Domain geometry and the Pohozaev identity




McGough, Jeff
Mortensen, Jeff
Rickett, Chris
Stubbendieck, Gregg

Journal Title

Journal ISSN

Volume Title


Texas State University-San Marcos, Department of Mathematics


In this paper, we investigate the boundary between existence and nonexistence for positive solutions of Dirichlet problem Δu + ƒ(u) = 0, where ƒ has supercritical growth. Pohozaev showed that for convex or polar domains, no positive solutions may be found. Ding and others showed that for domains with non-trivial topology, there are examples of existence of positive solutions. The goal of this paper is to illuminate the transition from non-existence to existence of solutions for the nonlinear eigenvalue problem as the domain moves from simple (convex) to complex (non-trivial topology). To this end, we present the construction of several domains in R3 which are not starlike (polar) but still admit a Pohozaev nonexistence argument for a general class of nonlinearities. One such domain is a long thin tubular domain which is curved and twisted in space. It presents complicated geometry, but simple topology. The construction (and the lemmas leading to it) are new and combined with established theorems narrow the gap between non-existence and existence strengthening the notion that trivial domain topology is the ingredient for non-existence.



Partial differential equations, Variational identities, Pohozaev identities, Numerical methods


McGough, J., Mortensen, J., Rickett, C., & Stubbendieck, G. (2005). Domain geometry and the Pohozaev identity. <i>Electronic Journal of Differential Equations, 2005</i>(32), pp. 1-16.


Attribution 4.0 International

Rights Holder

Rights License