Eye Know You: Metric Learning for End-to-end Biometric Authentication Using Eye Movements from a Longitudinal Dataset

Date
2022-04
Authors
Lohr, Dillon J.
Griffith, Henry
Komogortsev, Oleg
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers
Abstract
The permanence of eye movements as a biometric modality remains largely unexplored in the literature. The present study addresses this limitation by evaluating a novel exponentially-dilated convolutional neural network for eye move- ment authentication using a recently proposed longitudinal dataset known as GazeBase. The network is trained using multi-similarity loss, which directly enables the enrollment and authentication of out-of-sample users. In addition, this study includes an exhaustive analysis of the effects of evaluating on various tasks and downsampling from 1000 Hz to several lower sampling rates. Our results reveal that reasonable authentication accuracy may be achieved even during both a low-cognitive- load task and at low sampling rates. Moreover, we find that eye movements are quite resilient against template aging after as long as 3 years.
Description
Keywords
biometric authentication, metric learning, template aging, dilated convolution, eye movements, Computer Science
Citation
Lohr, D., Griffith, H., & Komogortsev, O. V. (2022). Eye know you: Metric learning for end-to-end biometric authentication using eye movements from a longitudinal dataset. IEEE Transactions on Biometrics, Behavior, and Identity Science, pp. 1-13.