Asymptotic formula for detecting inclusions via boundary measurements

dc.contributor.authorKhelifi, Khalifa
dc.contributor.authorAbdelwahed, Mohamed
dc.contributor.authorChorfi, Nejmeddine
dc.contributor.authorHassine, Maatoug
dc.date.accessioned2022-02-14T21:55:03Z
dc.date.available2022-02-14T21:55:03Z
dc.date.issued2018-06-28
dc.description.abstractIn this article, we are concerned with a geometric inverse problem related to the Laplace operator in a three-dimensional domain. The aim is to derive an asymptotic formula for detecting an inclusion via boundary measurement. The topological sensitivity method is applied to calculate a high-order topological asymptotic expansion of the semi-norm Kohn-Vogelius functional, when a Dirichlet perturbation is introduced in the initial domain.
dc.description.departmentMathematics
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationKhelifi, K., Abdelwahed, M., Chorfi, N., & Hassine, M. (2018). Asymptotic formula for detecting inclusions via boundary measurements. <i>Electronic Journal of Differential Equations, 2018</i>(134), pp. 1-16.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15334
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectLaplace operator
dc.subjectAsymptotic analysis
dc.subjectTopological gradient
dc.subjectKohn-Vogelius functional
dc.titleAsymptotic formula for detecting inclusions via boundary measurementsen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
khelifi.pdf
Size:
224.18 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: