Three nontrivial solutions for nonlocal anisotropic inclusions under nonresonance

dc.contributor.authorFrassu, Silvia
dc.contributor.authorRocha, Eugenio M.
dc.contributor.authorStaicu, Vasile
dc.date.accessioned2021-11-29T16:32:21Z
dc.date.available2021-11-29T16:32:21Z
dc.date.issued2019-05-31
dc.description.abstractIn this article, we study a pseudo-differential inclusion driven by a nonlocal anisotropic operator and a Clarke generalized subdifferential of a nonsmooth potential, which satisfies nonresonance conditions both at the origin and at infinity. We prove the existence of three nontrivial solutions: one positive, one negative and one of unknown sign, using variational methods based on nosmooth critical point theory, more precisely applying the second deformation theorem and spectral theory. Here, a nosmooth anisotropic version of the Holder versus Sobolev minimizers relation play an important role.
dc.description.departmentMathematics
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationFrassu, S., Rocha, E. M., & Staicu, V. (2019). Three nontrivial solutions for nonlocal anisotropic inclusions under nonresonance. Electronic Journal of Differential Equations, 2019(75), pp. 1-16.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/14963
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectIntegrodifferential operators
dc.subjectDifferential inclusions
dc.subjectNonsmooth analysis
dc.subjectCritical point theory
dc.titleThree nontrivial solutions for nonlocal anisotropic inclusions under nonresonanceen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
frassu.pdf
Size:
369.82 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: