Existence of two positive solutions for indefinite Kirchhoff equations in R^3

dc.contributor.authorDing, Ling
dc.contributor.authorMeng, Yi-Jie
dc.contributor.authorXiao, Shi-Wu
dc.contributor.authorZhang, Jin-Ling
dc.date.accessioned2023-06-06T20:00:01Z
dc.date.available2023-06-06T20:00:01Z
dc.date.issued2016-01-25
dc.description.abstractIn this article we study the Kirchhoff type equation -(1 + b ∫ℝ3 |∇u|2dx) ∆u + u = k(x) ƒ(u) + λh(x)u, x ∈ ℝ3, u ∈ H1(ℝ3), involving a linear part -∆u + u - λh(x)u which is coercive if 0 < λ < λ1(h) and is noncoercive if λ > λ1(h), a nonlocal nonlinear term -b ∫ℝ3 |∇u|2dx∆u and a sign-changing nonlinearity of the form k(x) ƒ(s), where b > 0, λ > 0 is a real parameter and λ1(h) is the first eigenvalue of -∆u + u = λh(x)u. Under suitable assumptions on ƒ and h, we obtain positives solution for λ ∈ (0, λ1(h)) and two positive solutions with a condition on k.
dc.description.departmentMathematics
dc.formatText
dc.format.extent22 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationDing, L., Meng, Y. J., Xiao, S. W., & Zhang, J. L. (2016). Existence of two positive solutions for indefinite Kirchhoff equations in R^3. Electronic Journal of Differential Equations, 2016(35), pp. 1-22.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16909
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2016, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectIndefinite Kirchhoff equation
dc.subjectConcentration compactness lemma
dc.subject(PS) condition
dc.subjectEkeland's variational principle
dc.titleExistence of two positive solutions for indefinite Kirchhoff equations in R^3
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ding.pdf
Size:
316.62 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: