Generalized inverse scattering transform for the nonlinear Schrödinger equation for bound states with higher multiplicities

dc.contributor.authorMartines, Theresa N. Busse
dc.date.accessioned2022-06-08T14:46:59Z
dc.date.available2022-06-08T14:46:59Z
dc.date.issued2017-07-13
dc.description.abstractWe consider a generalization of the inverse scattering transform for the nonlinear Schrodinger (NLS) equation when bound states have multiplicities greater than one. This generalization is accomplished by deriving an explicit compact formula for the time evolution of the norming constants in the presence of nonsimple bound states. Such a formula helps to find explicit solutions to the NLS equation and obtain a generalization of soliton solutions.
dc.description.departmentMathematics
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationMartines, T. N. B. (2017). Generalized inverse scattering transform for the nonlinear Schrödinger equation for bound states with higher multiplicities. <i>Electronic Journal of Differential Equations, 2017</i>(179), pp. 1-15.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15872
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectZakharov-Shabat system
dc.subjectNLS equation
dc.subjectNorming constants
dc.subjectInverse scattering transform
dc.titleGeneralized inverse scattering transform for the nonlinear Schrödinger equation for bound states with higher multiplicities
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martines.pdf
Size:
233.15 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: