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Abstract. In this article, by using the Fountain theorem and Mountain pass

theorem in critical point theory without Palais-Smale (PS) condition, we show

the existence and multiplicity of solutions to the degenerate Kirchhoff type
problem with the fractional p-Laplacian“

a + b

Z Z
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

”
(−∆)s

pu = f(x, u) in Ω,

u = 0 in RN \ Ω,

where (−∆)s
p is the fractional p-Laplace operator with 0 < s < 1 < p < ∞,

Ω is a smooth bounded domain of RN , N > 2s, a, b > 0 are constants and

f : Ω× R→ R is a continuous function.

1. Introduction and statement of main results

The aim of this article is to establish the existence of solutions to the Kirchhoff
nonlocal problem(

a+ b

∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
(−∆)spu = f(x, u) in Ω,

u = 0 in RN \ Ω,
(1.1)

where Ω is an open bounded subset of RN with Lipschitz boundary, N > 2s with
s ∈ (0, 1), a, b > 0 are constants, f : Ω×R→ R is a continuous function and (−∆)sp
is the fractional p-Laplacian operator which, up to normalization factors, may be
defined as

(−∆)spu(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+ps

dy

for x ∈ RN , where Bε(x) := {y ∈ RN : |x− y| < ε}. As for some recent results on
the fractional p-Laplacian, we refer to for example [22, 21, 24] and the references
therein.
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When a ≡ 1, b ≡ 0 and p = 2, problem (1.1) becomes the fractional Laplacian
problem

(−∆)su = f(x, u) in Ω,

u = 0 in RN \ Ω.
(1.2)

For the basic properties of fractional Sobolev spaces and the functional framework
that takes into account the problem (1.2), we refer the readers to [36]. In [37, 38],
Servadei and Valdinoci considered the existence of nontrivial weak solutions of the
problem (1.2) by using variational methods. For other recent results in (1.2), the
reader is referred, for example, to [4, 39, 40].

Fractional and nonlocal operators and on their applications is very interesting,
we refer the readers to [5, 13, 15, 18, 19, 25, 26, 27, 28, 30, 32, 33, 35, 47] and the
references therein. For the basic properties of fractional Sobolev spaces, we refer
the readers to [12, 27]. In [30], Molica Bisci and Vilasi studied a class of Kirchhoff
nonlocal fractional equation in a bounded domain Ω and obtained three solutions
by using three critical point theorem. Pucci and Saldi [32] established the existence
and multiplicity of nontrivial solutions for a Kirchhoff type eigenvalue problem in
RN involving a critical nonlinearity and the nonlocal fractional Laplacian. We refer
also to [16, 17, 27, 29] for related problems.

Notice that when a ≡ 1 and b ≡ 0, as s → 1−, problem (1.1) reduces to the
problem

−∆pu = f(x, u) in Ω, (1.3)

where Ω ⊂ RN is a smooth domain.
For the case of a bounded domain, there are several articles considering the

system

−
(
a+ b

∫
Ω

|∇u|p
)

∆pu = g(x, u) in Ω

where Ω ⊂ RN is a smooth domain, which is related to the stationary analogue of
the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|p
)

∆pu = g(x, u),

which was proposed by Kirchhoff [23] as an extension of the classical D’Alembert’s
wave equation for free vibrations of elastic string. In recent years, many authors
are interesting in Kirchhoff type problems, see for example [2, 3, 8, 9, 10, 11, 33,
42, 43, 44, 45, 46] and references therein.

Motivated by the above works and [7, 31, 36, 37, 38, 41], we study the existence
and multiplicity of solutions for Kirchhoff type problem (1.1).

Before proving our main results, some preliminary material on function spaces
and norms is needed. In the following, we briefly recall the definition of the
functional space X0, introduced in [36], and we give some notation. We denote
Q = R2N \ O, where O = RN \ Ω× RN \ Ω. We denote

X =
{
u : RN → R : u|Ω ∈ Lp(Ω),

∫ ∫
Q

|u(x)− u(y)|p

|x− y|N+ps
dx dy <∞

}
,

where u|Ω represents the restriction to Ω of function u(x). Also, we define the
following linear subspace of X,

X0 =
{
g ∈ X : g = 0 a.e. in RN \ Ω

}
.
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The linear space X is endowed with the norm

‖u‖X := ‖u‖L2(Ω) +
(∫ ∫

Q

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.

It is easily seen that ‖ · ‖X is a norm on X and C∞0 (Ω) ⊆ X0 (see [45, Lemma 2.1]).
Also, we know that X0, endowed with the norm

‖v‖X0 =
(∫ ∫

Q

|v(x)− v(y)|p

|x− y|N+ps
dx dy

)1/p

for all v ∈ X0, (1.4)

is a uniformly convex Banach space and a reflexive Banach space [45, Remark 2.1
and Lemma 2.4].

We consider the nonlinear eigenvalue problem

‖u‖pX0
(−∆)spu = λ|u|2p−2u in Ω,

u = 0 in RN \ Ω,
(1.5)

whose eigenvalues are the critical values of the functional

Jp(u) = ‖u‖2pX0
, u ∈M =

{
u ∈ X0 :

∫
Ω

|u|2p dx = 1
}
. (1.6)

We know that the first eigenvalue λ1 := infu∈M Jp(u) > 0. The first eigenfunction
is denoted by ϕ1 (see [44] for the case θ = 2).

We denote the usual Lp(Ω)-norm by ‖ · ‖p. Since Ω is a bounded domain, it is
well known that X0 ↪→ Lp(Ω) continuously for p ∈ [1, p∗s], (see [45, Lemma 2.3])
and compactly for q ∈ [1, p∗s), where p∗s := Np

N−sp . Moreover there exists Cq > 0
such that

‖u‖q ≤ Cq‖u‖X0 , u ∈ X0. (1.7)
We consider the functional J : X0 → R defined by

J(u) =
a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

−
∫

Ω

F (x, u(x)) dx (1.8)

and set
Ψ(u) =

∫
Ω

F (x, u(x)) dx,

where F (x, u) =
∫ u

0
f(x, s) dx. Obviously, the functional J is well-defined, it is of

class C1(X0,R) and

〈J ′(u), v〉

= (a+ b‖u‖pX0
)
∫ ∫

Q

|u(x)− u(y)|p−2
(
u(x)− u(y)

)
|y|N+ps

(v(x)− v(y)) dx dy

−
∫

Ω

f(x, u(x))v(x) dx, for all u, v ∈ X0,

(1.9)

Moreover, the critical points of J are the solutions of problem (1.1). Let

Ej := ⊕i≤j ker((−∆)sp − µi),
where 0 < µ1 ≤ µ2 ≤ . . . , µi ≤ . . . , are the eigenvalue of ((−∆)sp, X0) (see [22, 24,
20]).

Definition 1.1. We say that J satisfies the Palais-Smale (PS) condition if any
sequence (un) ∈ X for which J(un) is bounded and J ′(un)→ 0 as n→∞ possesses
a convergent subsequence.
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Also, we need the following definition, which is a weak version of the (PS) con-
dition, due by Cerami [6].

Definition 1.2. Let J ∈ C1(X,R), we say that J satisfies the Cerami condition
at the level c ∈ R ((Ce)c for short), if any sequence (un) ∈ X with

J(un)→ c, (1 + ‖un‖)J ′(un)→ 0 as n→∞,
possesses a convergent subsequence in X; J satisfies the (Ce) condition if J satisfies
the (Ce)c for all c ∈ R.

The assumptions on the function f are stated as follows:
(A1) There exists a positive constant C > 0 such that |f(x, t))| ≤ C(|t|r−1 + 1),

for some 2p < r < p∗s, x ∈ Ω and all t ∈ R;
(A2) lim|t|→∞

(
1
2pf(x, t)t− F (x, t) + aµ1

p tp
)

= +∞ uniformly in x ∈ Ω;
(A3) there exists µ > µ1 such that F (x, t) ≥ aµ

p t
p for |t| small;

(A4) lim|t|→∞
(
aµ1
p tp + bµ1

2p t
2p − F (x, t)

)
= +∞ uniformly in x ∈ Ω.

Now we state our main results.

Theorem 1.3. Assume that f ∈ C(Ω× R,R), (A1)–(A4) hold. Then (1.1) has at
least one nontrivial solution.

In the next theorem we use the assumptions:
(A5) lim|t|→∞

F (x,t)
|t|2p →∞ uniformly in x ∈ Ω, and there exists L1 ≥ 0 such that

F (x, t) ≥ 0 for all (x, t) ∈ Ω× R and |t| ≥ L1;
(A6) there exists θ0 > 0 such that

F (x, t) ≤ 1
2p
f(x, t)t+ θ0|t|p, ∀(x, t) ∈ Ω× R;

(A7) f(x,−t) = −f(x, t) for all (x, t) ∈ Ω× R;

Theorem 1.4. Assume that (A1), (A5)–(A7) are satisfied. Then problem (1.1)
possesses infinitely many nontrivial solutions {uk} such that J(uk)→ +∞.

Now, we study the existence of infinitely many solutions of the following problem,
which it is a special case of problem (1.1),(

a+ b

∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)
(−∆)spu

= g(x, u(x)) +H(x)|u|r0−2u in Ω,

u = 0 in RN \ Ω.

(1.10)

with the following conditions:
(A8) There exists a positive constant CG such that |G(x, t)| ≤ CG(|t|r−1 + 1) for

some 2p < r < p∗, x ∈ Ω and all t ∈ R, where G(x, t) =
∫ t

0
f(x, s) ds;

(A9) lim|t|→∞
(

1
r0
g(x, t)t − G(x, t) + a%|t|p + m|t|q

)
= +∞ uniformly in x ∈ Ω

where % < ( 1
p−

1
r0

)µ1, 1 < q < p < p∗, r0 > 2p and m is a arbitrary positive
constant;

(A10) G(x, t) ≥ 0, for all x ∈ Ω, t ∈ R;
(A11) the function H is a nonnegative and satisfies 0 < m ≤ H ≤M ;
(A12) lim|t|→0

g(x,t)
|t|p−1 = 0, uniformly in x ∈ Ω;

(A13) G(x, 0) = 0 for all x ∈ Ω and G(x,−t) = G(x, t), for all x ∈ Ω, t ∈ R.
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Theorem 1.5. Assume that g ∈ C(Ω×R,R), H ∈ C(Ω,R), and (A8)–(A13) hold.
Then problem (1.10) has a sequence of solutions {uk} such that I(uk)→ +∞.

The proofs of the our main results are fully based on some theorems that we
recalled here for the reader’s convenience.

Theorem 1.6 (Mountain Pass Theorem [1, 14]). Let X be a real Banach space
and J ∈ C1(X,R) satisfying the (Ce) condition. Suppose J(0) = 0,

(i) there are constants ρ, β > 0 such that J |∂Bρ ≥ β where

Bρ = {u ∈ X : ‖u‖ ≤ ρ};
(ii) there is u1 ∈ X and ‖u1‖ > ρ such that J(u1) < 0.

Then J possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

J(u), Γ = {g ∈ C([0, 1]) : g(0) = 0, g(1) = u1}.

Theorem 1.7 ([34]). Let X be an infinite dimensional Banach space, X = Y ⊕Z,
where Y is finite dimensional. If J ∈ C1(X,R) satisfies (Ce)c-condition for all
c > 0, and

(i) J(0) = 0, J(−u) = J(u) for all u ∈ X;
(ii) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α;

(iii) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such
that J(u) ≤ 0 on X̃ \Bρ;

then J possesses an unbounded sequence of critical values.

Theorem 1.8 (Fountain theorem). Let X0 be a Banach space with the norm ‖ · ‖
let Xi be a sequence of subspace of X with dimXi < ∞ for each i ∈ N . Further,
set

X = ⊕i=1
∞ Xi, Yk = ⊕ki=1Xi, Zk = ⊕∞i=kXi

Consider an even functional Φ ∈ C1(X,R). Assume that for each k ∈ N, there
exists ρk > γk > 0 such that

(1) ak := maxu∈Yk,‖u‖=ρk Φ(u) ≤ 0,
(2) bk := infu∈Zk,‖u‖=γk Φ(u)→ +∞, k → +∞,
(3) Φ satisfies the (PS)c condition for every c > 0.

Then φ has an unbounded sequence of critical values.

Now, we need the following lemma about the (Ce) condition which will play an
important role in the proof of our main results.

Lemma 1.9. Assume that (A1) and (A2) hold. Then the functional J : X0 → R
satisfies the (Ce) condition.

Proof. Let {un} be a (Ce)c sequence for c ∈ R,

J(un)→ c, (1 + ‖un‖X0)J ′(un)→ 0 as n→∞. (1.11)

We first show that {un} is a bounded sequence. In view of (1.8), (1.9) and (1.11),
one has

1 + c ≥ J(un)− 1
2p
J ′(un)un

=
a

2p
‖un‖pX0

+
∫

Ω

( 1
2p
f(x, un(x))un(x)− F (x, un(x))

)
dx.

(1.12)
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From (A2), there exists θ > 0 such that

− θ ≤ 1
2p
f(x, t)t− F (x, t) +

aµ1

2p
|t|p, ∀x ∈ Ω, t ∈ R. (1.13)

Now, We define un = ϕn + vn, where ϕn ∈ E1 and vn ∈ E⊥1 . By (1.12) and (1.13),
we have

1 + c ≥ a

2p
‖un‖pX0

− aµ1

2p
‖un‖pLp

+
∫

Ω

( 1
2p
f(x, un(x))un(x)− F (x, un(x) +

aµ1

2p
|un(x)|p)

)
dx

≥ a

2p
(
1− µ1

µ2

)
‖vn‖pX0

− θ|Ω|,

(1.14)

which implies that ‖vn‖X0 is bounded. Now, we assume that {un} is unbounded
sequence, so there is a subsequence {un} (to simplify the notation) of {un} satisfying
‖un‖X0 → +∞ as n → +∞. Hence we have vn

‖un‖X0
→ 0 ∈ X0. Since ϕn

‖un‖X0
is

bounded in finite dimensional E1, one can get ϕn
‖un‖X0

→ w in E1. Using

wn :=
un

‖un‖X0

=
ϕn + vn
‖un‖X0

=
ϕn

‖un‖X0

+
vn

‖un‖X0

→ w,

in E1, yields
un(x)
‖un‖X0

→ w(x) a.e. in Ω. (1.15)

So, by this fact ‖w‖X0 = 1 (we know that ‖wn‖X0 = 1), w ∈ E1 and (1.15), we
have

|un(x)| → +∞ as n→ +∞. (1.16)
In view of (A2), (1.14), (1.16) and Fatou’s lemma, one has

1 + c ≥ J(un)− 1
2p
J ′(un)un

=
a

2p
‖un‖pX0

+
∫

Ω

( 1
2p
f(x, un(x))un(x)− F (x, un(x))

)
dx

≥
∫

Ω

( 1
2p
f(x, un(x))un(x)− F (x, un(x) +

aµ1

2p
|un(x)|p)

)
dx

→ +∞ as n→ +∞,

(1.17)

which is a contradiction. Then we get that {un} is bounded in X0. By (A1), we can
easily obtain that {un} has a convergence subsequence. Therefore, the functional
J satisfies the (Ce) condition. �

Proof of Theorem 1.3. By Lemma 1.9, we know that the functional J : X0 → R
satisfies the (Ce) condition. Hence, it is sufficient to show that J satisfies (i) and
(ii) of Theorem 1.3.

First, we claim that there are constant β, ρ > 0 such that J(u) ≥ β for all
‖u‖X0 = ρ. By (A1) and (A4), we can get

F (x, t) ≤ aµ1

p
|t|p +

b(λ1 − ε)
2p

|t|2p + C|t|r, (1.18)

for all ε small enough, t ∈ R and x ∈ Ω. Then, from (1.6)-(1.8) and (1.18), we have

J(u) =
a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

−
∫

Ω

F (x, u(x)) dx



EJDE-2017/115 DEGENERATE KIRCHHOFF TYPE PROBLEMS 7

≥ a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

− aµ1

p
‖u‖pLp +

b(λ1 − ε)
2p

‖u‖2pL2p − C
∫

Ω

|u(x)|r dx

≥ b

2p

(
1− λ1 − ε

λ1

)
‖u‖2pX0

− CCr‖u‖rX0
.

Since 2p < r < p∗ then for ε small enough, there exists β > 0 such that J(u) ≥ β
for all ‖u‖X0 = ρ, where ρ > 0 small enough.

Next, we will show that there exists u1 ∈ X0 and ‖u1‖X0 > ρ such that J(u1) <
0. By the definition of λ1, for small enough ε > 0, we can choose u ∈M satisfying

λ1 +
ε

p
≥ ‖u‖2pX0

. (1.19)

Also, in view of (A1) and (A3) that

F (x, t) >
b(λ1 + ε)

2p
t2p − C. (1.20)

So, From (1.19) and (1.20), one can get

J(tu) =
a

p
tp‖u‖pX0

+ t2p
b

2p
‖u‖2pX0

−
∫

Ω

F (x, tu(x)) dx

≤ a

p
tp‖u‖pX0

+
b

2p
t2p‖u‖2pX0

− b

2p
t2p(λ1 + ε) + C|Ω|

≤ a

p
tp‖u‖pX0

+
b

2p
t2pλ1 +

bε

2p2
t2p − b

2p
t2p(λ1 + ε) + C|Ω|

=
a

p
tp‖u‖pX0

− bε

2p2
t2p + C|Ω|.

Then, J(tu) → −∞ as t → ∞. Therefore, there exists u1 ∈ X0 and ‖u1‖X0 > ρ
such that J(u1) < 0. �

To prove of Theorem 1.4, we need the following lemmas.

Lemma 1.10. Assume that (A1), (A6) and (A7) hold. Then the functional J :
X0 → R satisfies the (Ce) condition.

Proof. Let {un} ⊂ X0 is a (Ce)c sequence for c ∈ R,

J(un)→ c, (1 + ‖un‖X0)J ′(un)→ 0 as n→∞. (1.21)

We first claim that {un} is a bounded sequence. Suppose to the contrary that
‖un‖X0 →∞. We consider wn := un

‖un‖X0
, then ‖wn‖X0 = 1. Going if necessary to

a subsequence, we may assume that
wn ⇀ w, weakly in X0,

wn → w, strongly in Lq(Ω) 1 ≤ q < p∗s)
wn → w, a.e. x ∈ Ω.

(1.22)

There are only two cases need to be consider: w = 0 or w 6= 0. We firs consider the
case w = 0. By (A6) and (1.21), one obtains

1
‖un‖pX0

(
J(un)− 1

2p
J ′(un)un

)
≥ a

2p
+

1
‖un‖pX0

∫
Ω

( 1
2p
f(x, un(x))un(x)− F (x, un(x))

)
dx
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≥ a

2p
− θ0

∫
Ω

|wn|pdx,

which implies 0 ≥ a/(2p). This is a contradiction.
If w 6= 0, setting Ω1 := {x ∈ Ω : w(x) 6= 0}, obviously |Ω1| > 0 where |Ω1| is

Lebesgue measure of Ω1. For x ∈ Ω1, we have |un(x)| → ∞ as n→∞. In view of
(A5), one has

lim
n→∞

F (x, un(x))
|un(x)|2p

|wn(x)|2p →∞.

So, using Fatou’s Lemma, we can get

lim
n→∞

∫
Ω

F (x, un(x))
|un(x)|2p

|wn(x)|2pdx→∞. (1.23)

From (A1), it follows that

|F (x, t)| ≤M |t|, ∀x ∈ Ω, |t| ≤ L1.

Combining this with (A5), we obtain

F (x, t) ≥ −M |t|, ∀(x, t) ∈ Ω× R.

So, by (1.7), we obtain∫
Ω\Ω1

F (x, un)
‖un(x)‖2pX0

dx ≥ −
M
∫

Ω\Ω1
|un|dx

‖un(x)‖2pX0

≥ − M‖un‖1
‖un(x)‖2pX0

≥ − MC1

‖un(x)‖2p−1
X0

,

which implies

lim inf
n→∞

∫
Ω\Ω1

F (x, un)
‖un(x)‖2pX0

dx ≥ 0, (1.24)

Using (1.21), (1.23) and (1.24), we obtain

0 = lim
n→∞

c+ o(1)
‖un(x)‖2pX0

= lim
n→∞

J(un)
‖un(x)‖2pX0

= lim
n→∞

1
‖un(x)‖2pX0

(a
p
‖un‖pX0

+
b

2p
‖un‖2pX0

−
∫

Ω

F (x, un(x)) dx
)

= lim
n→∞

1
‖un(x)‖2pX0

(a
p
‖un‖pX0

+
b

2p
‖un‖2pX0

−
∫

Ω1

F (x, un(x)) dx

−
∫

Ω\Ω1

F (x, un(x)) dx
)

≤ b

2p
+ lim
n→∞

a

p‖un(x)‖pX0

− lim
n→∞

∫
Ω1

F (x, un)
‖un(x)‖2pX0

dx

− lim inf
n→∞

∫
Ω\Ω1

F (x, un)
‖un(x)‖2pX0

dx

≤ b

2p
− lim
n→∞

∫
Ω1

F (x, un)
‖un(x)‖2pX0

dx = −∞,

(1.25)

which is a contradiction. Then we {un} is bounded in X0. By (A1), we can
easily obtain that {un} has a convergence subsequence. Therefore, the functional
J satisfies the (Ce) condition. �



EJDE-2017/115 DEGENERATE KIRCHHOFF TYPE PROBLEMS 9

Proof of Theorem 1.4. Let {ej} is an orthonormal basis of X0 and define Xj = Rej ,

Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , k ∈ Z
and Yk is finite-dimensional. Set X = X0, Y = Yk and Z = Zk. Clearly, J(0) = 0
and (A7) implies J is even and from Lemma 1.10, J satisfies the (Ce) condition.
conditions (i) of Theorem 1.7 is satisfied. So, we only need to verify (ii) and (ii) of
Theorem 1.7. Set

βk(r) := sup
u∈Zk,‖u‖X0=1

‖u‖r. (1.26)

By a direct calculation, we have βk → 0 as k →∞ for all 1 ≤ r < p∗s. choose

ρ := min
{( a

4pCβk(1)

) 1
1−p

,
( ar

4pCβrk(r)

) 1
r−p
}

Then, by (A1) and (1.26), for u ∈ Zk and ‖u‖X0 = ρ, we have

J(u) =
a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

−
∫

Ω

F (x, u(x)) dx

≥ a

p
‖u‖pX0

− C‖u‖1 −
C

r
‖u‖rr

≥ a

p
‖u‖pX0

− Cβk(1)‖u‖X0 −
C

r
βkk (r)‖u‖rX0

≥ a

2p
ρp := α > 0.

Thus condition (ii) of Theorem 1.7 is satisfied.
Since all norms are equivalent in a finite dimensional space, there is a constant

Υ > 0 such that
‖u‖2p ≥ Υ‖u‖X0 , ∀u ∈ Y. (1.27)

In view of (A5), for any M1 >
b

2pΥ2p , there is a constant Γ0 > 0 such that

F (x, t) ≥M1t
2p, ∀x ∈ Ω, |t| ≥ Γ0.

By (A1), we have

|F (x, t)| ≤ C(1 + Γr−1
0 )|t|, ∀x ∈ Ω, |t| ≤ Γ0,

which implies
F (x, t) ≥M1t

2p − C ′|t|, ∀(x, t) ∈ Ω× R, (1.28)
where C ′ is a positive constant. Hence from (1.7), (1.27) and (1.28), one can get

J(u) ≤ a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

−M1‖u‖2p2p + C ′‖u‖1

≤ a

p
‖u‖pX0

−
(
M1Υ2p − b

2p
)
‖u‖2pX0

+ C ′C‖u‖X0 , ∀u ∈ Y.

Consequently, there is a large R = R(X̃) > 0 such that J(u) ≤ 0 on Y \Bρ. Thus
the condition (iii) of Theorem 1.7 is satisfied. Then all conditions of Theorem 1.7 are
satisfied. Therefore, problem (1.1) possesses infinitely many nontrivial solutions.

�

To proof Theorem 1.5, wee need the following lemmas.

Lemma 1.11. Assume that (A8)-(A10) hold. Then the functional J : X0 → R
satisfies the (PS)c. condition.
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Proof. Assume that {un} ⊂ X0 such that

J(un)→ c and J ′(un)→ 0 in X∗0 .

So we first prove that {un} is bounded in X0.
By (A9), there exists θ0 such that

1
r0
g(x, t)t−G(x, t) + a%|t|p +m|t|q > −θ0. (1.29)

So, by (1.8), (1.9) and (1.29), we have

C + 1 ≥ J(un)− 1
n
〈J ′(un), un〉

= a
(1
p
− 1
r0

)
‖un‖pX0

+ b
( 1

2p
− 1
r0

)
‖un‖2pX0

+
∫

Ω

[ 1
r0
g(x, un)−G(x, un)

]
dx

≥ a
(1
p
− 1
r0

)
‖un‖pX0

+ b
( 1

2p
− 1
r0

)
‖un‖2pX0

− a%
∫

Ω

|un|p dx

−m
∫

Ω

|un|q dx− θ0|Ω|

= a
(1
p
− 1
r0

)
‖un‖pX0

+ b
( 1

2p
− 1
r0

)
‖un‖2pX0

− a%‖un‖pp −m‖un‖qq − θ|Ω|

≥ a
(1
p
− 1
r0
− %

µ1

)
‖un‖pX0

+ b
( 1

2p
− 1
r0

)
‖un‖2pX0

−mCqq‖un‖
q
X0
− θ0|Ω|

≥ a
(1
p
− 1
r0
− %

µ1

)
‖un‖pX0

−mCqq‖un‖
q
X0
− θ0|Ω|.

This implies

a
(1
p
− 1
r0
− %

µ1

)
‖un‖pX0

≤ C + 1 +mCqq‖un‖
q
X0

+ θ0|Ω|.

Since 1 < q < p < p∗ and % < ( 1
p −

1
r0

)µ1, it follows that {un} in X0 is bounded.
By condition (A8), we can easily obtain that {un} has a convergence subsequence.
Therefore, J satisfies the (PS)c condition. �

Proof of Theorem 1.5. From Lemma 1.11, conditions (3) of Theorem 1.8 is satisfied.
So, we only need to verify (1) and (2) of Theorem 1.8. By (A10) and (A11), we
can get

J(u) =
a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

−
∫
ω

G(x, u) dx− 1
r0

∫
ω

H|u|r0 dx

≤ a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

− 1
r0
m‖u‖r0r0 ,

since r0 > 2p and all norms are equivalent on a finite dimensional space, there
exists large ρk > 0 such that

ak := max
a∈Yk,‖u‖X0=ρk

J(u) < 0.

Then, condition (1) of Theorem 1.8 is satisfied. Set

βk := max
{

sup
u∈Zk,‖u‖X0=1

‖u‖r, sup
u∈Zk,‖u‖X0=1

‖u‖r0
}
.
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In view of Zk+1 ⊂ Zk, one has 0 < βk+1 ≤ βk and by a direct calculation, we have
βk → 0 as k →∞. By (A8) and (A12), for any ε > 0 there exists δ = δ(ε) > 0 such
that a.e. x ∈ Ω and for any t ∈ R

|G(x, t)| ≤ ε|t|p + rδ(ε)|u|r.

Then, by (A11),

J(u) =
a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

−
∫

Ω

G(x, u) dx− 1
r0

∫
Ω

H|u|r0 dx

≥ a

p
‖u‖pX0

− ε‖u‖pp − rδ(ε)‖u‖rr −
M

r0
‖u‖r0r0

≥ a

p
‖u‖pX0

+
b

2p
‖u‖2pX0

− M

r0
‖u‖r0r0

≥ a

p
‖u‖pX0

− ε

µ1
‖u‖pX0

− rδ(ε)‖u‖rr −
M

r0
‖u‖r0r0

≥ (
a

p
− ε

µ1
)‖u‖pX0

− rδ(ε)βrk‖u‖rX0
− M

r0
βr0k ‖u‖

r0
X0
.

For every ε with 0 < ε < aµ1
p , choose

‖u‖X0 = γk = min
{( aµ1 − εp

3rδ(ε)pµ1βrk

) 1
r−p

,
( (aµ1 − εp)r0

3pµ1Mβr0k

) 1
r0−p

}
.

Since βk → 0 as k →∞, we have ‖u‖ = γk → +∞ as k →∞. Hence

bk := inf
u∈Zk,‖u‖X0=γk

J(u)

≥
(a
p
− ε

µ1

)
γpk − rδ(ε)

( aµ1 − εp
3rδ(ε)pµ1

)
γpk −

M

r0

( (aµ1 − εp)r0

3pµ1M

)
γpk

=
1
3

(aµ1 − εp
pµ1

)
γpk → +∞, as k →∞.

Then, condition (2) of Theorem 1.8 is satisfied.
So, its follows that the conditions of Theorem 1.8 was satisfied and we have

unbounded sequence which yields that I(uk)→ +∞ then the proof is complete. �
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