Electronic and Thermoelectric Properties of InN Studied Using ab initio Density Functional Theory and Boltzmann Transport Calculations
Date
2014-12
Authors
Borges, Pablo D.
Scolfaro, Luisa M.
Journal Title
Journal ISSN
Volume Title
Publisher
AIP Publishing
AIP Publishing
AIP Publishing
Abstract
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Description
Keywords
indium nitride, thermoelectric properties, InN, density functional theory, boltzmann transport calculations
Citation
Borges, P. D. & Scolfaro, L. (2014). Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations. Journal of Applied Physics, 116, 223706.