Working with online images, the model had 

to run up to 250 epochs to get convergence due to data size volume. As the sample size of 

camera trap project is small, the network was run for 100 epochs. 

Learning rate 

The learning rate is a crucial hyperparameter to tune the neural network, which 

controls how much the optimization algorithm's weight will be updated [65]. For all 

experiments, learning rate with 0.01, 0.001 and 0.0001 have been tested. The best result 
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for online and CNN-2 was achieved with a keras default learning rate of 0.01 and for 

CNN-1 experiment, the learning rate was 0.0001.   

Dropout for regularization 

In order to battle with overfitting, Dropout values were also tuned after each 

Convolution and Fully Connected layer. For online images, the dropout value was kept 

0.5 for all the layers. For the experiment of camera trap images with CNN-1 model, the 

best accuracy was achieved with a dropout value of 0.25 after the Convolutional layers 

and a 0.5 dropout value after the Fully Connected layer. The learning curve of CNN-2 

experiments were suffering from overfitting problem, the dropout value was kept at 0.5 

for all the layers.  

7.4 Computational Tools and Environment 

For this project's writing script, the Python programming language was utilized 

using deep learning libraries such as Keras, Numpy, Scikit-learn, and Matplotlib. Python 

is a flexible, intuitive syntax [33] that allows developers to build, test, and tweak a model 

efficiently. Essential image processing operations such as loading images from disk and 

displaying them to our screen were performed with OpenCV standard library. 

After building the initial architecture, the model was run multiple times in the 

LEAP cluster, a high-performance computing cluster facilitated by Texas State 

University. LEAP stands for “Learning, Exploration, Analysis, and Processing,” which is 

configured with 28 CPU cores, Dual 2.4 GHz E5- 2680v4 Intel Xeon (Broadwell) 

processors, 15 TBs of memory, and 48 TBs of local storage in total [73]. High throughput 

analysis was achieved using the cluster by submitting parallel jobs to evaluate the 

optimized hyperparameters. 
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8. EXPERIMENT AND RESULT ANALYSIS 

8.1. Experiment and Result Analysis for Phase One (Online Dataset) 

Though the goal of the research work is to recognize wild animal species from a 

large camera trap dataset, the initial work started with building and training a CNN 

classifier with online images. The aim was to create a binary and multiclass recognition 

system prototype for future implementation using real-world datasets. The initial work 

helped to get familiarized with the concept of classification using DCNN and understand 

computer vision analysis with image data. Once the model was constructed, it has been 

utilized for the camera trap data, where the previous models were fine-tuned according to 

the desired output. 

A binary and a multiclass structure were experimented with two CNN models 

with 4,500 online images of each group (snake, lizard, and toad). As an example of a 

binary recognition problem, a model has been developed with toad and snake species. 

Later, the work was extended by adding lizard as a class. The experiment results were 

compared within the group of species and also between the models (CNN-1 and CNN-2 

architectures) as described in below subsections. 
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A) Binary Classification Result (Toad And Snake) 

In the initial stage, the research work started with building a binary classification 

model (CNN-1) of snake and toad with 414 images of each species from the Caltech 

dataset. The model was composed of CONV layers with activation ReLU function, 2x2 

MAX Pooling layers, added with Dropout layers. The model got overfitted after 30 

epochs due to the limited imagery samples (828 total images). The best training and 

validation accuracy of that CNN-1 model was 67% and 60%, respectively [70].  

A reasonable extension of that binary experiment has been conducted to improve 

the performance by adding more images into the dataset. The model is trained and 

validated with a balanced two-class image dataset consisting of 8,000 images where 70% 

of data has been utilized for training, 30% is for validation. A separate sample set of 

1,000 images has been utilized for testing purpose. The input data sizes varied in different 

resolutions in the RGB channel, but images were scaled down to 100 pixels in greyscale 

to reduce computational time and complicacy. 

Many changes have made in the architecture, such as changing layers, filter count, 

drop out value, and other parameters to the previous model considering the data size. 

Also, a Batch normalization layer and initializer were introduced to the model.  

The below training and validation loss and accuracy curves in Figure 1 illustrate 

the learning performance changes over time. As expected, the validation curve decreases, 

followed by the training curve for 200 iterations. Both the training and validation loss 

decreases with a minimal gap between the two final loss values indicating a fitted model. 

Both curves have fluctuation because the model is changing its prediction as plotted in 
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Figure 35. The average training accuracy of the CNN-1 model is 79%, and the average 

testing accuracy score for this model was 76%.  

           

Figure 35: The accuracy and loss curves (training and validation) during the 200-epoch training process for 

the final CNN-1 model. 

 

A reasonable improved can be noticed in CNN-2 by incorporating several data 

augmentation in techniques explained in section 7.1.3. With the same sequential model 

configuration, the outcomes were enhanced, having an 83.21% accuracy for training, and 

an 82% accuracy validation accuracy shown in Figure 36.  

 

Figure 36: The accuracy and loss curves (training and validation) during the 250-epoch training process for 

the final CNN-2 model.  

 

The below Figure 37 (a) and (b) confusion matrices are among the average 

outcomes of several computations of the final CNN-1 and CNN-2 models consecutively.  
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(a)              (b)    

Figure 37: Confusion matrix of Snake vs. Toad experiment  (a) for CNN-1 and (b) for CNN-2. 

The confusion matrix in Figure 37 (a) has a 76% overall testing accuracy, where 

176 snake images were misclassified as a toad, and 59 toads were misclassified as a 

snake. Figure 37 (a) has an overall 81.4% accuracy where 30 snakes were misclassified 

as a toad, and 156 toads were misclassified as a snake. Both confusion matrices confirm 

that data augmentation was able to increase the prediction ability for separate testing data 

for a binary problem. 

B) Multiclass Classification Results of Toad, Lizard, And Snake 

For the multi-classification model, the model is trained with three herpetofauna 

groups of species, snake, toad, and lizard, which eventually lead to add more data into the 

model: 12,000 samples for training and validation and 1,500 for testing. To make the 

CNN classifier enough compatible to extract features from individual class, the model 

has modified by adding more filters into the fourth layer. Moreover, the model showed a 

better performance by decreasing the neurons in the dense layer. However, the model’s 

performance is lower for multiclassification than the binary problem as plotted in Figure 

38 and 39. 
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Figure 38: The accuracy, loss curves (training and validation), and confusion matrix of  CNN-1 model for 

snake, toad and lizard classification. Here "Snake =0", "Toad =1" and “lizard=2”.  

 

Figure 39: The accuracy, loss curves (training and validation), and confusion matrix of  CNN-2 model for 

snake, toad and lizard classification. Here "Snake=0”, "Toad =1" and “Lizard=2”. 

 

The multi-classification results yielded lower accuracy than a binary problem 

achieving a 66.41% training, 56.15% validation and 69.73 % testing accuracy for CNN-1. 

CNN-2 scored slightly higher than CNN-1 with an accuracy value 7of 2.44%, 69.85%, 

and 69.13% for training, validation, and testing, respectively. Even the confusion matrix 

shows that the model had difficulty recognizing species properly between three classes. A 

lot of snake and lizard samples are misclassified with toad. The models predicted toad 

quite well among three of the species though the performance for snake was worst. The 

below Table 7 represents the overall classification result of CNN-1 and CNN-2 models 

for online dataset. 
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Table 7: The overall classification result of CNN-1 and CNN-2 models for online dataset. 

  
Snake vs Toad  

(Accuracy in percentage) 
  

Snake Vs lizard vs Toad 

(Accuracy in percentage) 

  Training validation  Testing   Training validation  Testing 

CNN-1 (without 

Augmentation) 
79 76 76.6   67.18 68.08 69.73 

CNN-2 (with 

Augmentation) 
83.21 82 81.4%   72.44 69.85 69.13 

 

From the above table, it can be summarized two outcomes- (a) CNN-2 proved an 

improvement in the result for binary and multiclass recognition problem, (b) the overall 

accuracy declined for multiclass recognition problem than a binary problem. 

While experimenting a multi-classification model, it has been noticed that the 

added class brings more complications within the network due to the additional 

characteristics of the new samples. As seen in section VII, the samples of three species 

have their attributes such as dynamic object position, light illumination, occlusion, and 

complicated animal poses, making the classification process challenging. Moreover, three 

species have inter-class similarities, especially for partially body shape, as described in 

the dataset chapter, which creates extra difficulty to label them in the testing phase. 

Furthermore, the model takes more time to finish computation and have more memory 

requirement 
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8.2. Experiment and Result Analysis for Phase Two (Camera Trap Dataset) 

The experiment analysis of online dataset demonstrates that both CNN-1 and 

CNN-2 models are well developed for recognizing animal species with reasonable 

accuracy. Nevertheless, with the same models, real-world images have shown 

performance deviation since the camera trap examples are unmodified and naturally 

occurred from the environment. Not only that, both models, CNN-2 and CNN-2 

performed differently providing a different set of results. However, this section is 

dedicated to highlight and discuss the essential experiments and corresponding result 

analysis of camera trap species classification. 

Three vital concern have been considered while developing the classification 

algorithm with camera trap data- 

1. Though the camera trap produces a large amount of dataset, there are very few 

target species images to train a model.  

2. Dataset was unbalance for three target species (snake =700, toad=600, 

lizard=1,800). 

3. Among three species, the snake has a decent body size, while toad and lizard pose 

a minimal pixelated area in the background.    

First and second challenges have been addressed by incorporating preprocessing 

techniques to a dataset such as oversampling images to balance the dataset and 

augmentation technique to boost the model’s generalization ability, as explained in 

chapter VII. Moreover, models have been fine-tuned with various hyperparameters in the 

algorithm throughout the experiment.  
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All three species have been classified individually regarding background images 

producing three separate binary problems; ‘lizard vs. background,’ ‘toad vs. background,’ 

and  ‘snake vs. background’ to find a logical solution of third concern. Background 

samples can be referred to as images that do not contain any of the three target species in 

that data point. A new label of dataset named ‘background’ has been formed from camera 

trap images with the same resolution and environment condition as the other data 

examples. In the end, all four sets of labeled data have experimented together CNN-1 and 

CNN-2, and results were compared for a better understanding of recognition 

performance.  

A model’s performance can be evaluated on how the classifier will recognize new 

or unseen data from the same distribution of samples used to train the model. This can 

also be defined as the generalization ability of a CNN classifier. For camera trap images, 

after training the model, the performance has been validated with a given set of samples 

that measure how well the model is generalizing the trained class. The classification 

evaluation was done with a separate set of the testing dataset. The test result has been 

used to plot a confusion matrix that summarizes the prediction of classification results, 

including correct and incorrect label estimation.  

Along with the learning curve and confusion matrix, the model will predict an 

unseen image from the saved model. After training, the model was saved using Keras 

function model.Save, where the saved model will store the weights and architecture in 

separate files. Utilizing the load_model function, the model is directly used to predict a 

new image that the model has never faced in training and testing. For that testing 

purpose, a completely isolated set of samples of 10 images of each species has been 
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separated and later applied to test the model’s generalization ability. The subsequent 

sections will describe the result analysis of CNN-1 and CNN-2 separately.   

8.2.1 Performance Evaluation of CNN-1 (Without Augmentation) 

In CNN-1, training and validation samples were loaded together from the same 

directory and split randomly by instruction in the algorithm. Due to the small sample size 

of 1,300 for training and validation of each species, 80% was used to train the model, and 

20% for validation of the training. The input size of images is 150 pixels that were 

converted into greyscale before feeding into the model. A separate set of 100 images was 

used to predict species' label as a form of the classification performance.  

The model was optimized by adjusting several hyperparameters such as batch 

size, number of epochs, kernel size, the filter number, learning rate, and Dropout 

percentage. For tuning, the Dropout layer with a value range of 0.25 to 0.75 was varied, 

where 0.25 showed a favorable outcome after the CONV layer and 0.5 after the Dense 

layer. The architecture was compiled with the categorical cross-entropy loss function. 

After trying out several learning rates such as 0.01, 0.001, and 0.0001 of Adam optimizer, 

the final rate was selected as 0.0001. With the combination of 32 batch size, the 

computation was executed for 100 epochs. Each of the results is represented in below 

plot 40, 41, and 42 with the learning curve and confusion matrix. 
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Toad Vs Background  

(a)        (b)  

Figure 40: (a) The accuracy, loss curves (training and validation) with respect to the number of epochs, and 

(b) confusion matrix of the final CNN-1 model for toad vs background of camera trap images.  

 

Lizard Vs Background 

(a)         (b)  

Figure 41: (a) The accuracy, loss curves (training and validation) with respect to the number of epochs, and 

(b) confusion matrix of the final CNN-1 model for lizard vs background of camera trap images.  

 

Snake vs Background  

(a)         (b)  

Figure 42: (a) The accuracy, loss curves (training and validation) with respect to the number of epochs, and 

(b) confusion matrix of the final CNN-1 model for snake vs background of camera trap images.  
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Review of the learning curves in Figures 40 (a), 41 (a), and 42 (a) with the 

confusion matrices in Figures 40 (b), 41 (b), and 42 (b) of CNN-1 can be used to assess 

the models’ performance. All the above learning curves of three different binary 

problems show a similar trend. The accuracy curves are not showing any sign of 

overfitting as the validation converges with the training curve. Additionally, the 

investigation of loss curves shows a continuous declining behavior towards zero value 

joining the train loss curve. The validation loss curves start decreasing after the 10th 

epoch and continued until the plot ends. For the toad and lizard dataset, the gap between 

training and validation is nearly zero, whereas the snake vs. background indicates a slight 

overfitting tendency after 80 epochs. The result has been summarized in the below Table 

8. 

Table 8: The overall classification results of CNN-1 models for camera trap dataset. 

                  

The table 8 and accuracy plot 40 (a), 41 (a), and 42 (a) demonstrate that, within 

60 epochs, the models reached around 99% training and 98% validation accuracy for the 

toad, nearly 96.73% training and 96.24% validation for the lizard, and almost 97% 

training and 96% validation for the snake images. With a high training and validation 

accuracy, the toad and lizard scored 99% correctly from the test dataset. Snake recorded 

85% test accuracy which is slightly low compared to the other two species in respect of 

background.  

Training Validation 

Testing 

accuracy 

for toad

Training Validation 

Testing 

accuracy 

for lizard

Training Validation 

Testing 

accuracy 

for snake

CNN-1 (without 

Augmentation)
99.86 99.81 99 96.73 96.24 99 97.27 95.96 85

lizard vs Background    Snake vs Background 

Camera trap results for CNN-1 (Accuracy in percentage)

Toad Vs Background  
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Multiclassification experiment 

A multiclassification recognition experiment has been conducted for three of the 

species together in respect of background images. The results reveal similar pattern as 

like binary classification as in Figure 43 (a). From the confusion matrix in Figure 43 (b) it 

has been found that the model was able to detect all the toad and 99% lizard, where 6 

background and 5 snake images were misclassified as lizard.  

(a)     (b)  

Figure 43: (a) The accuracy, loss curves (training and validation) with respect to the number of epochs, and 

(b) confusion matrix of the final CNN-1 model for all three species of camera trap images.  

 

Single sample prediction with CNN-1 

 After training and validating, each model has been saved preserving the 

configuration, weights values, layers, and parameter information of architecture. With the 

saved model, a generalization ability test has been done for three the binary and the 

multiclass model using ten images of each class label. The outcomes are- 

• Toad vs. background: Nine of the ten toad images are detected correctly; one samples 

are misclassified as background. All ten background images are classified correctly.   



 

71 

• Lizard vs. background: Nine of the ten toad images is detected correctly; One 

samples are misclassified as background. Six background images are classified 

correctly, four images misclassified as lizard. 

• Snake vs. background: ALL snake images is detected correctly. Seven background 

images are classified correctly, three misclassified as snake. 

• Background vs. snake vs. lizard vs. toad: All ten toad and lizard images are classified 

correctly. Eight of the ten snake image is classified correctly. Six background images 

are classified correctly, four of them misclassified as lizard.    

The above test analysis reveals that, all the models were able to generalize an 

unseen camera trap data according to their training and validation performance. The 

models show high testing accuracy for lizard, toad, and snake, but misclassified some 

background as lizard or snake. 

8.2.2 Performance Evaluation of CNN-2 (With Augmentation) 

The CNN-2 utilizes this augmentation technique in the training phase for the 

camera trap images by applying different transformation techniques like zooming, 

shearing, rotating as disccused in chapter 7. The model was tuned with parameters 

adjustments. After several testing, batch size was kept 32, and learning rate was given the 

keras default value (0.01). It has been found in experiment session that, the CNN-2 model 

is suffering through overfitting, so the dropout value has been given 0.5 for all the layers. 

All the experiments were run for 100 epochs. Each of the results is represented in below 

plot 44, 45, and 46 with the learning curve and confusion matrix. 
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Toad vs Background  

The accuracy plot in Figure 42 depicts a smooth converge with a training curve 

with no sign of overfitting. The loss curve is headed downwards, with the training loss 

having fluctuations. There are several reasons for the oscillation loss curve. First, the 

training loss is generally computed on the entire training set after each epoch, where the 

validation loss at each epoch is usually computed on one minibatch of the validation set. 

This regulation leads to a noisy validation curve as the loss curve considers a small 

subsample of the validation set, 32 for this model. Secondly, due to the training phase's 

data augmentation process, the model trained with a modified version of data in each 

epoch. The validation process did not include augmentation; therefore, the model has a 

hard time to predict species, which can create fluctuations.  

(a)    (b)  

Figure 44: (a) The accuracy, loss curves (training and validation) with respect to the number of epochs, and 

(b) confusion matrix of the final CNN-2 model for toad vs background of camera trap images. 

  

After 100 epochs of computation, the training accuracy of the CNN-2 model for 

the toad vs. background is 93.3%, and the validation accuracy is 91.45%. The model 

recognized 69 toads correctly where more than 30 images are misclassified as 

background images.   



 

73 

Snake vs Background  

The accuracy plot in Figure 45 show overfitting problem having a wide gap 

between training and validation line. The validation loss curve illustrates noisy 

movements around the training loss, suggesting that either the validation dataset has too 

few examples compared to the training dataset or the validation dataset does not provide 

sufficient information to evaluate the model's generalization ability. 

(a)         (b)  

(c)  

Figure 45: (a) Training and validation accuracy, (b) training and validation loss with respect to the number 

of epochs, (c) confusion matrix of CNN-2 model for snake vs background of camera trap images.  

 

Even the above confusion matrix shows poor performance on the test dataset 

where model failed to differentiate a snake image from background. 35% percent of the 
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snake examples are misrepresented as background in the test data, and 25% of the 

background was classified as a snake.  

Lizard vs Background 

Figure 46 depicts the overfitting issue with accuracy and loss curves for the same 

reason as discussed above. The loss curve is indicating that the validation dataset is 

unrepresentative as like the training dataset. Also, model is not properly able to 

generalize the samples of target species.  

(a)           (b)  (c)

 

Figure 46: (a) Training and validation accuracy, (b) training and validation loss curves with respect to the 

number of epochs, (c) confusion matrix of lizard vs background from the CNN-2 model. 
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 Multiclassification experiment 

The final DCNN model was trained and tested with all for classes with CNN-2. 

The obtained learning curve in Figure 47 (a) and (b) and the confusion matrix in Figure 

(c) yielded similar output as binary classification experiment. The model had difficulty to 

distinguish each of the species from the test dataset. Among four species, lizard and toad 

had better performance, though snake was misclassified as lizard and background. As 

usual background samples were misclassified as lizard. 

(a)        (b)  

(c)  

Figure 47: (a) The accuracy curve, (b) loss curves with respect to the number of epochs, and (b) confusion 

matrix of the final CNN-2 model for all three species of camera trap images. 
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8.2.2.1 Attempts to Reduce Overfitting for CNN-2 

The above result analysis depicted that the deep learning model performed better 

on the training dataset than the test set due to the overfitting trend. Many experiments 

have been carried out to minimize the overfitting phenomenon. The input image size, 

filter size, number of neurons, learning rate, number of layers and dropout values were 

systematically varied to understand their impact on classification accuracy.  All the 

CONV and dense layers were incorporated with a 0.5 Drop out value to avoid overfitting. 

However, this regularization could not prevent the overfitting for CNN-2 models.  

Moreover, EarlyStopping function has been adopted to mitigate the overfitting 

issue. After trailing several regularization and hyper tuning process, only EarlyStopping 

shows favorable outcome for lizard vs background and snake vs background experiment 

as explained below.   

Early Stopping  

Lizard vs Background 

The whole experimental process has repeated for 100 epochs to obtain reliable 

results with a constant batch size of 32. However, the training process Figure 48 

terminated at 60 epochs due to the use of callback function. The learning curve shows a 

slightly better pattern. But no improvement in the validation accuracy has been observed 

Surprisingly, the testing accuracy as in Figure 48 (c) has increased moderately from the 

previous execution. The advantage of using callback function is to reach the same 

accuracy within a smaller number of epochs, and computation time. The testing accuracy 

has increased moderately from the previous execution. 
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(a)       (b)  

(c)  

Figure 48: (a) Training and validation accuracy, (b) training and validation loss curves, (c) confusion 

matrix of lizard vs background after using early stopping function of  CNN-2 model. 

  

Single sample prediction with CNN-2 

The findings from the generalization ability test of the CNN-2 using ten images of 

each class label- 

• Toad vs. background: Nine of the ten toad samples are misclassified as 

background. All ten background images are classified correctly.   

• Lizard vs. background: All of lizard samples are misclassified as background. All 

ten background images are classified correctly.   
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• Snake vs. background: Seven of the ten snake images is detected correctly; three 

samples are misclassified as background. Six of the background images are 

misclassified as snake.   

• Background vs. snake vs. lizard vs. toad: Two toad and five snake images have 

recognized correctly.  

In can be noticed that, data augmentation shows promises only for snake images, 

where this method failed to improve recognition accuracy for lizard and toad. CNN-2 

architecture predicted all the ten lizard samples, and 90% toad samples as background. 

As expected, the model performed well for snake identification providing 70% positive 

accuracy. However, this model also misclassified 60% background image as snake.  
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8.3 Discussion and Findings 

1) Two deep learning frameworks, CNN-1 and CNN-2 were developed to recognize 

animals from image data automatically. First, the models were trained and 

validated with online dataset to solve a binary (toad vs snake) recognition 

problem, and later, the work was extended to classify three species together (toad, 

snake, and lizard). The results demonstrate satisfactory level of performance for 

online sample set for both models as represented below Figure 49- 

 
 

Figure 49: The overall classification result of CNN-1 and CNN-2 models for online dataset for both binary 

and multiclass problem. 

 

The above figure shows that, applying various image augmentation regimes in 

CNN-2 helped to improve a moderate amount of training and validation accuracy 

compare to CNN-1 for classifying two species, or three species together. Another finding 

from the assessment of the binary and multiclass is that, increasing class size lowers the 

performance of the models as additional samples and intricate features increase the 

classification complexity within their group.  
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2) Afterword, the models are trained with camera trap data to recognize target  

species. CNN-1 provided remarkable training, validation, and testing accuracy for given 

samples with no overfitting issue. This model was able to recognize 99% toad and lizard, 

and 85% snake image from a test dataset of 100 examples as in below Figure 49. There 

are certain reasons behind the optimal results of the binary classification problem of 

camera trap images and they are- 

• In CNN-1, all the samples are being trained for 100 times in the algorithm. In 

each epoch, the model is learning information from the same images, leading to a high 

training and validation accuracy.  

• Most of the toad and lizard samples had the similar background sequence, as 

explained in the dataset chapter. Due to the less variation in the image, the model learned 

the samples very well, showing high evaluation accuracy.  

• The original 600 toad samples have been increased by rotating 180 degrees, and 

added in the existing dataset, which produced repeated versions of the same image. Also, 

most of the toad images are night vision samples providing the benefit of a less cluttered 

background compared to other species images. Due to less complexity and disparity, the 

learning curve and test accuracy of toad show optimum results as seen in below Figure 

49.  
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Figure 50: The overall binary classification result of CNN-1 and CNN-2 models for camera trap dataset. 

 

Conversely, a poor performance has been observed for CNN-2 models for all the 

species. The accuracy curve of the binary algorithm of CNN-2 illustrates overfitting issue 

in the accuracy curve. The accuracy plots in Figure 43, 44 and 45 reveal that, the dataset 

does not provide sufficient information to learn necessary features or useful patterns of 

target species by the architecture. Therefore, the model is unable to prove the ability to 

generalize images from validation dataset. As a result, the performance was degraded 

compared to CNN-1 model.  

3) Various research suggests that, data augmentation helps to improve generalization 

ability of images and boost the robustness of a CNN model. This has been proven in 

phase one, where the accuracy has been enhanced after applying augmentation technique 

for online data. Hence, for the camera trap images, it did not improve due to the 

following reasons - 
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(a) The CNN-2 models suffer from data deficiency. Moreover, in the dataset, the 

samples have adjusted artificially to increase the dataset, eventually failed to 

obtain the target class's feature.  

(b) Due to the augmentation procedure, the model is training with a new set of 

slightly modified data in each epoch. As the model sees a new set of transformed 

images which is replacing the previous set, it is unable to learn the individual 

meaningful pattern of species. 

(c)  Toad and lizard are too small to recognize with respect to the background 

information. Moreover, the lizard and toad body shape, size, color have very high 

similarity background properties. 

(d) The snake images have advantages over other species with a considerable amount 

of body size, shape, and diversity, which allow the algorithm to learn about the 

distinct features and make them separate from a background image.  

Also, it can be noted that, the generalization test has been done with 10 sample 

per species. Conducting test process with more images might increase the prediction 

accuracy for target species.  

In conclusion, CNN-1 shows higher efficiency to predict camera trap data into 

their label between the two models. Moreover, the advantage of CNN-1 is that it requires 

less computation time and memory to train the dataset, while CNN-2 takes longer time to 

compute as it generates a new set of augmented samples of the existing data in every 

epoch for training purpose. 

4) After several experiments it can be summarized that, a significant number of 
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imagery data, and a robust network can minimize the misclassification error providing a 

good recognition accuracy. Also, an alternative labeling method such as ground truth 

labeling can be investigated to teach the models about the complex features of species of 

a challenging sample set.  

5) To explore the potentiality of region based convolutional neural networks 

(RCNN), a test has been conducted with the pre-trained ImageNet model: residual neural 

network (ResNet). In this region-based object detection technique, the model tries to 

identify the location of a target object of interest in an image, and then classify them to 

obtain final object detections [76]. A pixel-based clustering algorithm is applied that 

attempts to merge the similarities of color, texture, size, shape of object [76]. Afterward, 

the model seeks a final meta-similarity to find a region of interest and then provides the 

predicted score [76].  

Some of the observations from the pre-trained ResNet model is included in 

Appendix B. The pictures clearly reveal that, the ResNet neglected the target species in 

the camera trap images and selected wrong objects location. Also, the model provided 

incorrect prediction of the bounding box coordinates of the marked object location. The 

reason is that ResNet is not trained with this particular data samples. The model needs to 

train with camera trap dataset with appropriate labeling and annotaion of target species. 

With proper training, the RCNN algorithm can be investigated in future for far more 

accurate classification and object localization experiment.  
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9. CONCLUSION AND FUTURE WORK 

The challenges associated with big data need to overcome with a structure that 

will systematically and efficiently analyze information. A justified initial work of species 

classification for phase one is presented with online images that depict potential success 

for camera trap images. The experiment result demonstrates the feasibility of recognition 

of animal species. Necessary changes have been made while training the original camera 

trap images to reduce the effect of data imbalance and varying object position, lighting, 

and weather condition challenges. However, real-world samples exhibit natural 

adversarial prone, lowering the performance to recognize species from images.  For  

CNN-1, the average testing accuracy for toad and lizard is 99% and for snake is 85% 

with respect to background examples. Nevertheless, in the generalization ability test from 

a separate set of unlabeled data, this model recognizes 90% toad and lizard, and 100% 

snake species from a set of ten images for each species. This results suggest that, for the 

same background environment, CNN-1 model will be able to recognize species.  

An alternative CNN architecture has been experimented to explore various 

augmentation effects in the model by enhancing the amount of dataset and exploiting 

specific properties. This process allows to train the model with a wide range of object 

variations in form and shape. The binary classification experiment test accuracy of CNN-

2 for toad, snake and lizard is 69%, 65% and 25% consecutively with respect to the 

background. In the generalization ability test, the training techniques with augmented 

samples have a practical effect on a snake, adding no toad and lizard progress. In other 

word, CNN-2 failed to distinguish lizards and toads from the background.  
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The results of CNN-2 validate that, the CNN framework will be able to recognize 

the target species if the quality, and background view of the image belong to the similar 

circumstance that have been provided for this project. Any changes in the target species 

such as body size, shape, or the nature of presence of species in the surroundings, may 

decline the recognition percentage. Both the models, (CNN-1) and (CNN-2) will perform 

better in the classification process when objects or species have a decent presence in a 

sample or have a pixelated value in the background. 

  Nevertheless, the above issues always will be a part of the problem in automatic 

identification process with camera trap images. For snake identification, a sufficient 

amount of data will enhance classification accuracy. The current models have substantial 

room for improvement by making it more robust to detect challenging animal species 

from the camera trap dataset. In order to determine the optimal recognition method, 

further research is needed. Several deep learning architectures can be explored to find a 

better recognition solution for three species, such as Region-based Convolutional Neural 

Networks (RCNN), U-Net, and other deep learning networks.  
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APPENDIX SECTION 

Appendix A 

In an attempt to minimize overfitting and increase generalization ability in CNN-

2, several regularization techniques have been experimented in the architecture as 

explained in section 8.2.2.1. The CNN-2 model was tested with a variety of combinations 

of small learning rate and higher batch size that did not perform well in the validation and 

test data. Also, a two-layer shallow model has been designed to ensure less complexity in 

the model. Hence, the result was not improved. That is why the below two result has been 

added in Appendix A. 

Small Learning Rate and Higher Batch Size 

An experiment was performed with a learning rate of 0.0001 and a batch size of 

64 to minimize the overfitting effect in CNN-2. Still, the overfitting trend was not 

improved from the previous one, as seen in Figure 51. The model predicted worst for the 

testing sample set having background misclassification.  
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(a)     (b)  

(c)  

Figure 51: (a) Training and validation accuracy, and (b) loss curves with respect to the number of epochs 

and confusion matrix of lizard, and background for CNN-2 using small learning rate and higher batch size. 

 

A Shallow Model with Two Convolutional Layer Set  

A two-layer architecture has been constructed with two Convolutional layers with 

32 filter size and 64 filter size in the dense layer. The attained training accuracy is 74.63%, 

but the validation accuracy dropped at 62.81% indicating no improvement in the 

performance. Also, the model was not unable to distinguish between background and lizard 

in the test dataset. 
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(a)      (b)   

(c)  

Figure 52: (a)Training and validation accuracy, (b) loss curves with respect to the number of epochs, and 

(c) confusion matrix of lizard, and background for CNN-2 using a shallow model with two convolutional 

layer set. 
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Appendix B 

Testing Camera Trap Images with a Pre-Trained ResNet Model 

The below Figures are the test result of RCNN object detection algorithm where 

the pre-trained ResNet model failed to predict the target object location (or species region) 

and classify with proper annotation for camera trap samples. Below figures show the 

inaccurate prediction results for lizard, snake, and toad images in Figure 53 (a), (b), and (c) 

consecutively. In Figure (a), the RCNN model ignored a lizard and created bounding box 

around a wired mesh drift fence and labeled as “lacewing”. The model misrepresented a 

part of snake as “centipede” in Figure (b) and misclassified a toad sample as “armadillo”. 

The prediction accuracy can be further improved by retraining the model with proper object 

labeling and appropriate annotaion.  

(a)  
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(b)  

 

(c)  

 

Figure 53: R-CNN test result of (a) Lizard sample, (b) snake image, (c) toad example with bounding box 

and prediction. 
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