Examining Predictors of Myocardial Infarction

Date

2021-10

Authors

Dolezel, Diane
McLeod, Alexander
Fulton, Lawrence V.

Journal Title

Journal ISSN

Volume Title

Publisher

Multidisciplinary Digital Publishing Institute

Abstract

Cardiovascular diseases are the leading cause of death in the United States. This study analyzed predictors of myocardial infarction (MI) for those aged 35 and older based on demographic, socioeconomic, geographic, behavioral, and risk factors, as well as access to healthcare variables using the Center for Disease (CDC) Control Behavioral Risk Factor Surveillance System (BRFSS) survey for the year 2019. Multiple quasibinomial models were generated on an 80% training set hierarchically and then used to forecast the 20% test set. The final training model proved somewhat capable of prediction with a weighted F1-Score = 0.898. A complete model based on statistically significant variables using the entirety of the dataset was compared to the same model built on the training set. Models demonstrated coefficient stability. Similar to previous studies, age, gender, marital status, veteran status, income, home ownership, employment status, and education level were important demographic and socioeconomic predictors. The only geographic variable that remained in the model was associated with the West North Central Census Division (in-creased risk). Statistically important behavioral and risk factors as well as comorbidities included health status, smoking, alcohol consumption frequency, cholesterol, blood pressure, diabetes, stroke, chronic obstructive pulmonary disorder (COPD), kidney disease, and arthritis. Three access to healthcare variables proved statistically significant: lack of a primary care provider (Odds Ratio, OR = 0.853, p < 0.001), cost considerations prevented some care (OR = 1.232, p < 0.001), and lack of an annual checkup (OR = 0.807, p < 0.001). The directionality of these odds ratios is congruent with a marginal effects model and implies that those without MI are more likely not to have a primary provider or annual checkup, but those with MI are more likely to have missed care due to the cost of that care. Cost of healthcare for MI patients is associated with not receiving care after accounting for all other variables.

Description

Keywords

myocardial infarction, prediction, cardiovascular

Citation

Dolezel, D., McLeod, A., & Fulton, L. (2021). Examining predictors of myocardial infarction. International Journal of Environmental Research and Public Health, 18(21), 11284.

Rights

Rights Holder

Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Rights URI