An alternative approach to critical PDEs

dc.contributor.authorLabropoulos, Nikos
dc.date.accessioned2022-06-03T16:51:22Z
dc.date.available2022-06-03T16:51:22Z
dc.date.issued2017-06-23
dc.description.abstractIn this article, we use an alternative method to prove the existence of an infinite sequence of distinct, non-radial nodal G-invariant solutions for critical nonlinear elliptic problems defined in the whole the Euclidean space. Our proof is via approximation of the problem on symmetric bounded domains. The base model problem of interest originating from Physics is stated below: -∆u = |u|4/n-2u, u ∈ C2 (ℝn), n ≥ 3.
dc.description.departmentMathematics
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.identifier.citationLabropoulos, N. (2017). An alternative approach to critical PDEs. <i>Electronic Journal of Differential Equations, 2017</i>(150), pp. 1-12.
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/10877/15843
dc.language.isoen
dc.publisherTexas State University, Department of Mathematics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectLaplacian
dc.subjectNon-radial solution
dc.subjectCritical exponent
dc.titleAn alternative approach to critical PDEs
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
labropoulos.pdf
Size:
245.09 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.54 KB
Format:
Item-specific license agreed upon to submission
Description: