Trigonometric series adapted for the study of Neumann boundary-value problems of Lame systems

dc.contributor.authorMerouani, Boubakeur
dc.contributor.authorLiazidi, Nabil
dc.date.accessioned2022-06-03T12:42:10Z
dc.date.available2022-06-03T12:42:10Z
dc.date.issued2017-06-23
dc.description.abstractIn this article, we study the solutions to Neumann boundary-value problems of Lame system in a sectorial domains. We study directly this problem, by using trigonometric series, without going through the Airy functions. Results using the Airy function are given in [11].
dc.description.departmentMathematics
dc.formatText
dc.format.extent6 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationMerouani, B., & Liazidi, N. (2017). Trigonometric series adapted for the study of Neumann boundary-value problems of Lame systems. Electronic Journal of Differential Equations, 2017(148), pp. 1-6.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15841
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSector
dc.subjectCrack
dc.subjectSingularity
dc.subjectLame
dc.subjectTrigonometric series
dc.subjectAiry function
dc.titleTrigonometric series adapted for the study of Neumann boundary-value problems of Lame systems
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
merouani.pdf
Size:
181.58 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: