Positive vortex solutions and phase separation for coupled Schrodinger system with singular potential

dc.contributor.authorDeng, Jin
dc.contributor.authorXia, Aliang
dc.contributor.authorYang, Jianfu
dc.date.accessioned2021-10-08T18:01:01Z
dc.date.available2021-10-08T18:01:01Z
dc.date.issued2020-10-30
dc.description.abstractWe consider the existence of rotating solitary waves (vortices) for a coupled Schrödinger equations by finding solutions to the singular system -Δu + λ1u + u/|x|2 = μ1u3 + βuv2, x ∈ ℝ2, -Δv + λ2v + v/|x|2 = μ2v3 + βu2v, x ∈ ℝ2, u, v ≥ 0, x ∈ ℝ2, where λ1, λ2, μ1, μ2 are positive parameters, β ≠ 0. We show that this system has a positive least energy solutions for the cases when either β is negative or β is positive and small or large. Moreover, if λ1 = λ2, then the solution is unique. We also study the limiting behavior of the least energy solutions in the repulsive case for β → -∞, and phase separation.
dc.description.departmentMathematics
dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationDeng, J., Xia, A., & Yang, J. (2020). Positive vortex solutions and phase separation for coupled Schrodinger system with singular potential. Electronic Journal of Differential Equations, 2020(108), pp. 1-20.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/14619
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSchrödinger equation
dc.subjectSingular potential
dc.subjectNehari manifold
dc.titlePositive vortex solutions and phase separation for coupled Schrodinger system with singular potentialen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
deng.pdf
Size:
377.55 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: