Second-order boundary estimate for the solution to infinity Laplace equations

dc.contributor.authorMi, Ling
dc.date.accessioned2022-06-08T21:22:43Z
dc.date.available2022-06-08T21:22:43Z
dc.date.issued2017-07-24
dc.description.abstractIn this article, we establish a second-order estimate for the solutions to the infinity Laplace equation -∆∞u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded domain in ℝN, g ∈ C1 ((0, ∞)), g is decreasing on (0, ∞) with lim s→0+ g(s) = ∞ and g is normalized regularly varying at zero with index -γ (γ > 1), b ∈ C(Ω̅) is positive in Ω, may be vanishing on the boundary. Our analysis is based on Karamata regular variation theory.
dc.description.departmentMathematics
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationMi, L. (2017). Second-order boundary estimate for the solution to infinity Laplace equations. <i>Electronic Journal of Differential Equations, 2017</i>(187), pp. 1-18.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15881
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectInfinity Laplace equation
dc.subjectSecond order estimate
dc.subjectKaramata regular variation theory
dc.subjectComparison functions
dc.titleSecond-order boundary estimate for the solution to infinity Laplace equations
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mi.pdf
Size:
282.61 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: