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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO n-ORDER
FUNCTIONAL DIFFERENTIAL EQUATIONS

SESHADEV PADHI

ABSTRACT. We establish conditions for the linear differential equation

™ (1) + p(t)y(g(t) = 0
to have property A. Explicit sufficient conditions for the oscillation of the the
equation is obtained while dealing with the property A of the equations. A
comparison theorem is obtained for the oscillation of the equation with the
oscillation of a third order ordinary differential equation.

1. INTRODUCTION

This paper concerns property A of the n-th order (n > 2) delay differential

equation

y™ (&) + p(t)y(g(t) =0, (1.1)
under certain conditions on the coefficient function p € C([o,0),[0,0)),0 € R,
and g € C([o,00), R) such that g(t) <t and g(t) — oo as t — oo.

It is interesting to note that we have obtained sufficient conditions for oscillation
of all solutions of while dealing with property A of the equation. These
sufficient conditions are easily verifiable and different from earlier ones (See [2, [5] [0,
8, 111, 12]). Moreover, these sufficient conditions are consistent with the situation
when p(t) is a constant.

A continuous function y : [g(c),00) — R is said to be a proper solution of
if it is absolutely continuous on (tg,00),t9 > o along with its derivatives
up to the (n — 1)th order and satisfies almost everywhere on (o, 00) and
sup{|y(s)| : s >t} > 0 for t > ty. A proper solution of is called oscillatory if
it has a sequence of zeros tending to infinity. Otherwise, it is called non-oscillatory.
Equation with g(t) = t is said to be disconjugate on [0, 00) if no nontrivial
solution of the equation has more than (n — 1) zeros, counting muntiplicities.

A vast body of literature exist on the oscillation of . One may see the mono-
graphs due to Lakshmikantham et al [I2], Gyori and Ladas [8] and the references
cited therein. Higher order differential equations with property A were studied by
Parhi and Padhi [I5] and Koplatadze [I1]. We shall see that our results are different
form their results. We observe that our results do not hold for the case g(t) =t

(See Theorems [2.1 and and Corollaries and [2.26)).
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Let y(t) be a positive solution of (1.1)) for ¢ > tgo. Then there exists a t; > ¢
such that y(g(t)) > 0 for ¢ > t;. Then y™ () < 0 for t > ¢;,and so by a lemma due
to Kiguradze [10], there exists an integer [, 0 < < mn — 1 such that n + [ odd and

y D) >0, i=0,1,2,...,1,
(-)*yD@) >0, i=1+1,...,n.
for large ¢t. Again, for [ € {1,2,3,...,n — 1},n + [ odd, the following inequality
holds for large ¢, say for t > t5.
(t — )"V
ly(t)] =
n—1)n-2)...(n—1)
Let N denote the set of all nonoscillatory solutions of ([L.1) and IN; denote the set
of all nonoscillatory solutions of (1.1]) satisfying (1.2). Then
NoUN>yU---UN,_; ifnisodd,
NiUN3U---UN,_1 ifn is even.

(1.2)

|y D@ > . (1.3)

Definition. We say that has property A if any of its solution is oscillatory
when n is even and either is oscillatory or satisfies Ny when n is odd.

The following conjecture is given in [I0, pp.29, Problem 1.14], which we state as
a problem.

Problem 1.1. Let M,» = max(A\(A—1)(A—=2)...(A—=n+1)). If
/OO " p(t) — M”*} dt = oo,

tn
then (1.1) with g(t) =t has property A.

Our Theorem [2.20| gives a partial answer to the above problem for the case n = 2

and g(t) =t in (1.1)).

The following lemma, due to Kiguradze [10], is needed for our use in the sequel.

Lemma 1.2. Let for a certain | € {1,2,3,...,n — 1}, the inequality (1.2 hold.
Then

/ sy (M (5)| ds < oo, (1.4)
ty
) . 1 t i1 G
y0) 2y (0) + iy [ = O ds (15)
(=i=1"J,
fort>t1,i=0,1,2,...;1—1 and
0 1 ~ =11, ()
t) > —m— -t " d 1.6
V0> gy [ = s (16)
fort > ty. If in addition
oo
/ sy (s)| ds = oo, (1.7)
t1
then there exists to > t1 such that
t oo
=1t >7/ n=l=11, (M) ()| d 1.8
V0 2 ot [ ) ds (19)

fort >ty and ‘ ‘
iy > = (1) > (5 - 1)y (1) (1.9)
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fort>tq, 1€ {1,2,... 1}

2. MAIN RESULTS

Theorem 2.1. Let g(t) <t and for everyl € {1,2,3,...,n— 1} such that n+1 is

odd,

lim sup(t — g(t))" / (s —t)" " p(s)ds > (n — 1 —1)LI1 (2.1)
9

t—o0 g7 ()
hold. Then (1.1) has property A.

Proof. Let y(t) be a nonoscillatory solution of . Without loss of generality, we
may assume that y(t) > 0 for t > ¢ty > 0. Thus there exists a T} > tg such that
y(g(t)) > 0 for t > Ty. Consequently, from , it follows that y(™ () < 0 for
t > T). Then, there exists a l € {0,1,2,...,n — 1} and n + [ odd such that
holds for some t > ¢; > T;. We claim that [ = 0. If not, then [ € {1,2,...,n —1}.
Putting i = 0 in (L.5]), we get

y(t) > (111)'/t (t —s) " tyW(s)ds, t>t. (2.2)

We can find a t5 > t; such that g(t) > t; for ¢ > t5. Hence, for t > t5

W 4 () (- g(t))!
y(t) > (?;_(13! /g(t)(t_s)l ds > (1;_(15!.( ?( )",

that is,
() > LI 0, (23)
Using (1.6) in , we obtain
(t - g(t))l 1 /OO n—l—1}, (n)
> . _
) = C g s [ =
(t—g() 1 °°
l' (n—l—l)' g1t

(t—g(t) 1 =
Z l! (n—l—l)' g—1(t)

— l oo
e v U AR O

for t > t9, which is a contradiction to the hypothesis of the theorem. Hence (|1.1))
has property A. This completes the proof of the theorem. (I

> (s = )"y (s)] ds
)

(s — )" 'p(s)y(g(s)) ds

Theorem 2.2. Suppose that for everyl € {1,2,3,...,n—1} , n+1 is odd,,

limsup "~ ! / p(s)ds > (n—1)...(n—1)20 D=0, (2.4)
g

t—o0 —i(t)
holds. Then (L.1]) has property A.

Proof. Let y(t) be a non-oscillatory solution of . Without any loss of generality,
we may assume that y(¢) > 0 for ¢ > ¢ty > o. Then there exists a t; > to such
that y(g(t)) > 0 for t > t;. Consequently, it follows from that y(™ (t) < 0 for
t > t; and holds. If possible, suppose that has not property A. Then
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le€{1,2,3,...,n—1}. Clearly (1.3) holds for some t > ¢5 > t;. Since y'(t) > 0,
then for t > ¢.2"117™ > ¢, we have

-n 1 n—1, (n—
y(6) 2y 2> e e Y@ (29)

On the other hand, integrating (|1.1)) from ¢(> t3) to co,we have
oo
s > [ sl ds> |
t 9
Then (2.5)) gives

oo o

p(s)y(g(s)) ds > y(t)/ p(s)ds.

) g7 (t)

(oo}

1
1> ! / p(s)ds
(n — 1) N (n — l).2(n71)(n7l) g=1(t)

for t > to, which contradicts (2.4)). Hence (1.1) has property A. The Theorem is
proved. O

Theorem 2.3. Suppose that g(t) < t and for everyl € {1,2,3,...,n—1} such that
n+ 1 is odd, the following inequality

t o0
limsup/ (t—s)l_l/ (u—38)"""tp(u)duds > (1—1).(n—1—1)! (2.6)
t—oo  Jg(t) 971 (g71(s))
holds. Then (1.1) has property A.

Proof. Let y(t) be a nonoscillatory solution of (1.1]). Without loss of generality, we

may assume that y(t) > 0 and y(g(¢t)) > 0 for t > to > 0. Thus (1.2)) holds for
some t > t1 > tg. Suppose that [ € {1,2,...,n— 1}. Putting : = 0 in (1.5)), we get

v = gy [ - 0O ds (27)
From ([L.5)), we obtain
y O (t) > ﬁ /too(s — )" p(s)y(g(s)) ds. (2.8)

Then from and , we obtain
V02 iy | - [ e e duds. (29)

ty

We can find a to > ¢; such that g(t) > ¢; for t > to. Thus, for t >ty

1 t — )t N u—s)""p(u u)) duds
002 g L T () dud

which in turn, yields

1 /t 1—1/0O —i-1
1> t_s u—s)" p(u) duds.
(n—1—1)L(1-1)! g<t)< ) g*l(g*l(s))( : .

Taking limit sup., we obtain a contradiction. Consequently, (|1.1)) has property A.
Hence the theorem is proved. (I
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Theorem 2.4. Let g(t) <t and
t
limsup/ (s —g®)" 'p(s)ds > (n— 1)\ (2.10)
t—o0 g(t)

Then (T.1) has no solution satisfying the property (—1)'y®(t) > 0 for large t.
Proof. If possible, suppose that ([L.1) has a nonoscillatory solution y(t) satisfying
the property (—1)'y(?(t) > 0 for large t. Then I = 0 in (T.2). Suppose that

y(g(t)) > 0 and y(t) > 0 for some t > ¢; > 0. From Lemma 1.2 due to Kiguradze
and Chanturia [10], it follows for ¢ = 0, that

Y= ot / s — 0" p(s)ylg(s) ds

g ()
>t [ 0 etats) ds

g7 (1)
= (ny(t)l)| /t (s = )" 'p(s) ds,

that is,

9t (®)
(n—=1)!> /t (s —t)"p(s)ds,

for some t > to > t;. Then there exists a t3 > to such that g(t) > t for t > t3.
Hence for t > t3, we have

-1z [ a0y Rl ds

Taking limit sup., we obtain a contradiction. Hence [ # 0. The theorem is proved.
|

Corollary 2.5. Suppose that g(t) < t, (2.10) holds and either (2.1) or (2.4) or
(2.6) is satisfied. Then every solution of (L.1|) oscillates.

Example 2.6. Consider
30
Y0+ /2 =0, 122 211)

By Theorem [2.2] (2.11]) has property A. In particular, y(t) = 1/¢3 is a nonoscillatory
solution of (2.11)).

Example 2.7. Consider
82
y"'(t) + t—gy(t/S) =0, t>1. (2.12)

Theorem [2.1] can be applied to this example where as Theorem [2.9] fails to hold.
On the other hand, (2.10) is satisfied. Hence by Corollary all solutions of (2.12))

are oscillatory.
Example 2.8. Inequality (2.6)) to the equation
63
v+ Fyt/2) =0, t=1 (2.13)

is satisfied, where as (2.1)) fails to hold. Hence Theorem|2.5 can be applied to (2.13]).
Further, since, (2.10) is satisfied, then all solutions of (2.13) are oscillatory, by

Corollary[2.5
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Remark: Let p(t) = p > 0 be a constant and g(t) =t — 7, 7 > 0 be a constant.
Then (1.1) becomes
y "™ (t) + py(t —7) =0. (2.14)
Clearly, the conditions of (2.1),(2.4) and (2.6)) are consistent with p(¢) = p and
g(t) =t — 7. Hence form Corollary it follows that, if

pr™ > nl, (2.15)

then ([2.14]) is oscillatory.
The characteristic equation associated with (2.14)) is given by

A pe” ™ = 0. (2.16)

Setting F'(\) = A" 4+ pe~"™*, we see that F'(\) > 0 for A > 0. Suppose that \ < 0.
We claim that F'(A) > 0 for A < 0. If possible suppose that F'(A) < 0 for A < 0.
Then \* < —pe‘”‘. Then A*7" < —nl.e~™. If n is even, then \*7" < 0, a
contradiction. Hence n must be odd. Let A = —~,y > 0. Then "1™ > nl.e™.
Setting 7y = 3, we see that 8" > nl.e”, a contradiction. Hence our claim holds,
that is, F'(A) > 0 for A < 0. Thus implies that all solutions of are
oscillatory.

Remark: Although the conditions in Theorems and are legitimate, these
are not efficient. When g¢(t) is close to t, the conditions and fails to hold.
This is evident from the following examples : If we replace g(t) = % in by
g(t) = %, then the equation becomes

82 3t
y"'(t) + t—gy(Z) =0,t>1. (2.17)
Condition ([2.1)) fails to hold and hence Theorem cannot be applied to (2.17]).

Similarly,consider the equation
46 .t
y" (t) + t—3y(§) =0,t>1. (2.18)
Theorem can be applied to this example. On the other hand, if g(t) = % in

([2.18) is replaced by g(t) = 19, then (2.18) becomes
46 10t
"
(=) =0.t > .
v+ my(37) =0t21, (2.19)

then(2.6) fails and hence Theorem cannot be applied. The following theorems
provides sufficient conditions for (|1.1)) to have property A when g¢(t) is close to t.

Theorem 2.9. Assume that g(t) < t and t — g(t) — o0 as t — oo.If, for every
le{l,2,...,n— 1} such that n+1 is odd,

limsup(g(t))" /OO (s —t)" " Ip(s)ds > (n — 1 — 1)LI! (2.20)

t—00 0

holds, then (L.1|) has property A.
Proof. We can find a to > t; such that ¢t — g(¢) > t; for t > t5. Hence for t > to,

(2.2)) gives

0 t 1

y () -1 9@ o

(t) > / (t—s)""ds > ==y (¢t).
=D i—gw) !

using (|1.6))in the above inequality, we obtain a contradiction. The proof is complete.

O
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Corollary 2.10. Suppose that the conditions of Theorems[2.4) and[2.9 are satisfied.
then all solutions of (L.1)) oscillates.

Example 2.11. By Theorem (2.17) has property A.

Theorem 2.12. Let g(t) < ¢t and t — g(t) — o0 as t — oo.If for every | €
{1,2,...,n— 1} withn+1 odd,

t o]
limsup/ (t—s) 7t / (u—8)" " p(u)duds > (I — 1) (n —1—1)!
t—oo  Jt—g(t) g (g7 (9)
(2.21)

holds, then (1.1)) has property A.

Proof. Proceeding as in the proof of Theorem we arrive at (2.9) for ¢ > ¢;.
Then we can find a to > ¢ such that ¢t — g(t) > t; for ¢t > t5. Hence from (2.9)), we
obtain

1 t B oo o
V02 Gy L T e ) duds

—g(t

which further yields

1 /t -1 [ —i-1
1> (t - s) / (u—8)""""p(u) duds.
(n—=I0l-1L{-1) (t) g7 (g7 (s)

t—g

Taking limit sup. both sides in the above inequality, we obtain a contradiction.
This completes the proof of the theorem. O

Corollary 2.13. Suppose that the conditions of Theorem[2.]] and[2-13 are satisfied.
Then all solutions of (L.1) are oscillatory.

Example 2.14. By Theorem [2.12] (2.19) has property A.

Let y(t) be a nonoscillatory solution of (1.1]) such that (2.2)) holds for ¢ > ¢;.
Then for t > ty > 2t1, (2.2)) gives

1 t
W0 = g [ = O s e,
=DV iy

Using (|1.6) and the above inequality, we obtain the following theorem.

Theorem 2.15. Let g(t) < t. If for everyl € {1,2,...,n — 1} such that n+1 is
odd,

lim sup #! / (s —t)" ' p(s)ds > (n — 1 —1)1.1L.2"
9

t—o0 ()
holds, then (L.1|) has property A.

Theorem 2.16. Let g(t) <t and for everyl € {1,2,...,n — 1} such that n+1 is
odd,

t 00
limsup/ (tfs)lfl/ (u—8)"""1pu)duds > (1—1).(n—1—1)! (2.22)
t—oo Jt/2 g7 (g7 (s))
holds, then (1.1)) has property A.

Proof. Proceeding as in the proof of Theorem we obtain (2.9). Then for ¢ >
to > 21, (2.9) yields a contradiction. This completes the proof of the theorem. O
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We note that when g(t) = t/2, then Theorem and give same
sufficient conditions to have property A of (|L.1)).

Corollary 2.17. Suppose that the conditions of Theorem[2.4 are satisfied. If either
of the conditions of Theorem or hold, then all solutions of (1.1 are

oscillatory.

Example 2.18. Consider

44 3t
")+ —=y(=)=0,t> 1.
y" (1) + Ful5) =0t

Theorem and Theorem can be applied to this example, whereas Theorem
[2.15] cannot be applied to this example.

Example 2.19. Consider

160 t
2

t - —
v + 45 u(g

By Theorem this equation has property A, whereas Theorem fails.

Theorem 2.20. Let ¢'(t) > 0. If for everyl € {1,2,3,...,n — 1} such that n +1
is odd,

)=0,t>1.

/wm@ﬂ:w, (2.23)

then then for n even every solution of oscillates and for n odd every solution
of 1s either oscillates or tend to zero ast — o0,in particular, has property
A, where

(n—1)l.(n—1)2n 43

H,1(t) =t"""p(t) — 2.24
and
¢ * 11.0.273¢1=2
Hi(t) = ————— —t)n—i=2 ds — ————— 2.25
() (n—z—mul (s =" ple) ds = oy (3
forl=1,2,3,...,n—2.
Remark: Let g(¢t) =t and n = 2. From Theorem it follows that, if
[e9)
1
/‘W@—ﬁﬁ—m, (2.26)
then
Y +p(t)y =0 (2.27)

is oscillatory. This gives a partial answer to Problem [I.I] Further, our result
improves the results due to Kneser [16] pp.45] and Hille and Kneser [16, Theorem
2.41]. We note that Theorem holds for with ¢g(t) = t for n = 2 and
n = 3. however, the theorem cannot be applied to higher order ordinary differential
equations, viz., with ¢g(t) = ¢ and n > 4, because of the conditions and
(2-25). Now, suppose that n = 3 and g(t) = t. then Theorem yields that, if

[ s =S = o,

then
y" +pt)y=0 (2.28)
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has property A. On the other hand, from Hanan [9, Theorem 5.7], and Kiguradze
and Chanturia [I0, Theorem 1.1}, it follows that (2.28) has property A if

e 2
t*p(t) — —=]dt = oo. 2.29
JRGCEE (229)
hence Theorem [2.20]is yet to be improved.

Proof of Theorem [2.20. If possible, suppose that dose not have property A.
Then admits a nonoscillatory solution y(¢) such that y € N; where | €
{1,2,3,...,n— 1}. We may assume, without any loss of generality, that y(t) > 0
and y(g(t)) > 0 for t > t; > 0. Clearly, holds, where [ € {0,1,2,3,...,n—1}
and n + [ odd.

Let I =n—1. Set 2(t) = D) Phep

v(s()
() = —t () + y'(9(t)

z(t). (2.30)
Putting i =1, I = n — 1 in (|L.5]), we obtain, for ¢ > ¢;

=) ),

y'(t) >

Hence for t > 21, we get
tn—2

CEP NG

y'(t) >
Thus, for t > to > 2t4,

O
’ > (g( (n—1)
y'(g(t) = (222" (t)
Using the above inequality, (2.30) yields
2(t) < —Fn_1(t), (2.31)

where

n— / n—2
Fucs(9) = 0700~ a0 + LU 2,

which as a function of z, attains the minimum H,_;(t) given in (2.24). Now, the

integration of (2.31)) from t5 to ¢ yields z(¢) < 0 for large t, a contradiction. Next,
1)

suppose that [ € {1,2,3,...,n — 2}. Setting z;1(t) = %,t > t1, we see that

z1(t) > 0 for t > t; and

oty y'(g(t))

21(t) = +-z1(t) —g'(¢ 21(t). 2.32
T R A TIO R 232
Putting ¢ = 1 in (|1.5)), we get
/ 1 -1, (1)
> _
V()2 g0 70w
Thus, for ¢ Z tg Z 2t1,
1
y'(t) = =y O(t)
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We can find a t3 > to such that g(t) > to for ¢t > t3. Hence

y'(9(t) = W(g(ﬂ)l’ly(”(g(t)) > (l_lﬁ(g(t))l’ly(”(ﬂ (2.33)

for t > t3. Puttingi =1+ 1,k =n and s > ¢ > t3 in the inequality

S t—s“m 1 t k=i=1,(K) () d
B — t—u)"" 2.34
223 )+ gy [ w0 Y e (239
and letting s — oo, we obtain
ylg@®) [~ 0
y(l+1)(t) < _m \ (S - t)n ! 2p(8) ds. (235)
Making the use of (2.33) and (2.35) in (2.32)), we have
21(t) < —Fi(t), (2.36)
where
gt (t) ! t! /Oo —1-2
F(t) = 2T 2 22(8) — 22y (8)  ——————— — )" d
l( ) (l—l)!.Ql_l.tlzl( ) tZl( )+ (n—l—2)' ] (5 ) p(S) S,

which as a function of z1, attains the minimum H;(¢) given in (2.25)). In view of

the conditions and , integration of yields a contradiction. Hence
has property A, that is I = 0 for t > to > t;.. Thus the theorem is proved
when n is even. Now [ = 0 implies that n is odd. Our theorem will be proved if we
can show that y(t) — 0 as t — oo. Since | = 0 then limy(t) = A, 0 < X < oo exists.
We claim that A = 0. If not, them for 0 < € < A, there exists a t3 > t> such that
y(g(t)) > A — € for t > t3. Now putting ¢ = 0,k = n and s > t = ¢35 and letting

§ — 00 in , we obtain

y(ts) > (A—¢€) /Oo(u —t3)"" 1p(u) du

t3
which further gives
/ (u — t3)" " p(u) du < oo. (2.37)
t3
g . . X n— _
On the other hand, the condition (2.23) with [ = n—1 yields that fts t"Ip(t)dt =

oo which contradicts to (2.37). Hence A = 0. This completes the proof of the
theorem. 0

Example 2.21. Consider

24(t —1)2
o+ 2D

All the conditions of Theorem are satisfied. Hence (2.38)) has property A. In

particular, y(t) = 1/t2 is a nonoscillatory solution of ([2.38).

yt—1)=0, t>2. (2.38)

Corollary 2.22. Suppose that the conditions of Theorems[2.]] and [2.20 are satis-
fied. Then all solutions of (L.1)) are oscillatory.
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Now, we consider the following ordinary differential equations associated with
the delay differential equations (2.11)), (2.12)), (2.13]), and ([2.38]).

"+ i—gy -0, t>2 (2.39)
"+ %2@/ -0, t>1. (2.40)
" + %?y =0, t>1. (2.41)

From Hanan [9, Theorem 5.7], it follows that (2.39))-(2.42) are oscillatory. We note
that a third order ordinary differential equation is said to be oscillatory if it has
an oscillatory solution ; otherwise,it is called nonoscillatory. However, all solutions

of (2.39)-(2.42)are not oscillatory. This is because, (2.39)-(2.42) are of Class I or

C7 and hence admits a nonoscillatory solution (see Lemma 2.2 and Theorem 3.1 in
[14]). We may note that Eq.(2.28) is said to be of Class I or C; if any of its solution
y(t) for which y(to) = y'(to) = 0 and y"(to) > 0, (0 < tg < 00) satisfies y(¢) > 0 for
t € [o,tg). It seems that the presence of delay in and is responsible
for the change in the qualitative behaviour of solutions of the equations. It is easy
to construct an example of a third order delay differential equation all solutions of
which are oscillatory but it is not difficult to construct such an example of a third
order ordinary differential equation. It is evident from the following examples due
to Dolan [3] and Parhi and the author [I3] respectively.

Example 2.23. Dolan [3]/ All solutions of
/

()

)

are oscillatory, where r(t) = [1 4+ v2esin(t + Z)]7' > 0,¢ > 0,0 < e < %

To the best of the authors knowledge, the following is the only explicit example
of which all solutions are oscillatory.

Example 2.24 (Parhi and Padhi [I3]). All solutions of

1 k
ne_n Ny M 1> 9
v" ="+ (Tooo000s T )Y " @Y=0 12

are oscillatory, where k is a constant.

Theorem 2.25. Let n > 3. Suppose that for any p € (0,1/2), each of the the third
order ordinary differential equation

'+ Gu=0, i€{1,2,...,n—1}, n+1 odd (2.43)

admits an oscillatory solution, where

Guoi(t) = L (90) = gl (L

zl+r(t)z} =0

)2p(1) (2.44)

and

i) = " oty )

< (gl1) — ato(0)' (L2

(2.45)
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forle{1,2,3,...,n—2}. Then (L.1) has property A.

Proof. If (L.1) has not property A, then it admits a non-oscillatory solution y(t)
such that is satisfied for I € {1,2,3,...,n — 1}. We may assume, without any
loss of generality, that y(¢) > 0 and y(g(¢t)) > 0 for some ¢t > t; > to > 0. Let
| =n — 1. Setting z(t) = y»=3)(t), we see that z(t) > 0,2'(t) > 0,2”(t) > 0 and
x(t) < 0 for ¢t >ty > t1. For any p € (0,1/2), there exists a Ty >> t5 such that

x;gét))) > u(@)2 (2.46)
for t > T), (See Theorem 2.2 in [5]). Setting z(t) = 2'(t)/x(t) for t > T},, we get

iy Tl o

Z'(t) = FORE z4(t). (2.47)

Further, assuming u(t) = exp (f; z(s)ds) and using (2.46), (2.47) and the in-
equality

(n—3)
) = o e gy,
we obtain
W0+ ot ot~ gl () ploute) <0

for ¢t > T,,. From Lemma 4 in [7], it follows that (2.43) with [ = n—1 is disconjugate
on [T),,00), a contradiction.
Next let [ € {1,2,3,...,n—2}. Puttingi =1+ 1,k =nand s = g~ !(t) > t; in

[2:31), we get
1

g~ (t)
S0+ ([ -0 ) <o

for t > T > t;, which further gives, for t > T

(i1+1) 1 o n—i—2
v+ (n—l—2)!.(l—1)!(/t (s = 0" 2p(s) ds) (2.48)
x(g(t) = g(g(1))' 2y P (w(1)) <0
). Let 1(t) = y=2)(t). Then x1(t) > 0, 4 (t) > 0, 2} (t) > 0
> T and hence we can find a ¢ > T, > T such that

z1(w(t)) > ’u(w(t) )2;

Il(t) t

where g(g(t)) = w(t
and z{’(t) < 0 for ¢

that is,
t
))2, (2.49)

YD)
IO

for t > T,,. Then z{(t) = 2/ (0) _ 22(t). Further, setting v(t) = e<

Il(t)
using (219),Z28) gives
g ()
" H n—Il—2
v (t)+(n—l—2)!.(l—1)!</t (s =)' p(s) ds)

x(9(0) ~ gto®)'* (52)ett) < 0

t
Jr, =) dS)

and
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for t > T},,.This in turn implies that (2.43) is disconjugate, by in [7, Lemma 4 |, a
contradiction to the hypothesis of the theorem for the case | € {1,2,3,...,n — 2}.
Hence (L.1)) has property A. This completes the proof of the theorem. O

Corollary 2.26. Suppose that g(t) < t, n > 3. If all the conditions of Theorems
and are satisfied, then all solutions of (1.1) are oscillatory.

Example 2.27. Consider

y"(t) +ety(t—1)=0, t>2. (2.50)
As liminf, o pe 1t(t —1)% > 3%/5, then, for every p € (0,1/2), the equation

t—1
u" + ,ue_l(T)zu =0, t>2
admits an oscillatory solution by Theorem 5.7 of [9]. from Theorem [2.25] it follows
that (2.50]) has property A. In particular, y(¢) = e~ is a solution of (2.50) for ¢ > 2.

Remark: Consider Equations (2.12)) and (2.13). For 0 < p < £7 it follows that

lim; oo tﬂt% < % and hence v’ + p%u = 0 is nonoscillatory, by [9 Theorem

5.7). Similarly, for 0 < p < ﬁ\/ﬁ’ the equation u'” + #%U = 0is nonoscillatory.
Hence Corollary cannot be applied to (2.12)) and (2.13]).
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