Antiperiodic solutions for nth-order functional differential equations with infinite delay

dc.contributor.authorAfonso, Suzete
dc.contributor.authorFurtado, Andre
dc.date.accessioned2023-06-12T19:45:12Z
dc.date.available2023-06-12T19:45:12Z
dc.date.issued2016-02-02
dc.description.abstractIn this work, we establish the existence and uniqueness of antiperiodic solution for a class of nth-order functional differential equations with infinite delay. The main tool in our study is the coincidence degree theory. An example is presented to illustrate the results obtained.
dc.description.departmentMathematics
dc.formatText
dc.format.extent8 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationAfonso, S. M., & Furtado, A. L. (2016). Antiperiodic solutions for nth-order functional differential equations with infinite delay. <i>Electronic Journal of Differential Equations, 2016</i>(44), pp. 1-8.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/16918
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2016, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectAntiperiodic solution
dc.subjectExistence
dc.subjectUniqueness
dc.subjectCoincidence degree
dc.subjectFunctional differential equations
dc.subjectInfinite delay
dc.titleAntiperiodic solutions for nth-order functional differential equations with infinite delayen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
afonso.pdf
Size:
195.6 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: