Entropy solutions of exterior problems for nonlinear degenerate parabolic equations with nonhomogeneous boundary condition

dc.contributor.authorZhang, Li
dc.contributor.authorSu, Ning
dc.date.accessioned2023-06-20T14:31:17Z
dc.date.available2023-06-20T14:31:17Z
dc.date.issued2016-03-18
dc.description.abstractIn this article, we consider the exterior problem for the nonlinear degenerate parabolic equation ut - ∆b(u) + ∇ ⋅ ɸ(u) = F(u), (t, x) ∈ (0, T) x Ω, Ω is the exterior domain of Ω0 (a closed bounded domain in ℝN with its boundary Γ ∈ C1,1), b is non-decreasing and Lipschitz continuous, ɸ = (φ1,…,φN) is vectorial continuous, and F is Lipschitz continuous. In the nonhomogeneous boundary condition where b(u) = b(ɑ) on (0, T) x Γ, we establish the comparison and uniqueness, the existence using penalized method.
dc.description.departmentMathematics
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationZhang, L., & Su, N. (2016). Entropy solutions of exterior problems for nonlinear degenerate parabolic equations with nonhomogeneous boundary condition. <i>Electronic Journal of Differential Equations, 2016</i>(77), pp. 1-11.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16949
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2016, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectDegenerate parabolic equation
dc.subjectExterior problem
dc.subjectNonlinear
dc.subjectEntropy solution
dc.titleEntropy solutions of exterior problems for nonlinear degenerate parabolic equations with nonhomogeneous boundary condition
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
zhang.pdf
Size:
247.59 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: